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Abstract. Let H be a connected labeled graph. A H-—generalized join graph is a graph obtained by
H—generalized join operation of family of graphs G = {G, : v € V(H)} constrained by family of ver-
tex subsets S = {S, < V(G,) : v € V(H)}. In this article, we characterize all the dominating sets and
the minimal dominating sets of H—generalized join graphs. Consequently, we compute the (multivariate)
domination polynomial and the minimal domination polynomial of H—generalized join graphs. We also
compute the domination number of H—generalized join graphs. Finally, as an illustration, we calculate the
domination polynomial and the minimal domination polynomial of multipartite graphs, the corona product
of graphs, K, —generalized join graphs, and K, ,,, —generalized join graphs.

1. Introduction

Due to its numerous applications in various domains, the problem of identifying all (minimal) dominat-
ing sets of a graph is one of the fundamental problems in graph theory with a long history in the literature.
The process of enumerating a graph’s (minimal) dominating sets gives rise to a polynomial, known as the
(minimal) domination polynomial of the graph. Determining (minimal) dominating sets is a well-known
NP-hard (see [13]) fundamental graph theory problem that studies various properties of dominating sets
(for example, refer [11, [3], [4], [5], [2], [6], [19], and [23]). There are numerous computational methods for
discovering them because of their difficulty and importance (for example, refer [11], [12], [14], [15] and [16]).
Domination number and domination polynomial of certain products of graphs were studied in [9], [18],
and [20]. Recent works such as [8], [7], [12], [15], [17], [20], [21] and [22] have explored domination-related
parameters and their polynomials in various graph classes, indicating the growing interest in this topic.

This work continues the line of research initiated in [21], where the authors studied total domination and
minimal total domination polynomials of H-join graphs. Here, we extend the investigation to domination
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and minimal domination polynomials in the context of H-generalized join graphs, which is a generalized
notion of the H-join operation.

A H—generalized join operation of family of graphs G = {G, : v € V(H)} constrained by family of vertex
subsets S = {S, c V(G,) : v € V(H)} which is a generalization of H—join operation, denoted by \/; s G,
is introduced in [10]. Further, the spectral properties of \/}; ¢ G were studied in [24]. For the definition of
H—generalized join graph, refer Subsection In this article, we provide a formula for computing the
(minimal) domination polynomial of H—generalized join graphs by identifying all (minimal) dominating
sets of H—generalized join graphs. This may help in studying the topology of the dominance complex of a
graph.

Let R be an equivalence relation on the vertex set of a graph G. The relation R is said to be a join
equivalence if two vertices # and v of G are in the different equivalence classes of R then 1 and v are adjacent
in G. Note that each such join equivalence of G provides a H—join decomposition of G for some H. In fact
every finite simple graph G can be decomposed as a H—join (H—generalized) graph, for some H and G, for
example, refer [[25], Lemma 3.1].

This paper is structured as follows: In Section 2} we review the basic notations and terminology needed
for the subsequent sections. In Section [3) we characterize all dominating sets of G := \/}; G in terms

of (dominating) sets of the graphs H, G,’s, G[S,]’s and G[S,]’s, where G[S] is the induced subgraph of
G induced by the vertex subset S and S, = V(G,)\S,. Consequently, we compute the (multivariate)
domination polynomial of \/; G in terms of the multivariate domination polynomial of the graph H

and the (multivariate) domination polynomials of the graphs G,’s, G[S,]’s and G[S,]’s. Also, we deduce
the domination number of \/; ¢G. In Section E} we characterize all minimal dominating sets of \/; s G

in terms of (dominating) sets of the graphs H, G,’s, G[S,]’s and G[S,]’s. Consequently, we compute the
minimal domination polynomial of \/j ¢ G in terms of the multivariate minimal domination polynomial of

the graphs H and the minimal domination polynomials of the graphs G,’s, G[S,]’s and G[S,]’s. In the last
section, we compute the (minimal) domination polynomial of some graphs as examples.

2. Preliminaries

In this section, we recall the basic notions that are needed for the article.

2.1. Basics

The induced subgraph G[S] of G induced by a vertex subset S of G is the graph with vertex set S such that
two vertices u, v € S are adjacent in G[S] if and only if u and v are adjacent in G. For a vertex v € V(G), the
open neighborhood of v in G is the set N(v) consists of all vertices u € V(G) such that u is adjacent to v and the
closed neighborhood of v in G is the set N[v] = N(v) u {v}. For aset D c V(G), the open neighborhood of D is the
set N(D) = UyepN(v) and the closed neighborhood of D is the set N[D] = N(D) u D.

Avertexsubset D of a graph G (may be disconnected) is called a dominating set in G if for every v € V(G)\D
there exists u € D such that v is adjacent to u, or equivalently, N[D] = V(G). A subset D < V(G) is said to
be a minimal dominating set in G if it is a dominating set in G and none of its proper subsets is a dominating
setin G. A minimum dominating set in G is a dominating set of the smallest size in G. The domination number
¥(G) of G is the cardinality of a smallest dominating set of G, i.e., the cardinality of a minimum dominating
set of G. We fix a conversion that the empty set is the dominating set of the null graph, where the null graph
is the graph having the vertex set and the edge set as the empty set.

Let H be a labeled graph. For each vertex v of H, we associate a variable xy. Define X; := [[,¢;xy for
a vertex subset | of H. If | = J then assume that X := 1. Let 8 be a collection of some special vertex
subsets or special subgraphs of H. (Some examples are the collection of dominating sets of H, the collection
of cliques of H, the collection of dominating sets of H that intersect some given subset of H, etc.) Then, the
multivariate polynomial for 8 of H is defined as

MVg(H;X) =, [11X),

JeV(H)
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where [J] = 1if J € Band [J] = 0if | ¢ B. In other words,

MVg(H; X) = > X).
JeB

The polynomial for B of H is defined as

V()
Py(H;x) = Y, ax’,
k=0

where ¢y is the number of elements of 8 of cardinality k.

Let D = Dom(H) be the set of all dominating sets of H. Then the polynomial Py (H; x) (resp. the mul-
tivariate polynomial MYV p(H; X)) for D of H is called the domination polynomial of H (resp. the multivariate
domination polynomial of H). Similarly, let M = MDom(H) be the set of all minimal dominating sets of H.
Then the polynomial P ,((H; x) (resp. the multivariate polynomial MYV x((H; X)) for M of H is called the
minimal domination polynomial of H (resp. multivariate minimal domination polynomial of H).

2.2. H—generalized join

Let Hbe a connected graph. Let G = {G, : v € V(H)} be a family of pairwise disjoint graphs. The H—join
operation of graphs {G, : v € V(H)}, denoted by \/; G, is defined as follows: Replace each vertex v € V(H)
by G, and join each vertex of G, with each vertex of G, if v is adjacent to w in H. Precisely, \/y G is the
graph with vertex set V(\/y G) = Uevm) V(Go) and edge set E(\V 1 G) = Usev ) E(Go) Y Uowermy{xy 1 x €
V(Go),y € V(Ga)}.

Given H, G, and a family of nonempty vertex subsets S = {S, c V(G,) : v e V(H)}, a H—generalized join
operation of family G constrained by family of vertex subsets S which is a generalization of H—join operation,
denoted by \/j; s G, is introduced in [10] that is defined as follows: the vertexset V(Vy s G) = U ev ) V(Go)
and E(VysG) = Usevny E(Go) Y Upwern 13y : x € So, ¥ € Su}. 1f we take S, = V(G,) for each v € V(H),
then the H—generalized join operation coincides with the H—join operation of the graphs {G, : v € V(H)}.
A H—generalized join graph G is a graph obtained by H—generalized join operation of family of graphs
G = {G, : v e V(H)} constrained by family of vertex subsets S = {S, < V(G,)}. We always assume that H
is connected with at least two vertices.

Letw: V(G := \/jsG) — V(H) be the canonical map, i.e.,

n(xy) =0,

where v € V(H) and x, € V(G,). We associate multivariables X, X and Z = (X"),ev(n) to the vertex sets
V(H),V(Gy) and V(G) respectively for the purpose of writing their multivariate polynomials in future
sections.

3. Dominating sets of H—generalized join graphs

In this section, we describe dominating sets and the domination polynomial of H—generalized join
graphs. First, we discuss the dominating sets and the domination polynomials of a special case, namely
H—join graphs.

Let M be a vertex subset of a graph H. For a vertex v € M, we denote the degree of the vertex v in H[M]
by deg™(v). We denote the set of vertices v € M such that deg™(v) = i by M’ and the set of vertices v € M
such that deg"(v) > i by M>. We also denote M>! as M*,i.e., M* = M\M".
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3.1. Dominating sets of H—join graphs
In this subsection, we characterize all dominating sets of H—join graphs. Consequently, we compute the
domination polynomial of H—join graphs.

Proposition 3.1. Let G = \/; G be a H—join graph. Let D be a vertex subset of G. Then, D is a dominating set in
G if and only if M := 1(D) is a dominating set in H and there exists a family of sets {D, < V(Gy)}vem such that
D = uwemD, and D, is a dominating set in G, whenever v € MO.

Proof. Suppose that D is a dominating set in G. Let M = (D). We claim that M is a dominating set in H. If
M = V(H), then nothing to prove. Suppose that M # V(H). Let v € V(H)\M and x € V(Gy). Since x ¢ D,
there exists y € D such that x is adjacent to y. Consequently, v = n(x) is adjacent to 7(y) € M. This proves
that M is a dominating set in H.

For each v € M, define D, = V(G,) n D. We show that for each v € MY, the set D, is a dominating set
in G,. Suppose not, there exists v € M° such that D, is not a dominating set in G,. This implies that there
exists a vertex x € V(G,)\D, such that x is not adjacent to any element of D,. Since D is a dominating set,
there exists a vertex u € M with u # v such that x is adjacent to some vertex y € D,,. This implies that, by the
definition of H—join, v is adjacent to u in M, and hence degM(U) > 0, which is a contradiction. Thus, D, is a
dominating set in G,, for all v € M°.

Conversely, suppose that M is a dominating set in H and a family {D, c V(G,) }vem satisfies the necessary
conditions. We show that D = UyepmD, is a dominating setin G. Let x € V(G)\D. If w := mt(x) ¢ M then w
is adjacent to some vertex 1 in M. Hence, x is adjacent to a vertex in D,,. Suppose that w € M. Since D,, is a
dominating set in G, we have V(G,)\Dy © N(Dy). Hence, x is adjacent to a vertex in D. Now, let w € M™.
Then, there exists a vertex u € M such that w is adjacent with u. It follows that x is adjacent to a vertex in
D,. Hence, D is a dominating setin G. [J

As a consequence of the above proposition, we have the following theorem.

Theorem 3.2. Let G = \/y G be a H—join graph. The number of dominating sets of size k in G is given by

o 2,50 )

s=1MeDom(H) ayy=k \ veM? ueM+
[M|=s

where the second sum is over all dominating sets in H of size s, the third sum is over all possible sumsk = apr = Y ,eps o
of positive integers and d,,(G,) denote the number of dominating sets in G, of size ay.

Proof. By Proposition.1} D is a dominating set in G of size k if and only if M := 7t(D) is a dominating set
in H and {D, = D n V(Gy,) : v € M} is a partition of D such that D, is a dominating set in G, whenever
v e M° and 2ven(y|Dol = k. Hence, the number of dominating sets D of size k in G such that 7(D) = M

and |D n V(G,)| = a, for each v € M is equal to the product | [,cpp da,(Go) [ Liear+ ('V(a(j“)l). Hence, the result
follows. [

For a subset M of a set N, we define the characteristic function xa : N — {0, 1} by xm(v) = 1 if and only
ifve M

Corollary 3.3. Let G = \/y G be a H—join graph. Let MVp(H;X) = Xy [M]Xum be the multivariate
domination polynomial of H. Then,

1. The domination polynomial of G is given by

Pp(Gx) = Y [MTu(x),

McV(H)

where Tpy(x) = [ oem ()(Mo(v)Pz)(Gv; x) + (1= xa(0)) ((1 4 x)VEI — 1))
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2. The multivariate domination polynomial of G is given by

MV(GZ)= %) M T] (xme@MV(Goi X7) + (1 = xan (@) MV (K X7) ).

McV(H) veM

where Ky (c,) is the complete graph of order |V (G,)|.

Proof. Observe that the coefficient di(G) of x* of the domination polynomial of G is equal to the sum over
all dominating sets M of H of all products | [,cpp 9a, (Go) | Liem+ (‘V(;’:’“)') such that >, .\, 4, = k. Hence, the

first result immediately follows from Theorem 3.2} The proof of the statement (2) is also similar to that of
(1. O

3.2. Dominating sets of H—generalized join graphs

In this subsection, we calculate the domination polynomial of H—generalized join graphs by character-
izing dominating sets of H—generalized join graphs.

Let us first fix the following notations: For each v € V(H), we denote the set of vertices of G, notin S, as
S, i.e., S, := V(G,)\S,. For a subset L of V(H), define L = V(H)\L the set complement of L in V(H).

Let G’ be an induced subgraph of G. A subset D of V(G) is said to be a G'—dominating set of G if for
every vertex v € G’ either v € D or v is adjacent to a vertex in D. If we take G’ = G then the definition of
G’ —dominating set of G coincides with the definition of dominating set of G. A vertex subset D < V(G) is
said to be a minimal G'—dominating set in G if it is a G'—dominating set in G and none of its proper subsets
is a G'—dominating set in G. We denote the number of G'—dominating set of G of size k by d,‘: @) (G).

We have the following proposition that characterizes the dominating sets of H—generalized join graphs.

Proposition 3.4. Let G = \/Q be a H—generalized join graph. Let D be a vertex subset of G. Then, D is a
HS

dominating set in G if and only if there exists a vertex subset L (possibly empty) of H and there exists a family of sets

{Dy © V(Go) }oev(m) such that D = Uy Dy and satisfies the following properties:

1. D, is a dominating set in G, that intersect S, if v € L.

2. D, intersect S, and Dy, is a G[S_v]—dominating set in Gy, i.e., Sy © N[D,]ifveL*.
3. D, = @ ifand only if v e N(L)\L and S, = &.

4. D, c S,and D, is a dominating set in G[S_v] ifve N(L)\L and S, # .

5. D, c S,and D, is a dominating set in Gy ifv € m

Proof. Suppose that D is a dominating set in G. Let us definea subset L = L(D) :={ve V(H) : D n S, # &}
of V(H). Set D, = D n V(G,), for all v € V(H). Observe that S, c N[D,] for all v € V(H). Because no vertex
of S, is adjacent to any vertex of G,, for all u € V(H)\{v}.

By the similar argument of Proposition D, is a dominating set in G, whenever v € L°. Also, (2)
follows from the above observation. .

To prove (3), let v e N(L)\L and S, = &&. It is clear from the definition of L that D, < S,. Hence, D, = .
Conversely, suppose that D, = ¥ for some v € V(H). Then v ¢ L. If S, # (7, then D cannot be a dominating
set as no vertex of S,, is adjacent to any vertex of Gy, for all u € V(H)\{v}. Hence, S, = . It remains to prove
thatv e N(L). Let y € S,. As D is a dominating set of G, there exists u € L such that u # v and y is adjacent
to a vertex of D, n S,,. Hence, v € N(L).

The proof of (4) follows from the definition of H—generalized join. Now, let v € ﬁ Then D, c S_v
and S, is nonempty. Now, we prove that D, is a dominating set in G,. By the above argument, it is enough
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to prove that S, — N[D,]. Suppose not, then there exists a vertex x € S, such that x is adjacent to a vertex
y € Dy n' S, for some u. This implies that v is adjacent to u € L, and hence u € N(L), a contradiction. Thus,
S, © N[D,]. Hence D, is a dominating set in G,.

Conversely, suppose that there exists a subset L of V(H) and a family of sets {D, < V(Gy)}oev(x) such
that D = Ugey()Dy and satisfies (1) to (5). We prove that D is a dominating set in G. It is clear from (1) to

(5) that S, = N[D,] < N[D], for all v € V(H). It remains to prove that S,  N[D], for all v € V(H). Since D,

is dominating in G, for all v € L° U N[L], we see that S, © N[D] for all v € L° U N[L]. Now, let v € N(L). Then
there exists a vertex u € L such that v is adjacent with u. As D,, n S, is nonempty and v is adjacent with u, it
follows that every vertex of S, is adjacent to a vertex in D,,, and hence S, c N(D). Thus, D is a dominating
setinG. [

LetG = \/Q be a H—generalized join graph. Let & = {ve V(H) : S, = &}. For a vertex subset L of H,
HS
we define & := V(H)\(E n (N(L)\L)).

Theorem 3.5. Let G = \/ G be a H—generalized join graph. The number of dominating sets of size k in G is given
HS

by

k — —
(G =) > > (H(dav(c,,)—d;(c;v))Hdi:(cz» [T 4GS [] d;‘;(Gv))

s=0LcV(H) ag, =k \veLl velt ve(N(L)\L)\& veN[L]
|L|=s

where the second sum is over all vertex subsets L of H of size s, the third sum is over all possible sumsk = ag, = ,cg, o
of positive integers, d,,(G,) denote the number of dominating sets in G, of size ay, d;; (Gy) denote the number of
dominating sets of G, of size a, that are contained in S,, and dfv”(G) denote the number of G[S,|—dominating set of
G of size ay,.

Proof. The proof follows from Proposition[3.4]and a similar approach of the proof in Theorem[3.2 [

Remark 3.6. Observe that if v e N[L] n & for some L < V(H), then by Propositionthere is no dominating set D

in G such that L(D) = L. Moreover, for such v € N[L] n &, d; (G,) = 0 as there is no subset of S, (since S, = &)
that dominate G,. Hence the sum over such L in the expression di(G) given in Theorem [3.5)is zero.

We need to define the following notations for writing domination polynomials of H—generalized join
graphs.

o D := Dom(H) (resp. M = MDom(H)) - the set of all dominating (resp. minimal dominating) sets of
a graph H.
e D* —the set of all dominating sets of G, that contained in S, < V(G,).

o DS (resp. MDS = MDom"(G,)) — the set of nonempty G[S,]—dominating sets (resp. minimal

G[Sy]—dominating sets) of G,.

Corollary 3.7. Let G = \/ G be a H—generalized join graph. Then,
HS
1. The domination polynomial of G is given by
Po(Gix) = Y, Tu(),

McV(H)
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where

T = [T (X0 @) (Po(Gox) = P (Gus)) + (1 = 1an(0))P s (Gor )

veM

[T (1 - (@) Po(GIS.L: %) + ()P (Goi))-

veM

2. The multivariate domination polynomial of G is given by

MVp(GZ) = ) H(XMO ) MV (Go; X°)— M(VD*(GU;X”))+(1—XM0(U))M(VD§(GU;X”))

McV(H) veM

[T (@ = X @M V(G X) + Xy (M Vs (Gui X))

veM

Proof. The proof of the corollary follows from Theorem [8.5|by using a similar argument as in the proof of
Corollary 3.3} O

3.3. The domination number of a H—generalized join graph

Now, we discuss the domination number of H—join graphs and H—generalized join graphs. Let y(G’)
be the domination number of a graph G'.

Theorem 3.8. Let G := \/; G be a H—join graph. Then, the domination number y(G) of the H—join graph G is
given by
»(G) = min{|M| — MO+ 3 (Gy) : Me z)om(H)}.

veM?
Proof. The proof follows from Theorem [3.2|and Corollary dJ
We have an immediate corollary.

Corollary 3.9. Let G := \/; G be a H—join graph. Then, y(G) > y(H). Moreover, the equality holds if and only if
H has a minimum dominating set M such that y(G,) = 1 for all v € MP.

In the following theorem, we discuss the domination number of H—generalized join graphs.
Theorem 3.10. Let G := \/y G be a H—generalized join graph. Then, the domination number y(G) of the
H—generalized join graph G is given by

G)=min{2y(Gv)2y§ Z y Z y*(Gy): Lc V(H )withmm8=®},

veld velt veN veN[L]

where yg(Gv) is the minimum cardinality of a set in DS and y*(G,) is the minimum cardinality of a set in D*.

Proof. The proof follows from Theorem 3.5 and Corollary O

4. Minimal Dominating sets of H—generalized join graphs

In this section, we characterize all minimal dominating sets of H—generalized join graphs. Consequently,
we compute the minimal domination polynomial of H—generalized join graphs.

LetG = \/ G and L c V(H). We say v € L satisfies property P if
HS
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(P.1) L\{v}is a dominating set in H[NJ[L]],
(P.2) deg*(u) > 1 for each vertex u € L n N(v),
(P3) S, = &.
For a subset L of V(H), we define
L* = {v € L : v satisfies P.1 and P.3}.

First, we discuss the minimal dominating sets and the minimal domination polynomials of a special case,
namely H—join graphs as it can be written in a nice formula in terms of minimal domination polynomials.

4.1. Minimal dominating Sets of H—join graphs
Now, we describe the minimal dominating sets of H—join graphs.

Proposition 4.1. Let G = \/; G be a H—join graph. Let D be a minimal dominating set in G. Then,
1. (D) is a (not necessarily minimal) dominating set in H.

2. n(D) does not admit a vertex that satisfies property P.

Proof. Let M = m(D). It follows from Proposition .| that M is a dominating set in H. Set D, = D n V(G,),
forallv e V(H).

If M is a minimal dominating set in H, then (2) trivially holds. Suppose that M is not a minimal
dominating set in H. Let v € M be a vertex that satisfies property P. We claim that D\V(G,) is a dominating
set in G. By Proposition it is enough to prove that for all u € (M\{v})", the set D, is dominating in G,,.
Asve MT, we see that (M\{v})? = M® U (N(v) n M!). Since v satisfies property P, for all u € N(v) n M, we
have deg" (1) > 1. Hence, N(v) n M' = . So (M\{v})® = M’. Then, the claim follows from Proposition[3.1}
This is a contradiction to the minimality of D in G. Hence, the result follows. [

Remark 4.2. Let D be a minimal dominating set in G = \/y G. Assume that for each vertex v € n(D) either
deg™P) (v) = 0 or 1(D)\{v} is a dominating set in H. Then the maximum degree of the induced subgraph H[r(D)]
is less than or equal to 1, i.e., A(H[n(D)]) < 1 (This follows from Proposition [4.1).

Now, we characterize minimal dominating sets of H—join graphs.

Proposition 4.3. Let G = \/y G be a H—join graph. Let D be a vertex subset of G. Then D is a minimal dominating
set in G if and only if there exists a dominating set M in H that does not have a vertex that satisfies property P, and
there exists a family {D, < V(Gy)}vem such that D = UyemD, and satisfies the following properties:

1. Ifv € M° then D, is a minimal dominating set in G,.
2. Ifve M then D, is a singleton set.

3. For every v € M*, there exists a vertex w € N(v) n M with deg™(w) = 1 such that D,, is a non-dominating
singleton set of Gy,.

Proof. Suppose that D is a minimal dominating set in G. Let M = 7(D). It follows from Proposition [4.1] that
M is a dominating set in H that does not have a vertex that satisfies property P.

For each v € M, we define D, = V(G,) n D. We show that for each v € MY, the set D, is a minimal
dominating set in G,. It follows from Proposition that for each v € MY, the set D, is a dominating set
in G,. Suppose that D,\{x} is a dominating set in G, for some x € D,. Then by Proposition we see that
D\{x} is a dominating set in G as each D,, is dominating in G,, for w € M. We get a contradiction and hence
D, is a minimal dominating set in G,.
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Now, we will prove that for each u € M, the set D, is singleton. Suppose not, there exists u € M such
that {x, y} ¢ D,,. Then by Proposition[.1} D\{y} is a dominating set of G as each D,, is dominating in G, for
w e M? and n(D\{y}) = M, which is a contradiction. Hence, for each u € M*, the set D, is singleton.

Suppose that v € M*. We have to prove that there exists a vertex w of N(v) n M with deg™(w) = 1 such
that D,, is a non-dominating set of G,,. Suppose not, for every vertex w in N(v) n M with deg™(w) = 1, D,, is
a dominating set of G;,. We claim that D\D, is a dominating set in G. First, observe that n(D\D,) = M\{v}
is a dominating set in H as v € M*. By Proposition it is enough to prove that for all u € (M\{v})?, the
set D, is dominating in G,. As v € M*, we see that (M\{v})° = M’ U (N(v) n M"). Now, by Proposition[3.1}
for all u € M, the set D,, is dominating in G,. Moreover, by our assumption D, is a dominating set of G,
for all w € N(v) n M. Hence D\D, is a dominating set in G. This is a contradiction to the minimality of D.
Hence the proof of (3) completes.

Conversely, suppose that M is a dominating set in H that does not have a vertex satisfying property
P, and there exists a family of vertex subsets D, of G,, for v € M that satisfies (1) to (3). We show that
D = UyemD, is a minimal dominating set in G. It follows from Proposition[3.1|that D is a dominating set in
G. Suppose that D is not a minimal dominating set in G. Then there exists a vertex x of G, such that D\{x} is
a dominating set in G, for some u € M. We claim that deg™ (1) > 0. Suppose not, then by hypothesis (1), D,
is a minimal dominating set in G,, and hence D,\{x} is not a dominating set in G,.. But by Proposition
D, \{x} is a dominating set of G, if D,\{x} # &.If D,\{x} = &, then n(D\{x}) = M\{u} is a non-dominating
set of H. This is a contradiction. Hence, deg™ (1) > 0.

Since u € M*, D, = {x}. Now, it follows that u € M* as D\{x} is a dominating set in G. Then, by
hypothesis there exists a vertex w € M n N(u) such that deg™(w) = 1 and D,, is a non-dominating set of
Gy. But by Proposition D, is a dominating set of G, as degM\{”} (w) = 0. This is absurd. Hence, D is a
minimal dominating set in G.

|

4.2. The minimal domination polynomial of H—join graphs:
Now, we have the following remarks that we need for writing the minimal domination polynomial of
H—join graphs.

Remark 4.4. Suppose that M is a dominating set of a graph H. Then, we have
M=M uM" LM>?
= M" L Ny uNj, U M2,
where Ny = |_| N(v) n M and N, = |_| N(v) n M.
veEM* veM+\M*

Remark 4.5. For each v € V(H), let W(G,) and U(G,) be the set of all non-dominating vertices and the set of all
dominating vertices of G, respectively. For any subset L of V(H), we define Ay to be the set of all (xy)ver, € [ [,er V(Go)
such that at least one of x, must be a non-dominating vertex of G,. It is clear that

Ac= ([TvGaN TuGo).
vel vel
Let Ky = | lyer Ky (c,) be a disjoint union of complete graphs, where Ky (g, is the complete graph with vertex set
V(Gy). For a subset S of L, consider the induced subgraph K? = ( Uyes Kwc, ) LI ( weens Kiuge,y) of Ki.- We make
the following observations.

1. IfU(Gy) = & for some v € L then A = [ [,e; V(Go). Moreover, there is a one-to-one correspondence between
the set of all minimal dominating sets of the graph Ky and the set Ay..

2. If U(Gy) # I for all v € L then there is a one-to-one correspondence between the set Ay and the union of all
the set of minimal dominating sets of the graph K3, where the union runs over all nonempty subsets S of L such
that W(G,) # & forallv e S.
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As a consequence of Proposition[4.3] we have the following theorem.

Theorem 4.6. Let G = \/; G be a H—join graph. Then, the number of minimal dominating sets of size k in G is
given by

k
=2 2 2| [TmG) [T Nl [T VG,

s=1 MeDom® (H) am=k L veM? veEM* vEN}, LM>?
|M|=s

where Dom" (H) consists of all dominating sets M of H such that M does not have a vertex that satisfies property P,

the third sum is over all possible sums k = apy = [M*| + Z a, of positive integers and m,,(G,) denote the number
veEMO
of minimal dominating sets in G of size a.

Proof. The proof follows from Proposition Remark Remark and by a similar approach of the
proof of Theorem[3.2l [

Corollary 4.7. Let G = \/y G be a H—join graph. Let MV pr(H; X) = Yycy iy [M]Xm be the multivariate
domination polynomial of H for DY := Dom" (H). Then,

1. The minimal domination polynomial of G is

Pu(Gx) = D [MAu),

McV(H)

where

o Au(x)=1]] (XMU )P M(Go; x) + X (0)Ro(x) + XNZ’MuM>2(U)PM(KIV(GU)l}x))/
vEM

o Ro(x) = [Luen(oy e Pm(Kivic,); X) if U(Gy) = & forsomeu € N(v)nM' and Ro(x) = X cseno) (HwES P
& forall u € N(v) n M, where the sum runs over all nonempty subset S of L such that W(G,) # & for
allw e S.

2. The multivariate minimal domination polynomial of G is given by

MVYMGZ)= D) [MIAS(Z),

where

o A (Z) = 1loem ()(MU (OMV Mm(Go; X°) + xmx (0)Ro(X) + X7 L2 (U)M(VM(KW(GU)\;XD)),

o Ro(X) = [ lweniyomn MV MKy, X©) if U(Gy) = & for some u € N(v) n M and R,(X) =
2G5 £SCN(0) AM! (Hwes MV MK, X9) | Les MV m(Kiuca, \fX’”)) if U(Gy) # & for all u e
N(v) n M}, where the sum runs over all nonempty subset S of L such that W(Gy,) # & forallw € S.

Proof. The proof of the corollary follows from Theorem [4.6|and Remark[£.5 [
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4.3. Minimal dominating sets of H—generalized join graphs

Now, we calculate the minimal domination polynomial of H—generalized join graphs by characterizing
minimal dominating sets of H—generalized join graphs.

Proposition 4.8. Let G = \/ G be a H—generalized join graph. Let D be a minimal dominating set in G. Then, the

HS
set L:={ve V(H):DnS, # &} does not have a vertex that satisfies property P.

Proof. Suppose that v € L satisfies property P. Since v satisfies property P, we see that (L\{v})? = L°,
(L\o})* = LH\fo}, NC\O)\(L\{o}) = (N(\L) u {0}, and N[[\{}]] = N[L]- As S, = @ and © e
N(L\{v})\(L\{v}), if we take D, = ¢ and D, = D n V(Gy) for all w # v, it follows that from Proposi-
tion [3.4] that D\D, is a dominating set in G. This is a contradiction to the minimality of D in G. Hence, the
result follows. [

LetG = \/ G be a H—generalized join graph and let v € V(H). We say that M c V(G,) is minimal among

all the G[S,]— dommatlng sets in G, that intersect S, if

1. Mis a G[S,]—dominating set in G, such that M n S, # &,

2. if D is any other G[S,]—dominating set in G, such that M n S, # &, and D € M then D = M.

In other words, M is a minimal element of the pre-ordered set (D5, <), where D, 5 is the set of all

DS’
G[Sy]—dominating set in G, that have nonempty intersection with S,

Lemma4.9. Let G = \/ G be a H—generalized join graph and let v € V(H). If a vertex subset M of G, is minimal
HS

among all the G[S,|—dominating sets in G, that intersect S, then either M is a minimal G[S,]—dominating set of G,
that intersect S, or M = M\S, U {point} and M\S, S, is a minimal dominating set of G[S,].

Proof. Suppose that M c V(G,) is minimal among all the G[S,]—dominating set in G, that intersect S,,.
Assume that M is not a minimal G[S,]— dominating sets in G,. Then, there exists a vertex x € M such that
M\{x} is a G[S,]—dominating set in G,. It follows that M\{x} c S, and x € S,. Hence, M = (M\S,) u {x} and
M\S, c S, is a minimal dominating set of G[S,]. O

Remark 4.10. A notion of the minimal among all the dominating sets in G, that intersect S, can be defined similar

to the definition of the minimal among all the G[S_v]—dominating sets in G, that intersect S,. Also, a lemma similar
to Lemmad.9 holds for the minimal among all the dominating sets in G, that intersect S,

Now, we describe the minimal dominating sets of H—generalized join graphs.
Proposition 4.11. Let G = \/Q be a H—generalized join graph. Let D be a vertex subset of G. Then, D is a

minimal dominating set in G if and only if there exists a subset L (possibly empty) of V(H) that does not have a vertex
that satisfies property P and there exists a family {Dy, < V(Gy)}oev(m) such that D = Uyey(u)Dy and satisfies the
following properties:

(0) D, = & ifand only if v e N(L)\L and S, = &.

(1) Ifve N(L)\L and S, # &, then D, S, and D, is a minimal dominating set in G[Sy].

(2) Ifve N[L] then D, C S, and D,, is a minimal dominating set in G,.
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(3) Ifv € L° then the set D, is minimal among all the dominating sets in G, that intersect S,. Moreover, if D, is
not a minimal dominating set in G, then there exists w € N(v) such that w is adjacent to no vertex of L other
than v for which Dy, is a non-dominating set in Gy.

(4) The following statements holds for allv e L.

(a) The set D, is minimal among all the G[S,]|—dominating set in G, that intersect S,.

(b) If v satisfies P.1 but not P.2 and if D, is not a minimal G[S,|—dominating set in G, then there exists a
vertex w € N(v) n L with deg"(w) = 1 for which Dy, is a non-dominating set of G,.

(¢) If v satisfies P2 but not P.1 and if D, is not a minimal G[S,|—dominating set in G, then there exists a
vertex w € N(v)\L such that w is adjacent to no vertex of L other than v for which Dy, is a non-dominating
set of Gy.

(d) Ifvdoes not satisfies both P.1, P.2 and if D, is not a minimal G[S,|—dominating set in G, then there exists
a vertex w € N(v) such that w is adjacent to no vertex of L other than v for which D,, is a non-dominating
set of Gy.

(e) Ifvsatisfies P.1 and P.2 but not P.3 then D, must be a minimal G[S,|—dominating set of G, that intersect
So.

Proof. Suppose that D is a minimal dominating setin G. LetL = L(D) := {ve V(H) : Dn S, # &}. It follows
from Proposition [4.8|that L does not have a vertex that satisfies property P.

For each v € V(H), set D, = V(G,) n D. Note that by Proposition the family {D, < V(Gy)}oev(n)
satisfies properties (1) — (5) of Proposition Observe that D is a dominating set of G and no vertex of S,
is adjacent to any other vertex of G, for all u € V(H)\{v} implies that S, c N[D,] for each v € V(H).

The proof of (0) is immediate from (3) of Proposition Now, we will prove (1). If v € N(L)\L and
S, # &, then the domination of D, in G[S_v] follows from (4) of Proposition The minimality of D,
follows from the fact that if D,\{x} is a dominating set in G[S,] for some x € D, C S, then by Proposition
D\{x} is a dominating set in G. This proves that D, is a minimal dominating set in G[S,]. The proof of
(2) is similar to that of (1).

Now, we show that for each v € L9, the set D, is minimal among all the dominating sets in G, that
intersect S,. Note that N(v) # & as H is connected. By Proposition it remains to prove that D, is
minimal among all such sets. Suppose not, then there exists a vertex x € D, such that D,\{x} is a dominating
set in G, that intersect S,. By Proposition it follows that D\{x} is a dominating set in G, which is a
contradiction. Hence, D, is minimal among all the dominating sets in G, that intersect S.,.

Foruel,let

Nu)[1] :={we N(u) : N(w) n L = {u}}.

Suppose that D, is not a minimal dominating set in G, for some v € L°. By Remark D,\S, is a minimal
dominating setin G, and D, = (D,\S,) u {x} for some x € S,. Suppose that N(v)[1] = &&. Then, ifz € V(Gy)
is adjacent to x for some w € N(v), z is adjacent to a vertex of S, for some u € L\{v}. This implies that, by
Proposition[3.4) D\{x} is a dominating set of G which is a contradiction to the minimality of D in G. Hence,
N(v)[1] # &. Now, we claim that there exists a vertex w € N(v)[1] such that D, is not a dominating set in G,.
Suppose not, then for every vertex w € N(v)[1], Dy is a dominating setin G,,. Observe that L(D\{x}) = L\{v},
(L\{o})° = LO\{o}, (Vo) = L+, NIAoh\(L\{o}) = NIO\(L v N(©)[1]) and I\[o} = L u {0} u N(o)[1].
By Proposition 3.4, we get D\{x} = D\S, is a dominating set in G which is a contradiction. Hence, the proof
of (3) follows.

The proof of (4.a) follows from the fact that if D!, = D, is a G[S,]—dominating set in G, such that D}, n S,
is nonempty then D}, U (U,xyD,) is a dominating set that contained in D.

Assume that the hypothesis of (4.D) is true. Since v does not satisfy P.2, there exists a vertex w € N(v) n L
such that deg’ (w) = 1. Suppose that for each vertex w of N(v) n L with deg:(w) = 1, the set D, is a dominating
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set of G;,. Using a similar arguments given in proof of (3), we see that D\S, is a dominating set in G, which is
a contradiction. Hence, the proof of (4.b) follows. Similarly, the proof of (4.c) and (4.d) follows in a similar
line of proof of (3).

Suppose that v satisfies P.1, P2 but not P.3. Then, S, # & and N(v)[1] = &. We have to prove that D,
must be a minimal G[S,]—dominating set of G,. Suppose not, then by Lemma D, = (Dy\Sy) v {x} for

some x € S, and D,\S, is a minimal G[S,]—dominating set of G,. Then, D\{x} is a dominating set in G.
Because if z € V(Gy,) such that z is adjacent to x for some w € N(v) then z is adjacent to a vertex of D,, < D\{x}
for some u € L\{v} as N(v)[1] = &. This is a contradiction. Hence the proof of (4.e) completes.

Conversely, suppose that L is a subset of V(H) that does not have a vertex that satisfies property P and
there exists a family {D, < V(G,)}oev(m such that D = Uyeyy) D, and satisfies properties (0) to (4). We
show that D is a minimal dominating set in G. It follows from Proposition 3.4 that D is a dominating set in
G. Suppose that D is not a minimal dominating set in G. Then there exists a vertex x of D, such that D\{x}
is a dominating set in G for some u € V(H).

Suppose thatu € N[L]. Since D, c S, is a minimal dominating setin G,,, the set D,,\ {x} is not a dominating
set in G,.. But by Proposition 8.4 D,\{x} is a dominating set in G, as D\{x} is a dominating set of G, which

is a contradiction. Therefore, u ¢ N[L]. Similarly we can prove that u ¢ N(L)\L.

Suppose that u € L°. Assume that D,\{x} is not a dominating set in G,. If (D,\{x}) n S, # &, then
L(D) = L(D\{x}). By Proposition D, \{x} is a dominating set in G,, which is a contradiction. If
(Du\{x}) n S, = &, thenu € N(L\{u}) = N(L(D\{x})). Again we get a similar contradiction by Proposition
Therefore, D,\{x} is a dominating set in G,,. By Remark D, is not a minimal dominating set in G,
and D,\{x} c S,. Now by (3), there exists w € N(u) n N(u)[1] such that D, is not a dominating set in G,,.
Hence, w € N(L\{u}) = N(L(D\{x})) and it gives a similar contradiction by Proposition Hence, the case
u € LY is not possible.

Finally, we prove that u ¢ L*. Suppose that u € L*. Then, by a similar argument given in the last
paragraph D, \{x}isa G[S_U] —dominating setin G,,. Hence, by Lemmam D,nS, = {x}and D,\{x} = D,\S,.
It follows that the vertex u appears in any one of the cases from (4.b) to (4.d). Suppose that u satisfies P.1 but
not P.2. By (4.b), there exists a vertex w € N(u) n L with deg"(w) = 1 such that D,, is a non-dominating set of
Gu. Note that L(D\{x}) = L\{u} and w € (L\{u})°. Hence, by Proposition D, is a dominating set of Gy.
This is absurd. Therefore, the case u € L, and u satisfies P.1 but not P.2 is not possible. The non-possibility
of other cases can be dealt with in a similar way. Hence, if D\{x} is a dominating set in G for some x € V(G,)
then u ¢ V(H). This is absurd. Hence, D is a minimal dominating set in G.

U

4.4. The minimal domination polynomial of H—generalized join graphs:
LetG = \/Qbe a H—generalized join graph. Let & = {v e V(H) : S, = o).
For a subligt L of V(H), we define the following notations.
o & :=V(H)\(En (N(L)\L)).
e Forve L, let N(v)[1] :={we N(v) : N(w) n L = {v}}.
e LetL = {ve L”: N(v)[1] = &} and L) = LO\LY.
o P28 — (e Lt : v satifies P.1 and P2 but not P.3}.
o N(L)[A] = Ler N(@)[1]-
o LT =LT\N(L)[1] = {we L : degt(w) > 1}.

o N(L)\L = (N(L)\L)\N(L)[1].
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We see that V(H) is a disjoint union of the sets LY, L), N(L)[1],L*, N(L)\L and N[L]. We denote the number

of minimal among all the dominating sets (resp. G[S,]—dominating sets) in G, that intersect S, of size a, by
1, (Gy) (resp. mﬁ;(cv)).
For L ¢ V(H) and a tuple of non-negative integers ay = (ay).cv(r), we define the following functions

on the vertex subset of H, by keeping Proposition in mind, that we needed for writing the minimal
domination polynomial of G.

e m : V(H) - N u {0}

a,(Go) — m;f (Go) ifvel?
(o) = |G~ ma (G ifveLt

e, (GIS3) if ve N(\L

2 (Gy) if ve NILI

e m?:L— Nu {0}

2 (0) = {mmv) —ml(v) ifvel
2(0) =

S (Gy) —m!(v) ifvel®

e vl : LT UN(L)\L - Nu {0}

the number of subsets of V(G,) that intersect S, of size a, which

are both minimal G[S,]|—dominating and dominating set in G,  if ve Lt

the number of subsets of S, of size a, that are both minimal

dominating set in G[S,| and dominating set in G, if ve N(L)\L
e v2: LT > N uU{0}

the number of subsets of V(G,) of size a, that are both dominating
v2(v) = < set in G, and minimal among all the G[S,|—dominating sets in G,

that intersect S, but not a minimal G[S,|—dominating set in G, ifvelt
e n : LT UN(L)\L - Nu {0}
nl(v) = m}(v) — ol (0), if ve L* U (N(\L)

e n?: LT > Nu{0}

#(0) = mi(0) ~ 0} (v), ifvelt

Remark 4.12. Observe that
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e ifve Lt nEthenmi(v) =0,v;(v) =0, and n;(v) = 0.
e ifve L’ n & then m?(v) = 0.
e Ifve (N(L)\L) n Eand a, = 0 then m} (v) = 1, v; (v) = 0, and n} (v) = 1.

For B c L ¢ V(H) with non-negative integers a,, v € V(H), we define m; (B) = [ [, m; (v). Similarly one

can define m?(B),n; (B) and etc. We fix the convention that if a summation or a product runs over a subset

A of a set B then we simply denote B\A as A°. For v € L, we define
* fi(v) = m(N(o)[1])
e A= D n(Kpu(K)

G#KcN(v)[1]
o f(v) = ml(N(v)[1] n N(L)\L) m} (N(v)[1] n LPFP2P)
~ 2 (mk () i N@B)I]) [ 22 () (@)

BCN(v)[1]~(L+\LP1P2153) weBe

e o= ) lni(Q A N(L)\L) 1 (Q n LP1P2P)

F#QcN(w)[1]

( Y (ni(BW{(N(B)[lDHn%<w>fz°(w>)>vi< N(L)\L)

BcQn (L+\LP1P218) weBe
X OH(Q L“PZB%( > (e moNe)n) I vi(w)fzo(w))ﬂ
B/cQf ~(L+\LP1P213) weB!*
For an independent edge {u, v} in L*, we define
s A= X m(KeK)

G#KeN(o)[1]\{u}

o Si(1,0) = my (0)my (N(©)[1]\{u})my (u)my (N () [1]\{v}) + m} (0) £} (v)my (w)my (N () [1]\{0})
+ m ()0} (N () [\ {1} ()] (N()[1]\{o}) + 117 (1) f2 (e)m (0)m (N(0)[1]\{u1})
+ mi (u)o} (N()[1\{0})n} (0)m] (N(0)[1]\{u}) + i (0) £ (0)m (u) f3 (u)
()0 (N@)[1\u})n? (u) £ (u) + m] (w)o} (N () [1]\{o})n (0) £ (0)
(

+ 1 (0)o (N(©)[1\{u})nf (w)or (N () [1]\{o}).

Theorem 4.13. Let G = \/ G be a H—generalized join graph. The number of minimal dominating sets of size k in
HS

+m (v

G is given by

k
=2 lmiwf) > <H m () f0(u) [ ] m%<u)f2°<u>> mb(LPPP\N(L)[1])
(H) agug )=k

s=0 LlcV H Tch ueT ueTe
L
> (Hmkv)fr(v) I1 mi(v)f;(v)>( > Suw) (mi(N(L)\L)mi(Zﬁ))].
AcL+\LP1P215 \ vEA VEAC {u,0}elnd(L*)

where
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o the second sum is over all subsets in V(H) of size s that does not have a vertex that satisfies property P,

e the third sum is over all possible sums k = agg,) = Xuey () do of non-negative integers such that a, = 0 if
and only ifv e V(H)\Ey,

e Ind(L™) denote the set of independent edges of L.

Proof. The proof of the theorem follows by Figure [I| and by the following observations from Proposition
41T

e For L c V(H), we can choose nonempty D,’s if and only if v € &;.

Note that for v € L*, N(v)[1] = & if and only if v € LP1P2,

e 1 € N(v)[1] implies N(u)[1] < N(L)\L.

MDom(G[S,]) = (MDom(G[S,]) n Dom(Gy)) || (MDom(G[S,])\Dom(Gy)).

If v € LY then N(v)[1] € N(L)\L.

If v € L™ then N(v)[1] can intersect the disjoint sets N(L)\L, L*'P?® and L*\LPP25,

Note that Z nl (K)o} (K°) = fzo(v) + v} (N(v)[1]\{u}). Now, for an independent edge {u,v} of
KeN(@)[1]\{u}
L*, we describe all possible choices of Dy, D, and D,, for w € N(u)[1] u N(v)[1] as follows:

my (0)m (N (0)[1]\{u})mg ()my (N () [1]\{0})
)

+ m2(0) () + oL (N@)[1I\ ) )t ()l (N@)[INo)) + et 0) £ (o)} (w)m] (N@)[1\{o})
() (A () + oL (NGO [N} )l (@)} (N(@) 1IN 1)) + e () f2 ()] 0)m] (N (@) 1]\ {u})
+ 97 (0) 2 ()07 () f2 () + 0 (0) (£ (0) + o} (N (@) 11\ [u}) ) (10) ) a0)

+ o} () (A (w) + ol (N@) [\ fo}) ) () A (o)
+ﬁ@(ﬂw+%((ﬂhwm () (R w) + ol (NGO o)) ).

By combining terms in the above expression using the equation m. (v) = ni (v) + v} (v) fori = 1,2, we
can see that the above expression is equal to Sy (u, v). The remaining possible choices for D,, v € V(H) follow
from Figure

U

Now, we have an immediate corollary.

Corollary 4.14. Let G = \/ G be a H—generalized join graph. The minimal domination polynomial of a graph G is
HS

given by
V{G)I
Pu(Gx) = D) m(G),
k=y(G)

where my(G) is as defined in Theorem[4.13]
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ve Ll

/\

D, is minimal dominating D, is non-minimal dominating
set in G, that intersect S,,. set in G, that intersect S,,.

|

N(@)[1] # 0 D)) = N(@)[1] #0
w € N(v)[1] N =0 w e N(v)[1]
D,, € MDom(G[S,]) Dy, € MDom(G[S,]) \ Dom(G.,) Dy, € MDom(G[S,]) N Dom(G.,)

REFER PROOF
FOR POSSIBILITIES

veLT
v is a vertex of an

independent edge
R ) N(L)[1]n L™
+ P1P2H3 P1P2H3
LT\ L L \ N(D)[1] v is not a vertex of

an independent edge
‘Dq,.he ﬁﬁngs"éG1)> p TAKE CARE BY
such that D, NS, # N()[1], ve [+\ LPip2ms

we N@[ANN(L)\ L D,, € MDom(G[S,])

. . Sw
D, is minimal G[S,]-dominating w € N(v)[1] n LPP2H3 ——— thet}/l\/ltDDom é,Gw) 0
set in GG, that intersect S, such that Dy, N Sy, #

we N@)[1]N(L+\ LP1P2173)

— = (G

D,, is non-minimal G[S,,]-dominating Dy, € MDom
set in G, that intersect Sy, such that Dy, NSy, # 0

u € N(w)[l] Cc N(L)\ L u€ N(w)[l] c N(L)\ L

D, € MDom(G[Sy))

Dy € MDom(G[Su]) N"Dom(Gu) D, € MDom(G[S,]) \ Dom(G,,)

D,, € MDom(G|[S,]) N Dom(Gy,)

we N[ NN(L)\ L
Dy, € MDom(G[S,]) \ Dom(G.,)

D, € MDomST’(Gw) N Dom(Gy)
such that D, NS, # 0

D, is non-minimal G[S,]-dominating w e N@)[1]N LPip2ms

set in G, that intersect S,

Dy € MDomS+ (G.,) \ Dom(Gly)
such that Dy, NSy, # 0

w e N(v)[1] N (LT \ LP1P2H3)

!

I ! !
D, € MDomST’(Gw) NDom(Gy)

Dy, € Dom(G.) and is D, ¢ Dom(G,,) and is Dy € MDom®* (G.) \ Dom(Gy)
non-minimal G[S,,]-dominating non-minimal G[S,,]-dominating such that Dy, NSy, # 0 such that D,, NS, #0
set in G, that intersect Sy, set in G, that intersect S,
u€ N(w)[l] c N(L)\ L we Nw)[l] € N(L)\ L

D, € MDom(G[S,]) N Dom(G.) D, € MDom(G[S,]) \ Dom(G.,)

. D, € MD(I;m(G (Su])

Figure 1: A schematic diagram of choices for D,, v € V(H).
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5. Illustration using examples

Now, we illustrate our theorems using some examples.

5.1. Join of graphs

The join G; + G; of two graphs G; and G; is a K;—join of graphs G; and Gy, i.e.,, G1 + G, = \/Kz{Gl, Ga}.
Let |G| =n;fori=1,2.

By Theorem[3.2] we get
ni My
dk(G1 + Ga) = dr(G1) +dk(G2) + Z < > < >
ﬂ1+1121=k M =
ajz=

Hence, the domination polynomial of G; + G, is given by
Pp(Gi + Go;x) = Pp(Gi;x) + Po(Gax) + (1 +x)" —1)((1 +x)"™ —1).

Now, we calculate the minimal domination polynomial of G + G,. Write V(K;) = {v1,v2}. Let U(G;) be
the set of dominating vertices of G; and W(G;) be the set of non-dominating vertices of G; fori = 1,2. Let
[W(Gi)| = wi.

Case (1) : Suppose that for i # j, U(G;) = &, U(G;) # & and W(G;) # &, i.e,, G; is not complete. By
using Remark [4.5/and Theorem 4.6, we have

m(G1) + m(Gz) ifk#2
G +Gy) =
G+ Go) {mk(Gl) +mi(G2) +1A@pllAEyl  ifk=2
mi(G1) + mi(Ga) ifk # 2

e, m(Gr+Ga) = {mk(Gl) +mi(Ga) + [V(G)IW(G))  ifk =2,

Case (2) : By a similar argument in Case (1), if U(G;) = & for all i = 1,2, we have

mr(G1) + mi(Ga) ifk #2

G G2) = {mk«;l) +m(Ga) + IV(GIV(G)I - ifk =2

Case (3) : Suppose that W(G;) = &, for some j = 1,2, i.e., G; is a complete graph. Then by Proposition
there does not exist a minimal dominating set D of G; + G, such that (D) = V(K;). Therefore, by
Theorem [4.6]

mk(Gl + Gz) = mk(Gl) + mk(Gz),

Case (4) : By a similar argument in Case (1), if U(G;) # & with W(G;) # ¢ for all i = 1,2 we have

mi(G1) + mi(Gs) lfk #2
mi(G1 + Gy) = .
HC1+G2) {mk(Gl) +my(Ga) + IW(GHIIW(G))l  ifk =2
Hence by Corollary 4.7}
Pm(G1;x) + Ppm(Go x) + niw]»xz ifU(G) =, U(G]) # J and W(G]) # J,
Pri(Gr + Gasx) = Pm(G1;x) + Pm(Ga; x) + mmax®  if U(Gy) = &, foralli =1,2,
MG+ CoiX) =Y (G + Pai(Ga) FW(G)) = @ for some j = 1,2,
Pm(Gr;x) + Pm(Go; x) + wiwax®  if U(Gy) # & with W(G;) # & for all i.
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5.2. Complete multipartite graph
Let G be a complete multipartite graph. We can write G as K,,—join of empty graphs G,, = K,,’s, i.e.,

G = \/Km G, where G = {E 1i=1,2,..,m}and V(K,) = {v1,v2,..., vy} for some integers m, ny, ..., n,,. Note
that every vertex subset of K,, is a dominating set. By using Corollary we get

Pp(Gix) =x" + .. +x"+ > [[(@+x)"-1).
JcV(Ky) vi€]
=2

Now, we calculate the minimal domination polynomial of G = \/¢ G. Note that the set Dom" (K,,) of all
dominating sets M in K,, such that M does not have a vertex that satisfies the property P is given by

(M c V(Ky): 0 < M| <2}

Note that each vertex of G,, are non-dominating vertex of G,, = _nl,, if n; > 1 and there is no minimal
dominating set D in G such that n(D) = {v;,v;} with |V(G,,)| = 1, refer Proposition where 7t is the
canonical projection. Let W = {v € V(K,,) : |G| = 1}. It follows from Remarkthat Ayl = [V(Gy)l, if
ve¢W.

Then, by using Remark4.5|and Theorem we can see that mi(\/g G) has the term m;(G,) if and only
if k = n; = |V(Gy,)|. Also, m(\/g, G) = 0if and only if k # 2 and k # n; fori = 1,...,m. Note that ma(\/x G)
has the term

> [Avweml= D) (ApyliApy))

Mc V(K )\'W veM (0,0} V(K AW

IM|=2
- D (IV(GHIIV(G))I)

{010}V (K \W

Hence,

Pm(\/ Gix) =Y, PmKiix) + D P m(Ky i )P mKvc,i; x)

Ky i=1 {i,0;} V(K \W
m
= Z X"+ Z ninsz.
i=1 {0,032V (K \'W

5.3. Corona Product of graphs

Let H' be a connected graph with vertex set {vy, ..., v,} and G’ be a graph. The corona product H' o G’ of
H’ and G’ is obtained by taking a disjoint union of a copy of H' with n = |V(H’)| copies of G’ and joining the
vertex v; of H' to all the vertices of the i copy of G/, for each i. We can view the corona product H' o G’ of
graphs as a H—join graph as follows: Let H = H' o Ky and G’ = {K; = {u},..., K1 = {u,,}, G, ...,G'}, where
H—join decomposition of H' o G’ is obtained by replacing each vertex of H' (in H) by K; and each vertex of
K (in H) by G'. Then, we see that

H’oG’=\/g’.
H

The domination polynomial of H' o G':

Let us describe dominating sets of H = H’ o K;. We write V(H' o Ky) = {v1, ..., 04, U1, ..., U, }, where the
vertex set of i—th copy of K is {u;} and v; is adjacent to u; for each i = 1, ..., n. Note that any dominating set
of H' o Kj contains at least one of u; or v; foralli = 1, .., n. For n < m < 2n,let M be a dominating set of H' 0 K;
of size m. Then, M must contains a subset M, which consists of m — n pair of vertices u;, v; and contains a
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subset M, which consists of 2n — m vertices either u j Or v; but not both such that M = M, u M. Tt follows
that the domination number of H’ o K is nn and its domination polynomial is D(H’ o K;) = x™(x + 2)".

Let D be a dominating set of H' o G’ and M = (D), where 7 : H o G’ — H’ o K; be the canonical map.
Note that if a vertex u; € M, then it is an isolated vertex of H[M] and if u; € M, then it is a nonisolated vertex
of H[M]. Then, by using Proposition 3.1} we see that

1. Dy, = D n Gy, = {u:} and D,, is a nonempty vertex subset of G if {u;, v;} = M,.
2. Dy, = {u;} ifv; € M.
3. D,, is a dominating set of G ifuje Ms.

Now by Corollary 3.3} given a dominating set M of size m in H,

Tm(x) = [ ] (xMo (©)Pp(Go; x) + (1 — xap(v) (1 + x)V (G — 1))
vEM

= [[ #o(Gui0) [] Po(Goyx) [T (40" 1) (1 +2)7 ) —1)

u;€M; v;EM; {vi,ui}cM,

= (Po(G2)) " () U (x(1 42V 1))

Let P(x) = x((1 + x)V(E) —1), Q(x) = x and R(x) = Pp(G’; x).
Hence, the domination polynomial of Corona product H' o G’ is given by

2n 2n—m
PD(H/ ° G/;X) _ Z nCm,nP(X)m_n( Z (Zn—mCiQ(x)Zn—m—iR(x)i))
m=n i=0
2n
= Y "ConP(X)""(Q(x) + R(x))*" "
2n
= >0 "Conmn(x((1 + )V — 1)) (x + P (G x0)) "

’ IV (H)I
= (x 1+ 0" pp(Gi0)
The minimal Domination polynomial of H' o G':

Now, we describe the minimal dominating sets of H = H’ o Kj.

Proposition 5.1. The minimal dominating sets of the corona product H' o Ky are exactly those of dominating sets of
H' o Kj of cardinality n = V(H').

Proof. Write V(H' o K1) = {vy,..., Uy, U1, ..., Uy} as before. We have observed that the domination number
of H' o Kj is n, it follows that the dominating set of H' o K of size n is minimal. Suppose that M is a
dominating set of size more than n in H' o K;. Then by above discussion, there exists a j € {1,2, ..., n} such
that {v;,u;} < M. Since M\{u;} is a dominating set in H' o Kj, the set M is not a minimal dominating set of
H oKy. O

Theorem 5.2. The minimal domination polynomial of the corona product H' o G' is given by

Pum(H 0 G') = (x +Pu(G;0) L
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Proof. Let D be a minimal dominating set in H' o G’. We claim that M = 7t(D) is a minimal dominating set
in H = H' o K;. Suppose not, then by the previous proposition, the set M is a dominating set of size more
than n. Then, there exists a j € {1,2,...,n} such that {v;,u;} = M. Note that M n N(u;) = N(u;) = {v;} and
deg(vj) = 1. Since Gy, = {u’}, Dy, = {u]} for each v; € M. But by (3) of Proposition the set D,; must be a
non-dominating set of G, = {u;} This is a contradiction and hence M must be a minimal dominating set in
H.

Now by Corollary .7} given a dominating set M of size 1 in H,

Am(x) = H (XMO(U)PM(GU;JC) +XN;AuMﬂ(U)PM(KIV(G?,)l;x))
veM

=[] PmGu;x) T] Pm(Goix) ] Pm(Kiv(c, ;%)

u;eMs v;eM? vjeN; LM>?

1_[ Pm(Guj; x) H X H X

u;eM; vieM®  vieNy uM>2

Let R(x) = Pm(G’; x). Hence, the minimal domination polynomial of Corona product H' o G’ is given by
" ~
Pm(H 0 Gx) = 3 "C Q)" 'R(®)" = (Qx) + R(x))"

1=0

Thus, the minimal domination polynomial of H' o G’ is
Pm(H 0G') = (x + Ppm(G;x))VH

O

5.4. K,—generalized join graph

Suppose that H is a complete graph. Let G := \/ G be a K, —generalized join graph. Let & = {v €
K,,S
V(Ky,) : Sy = @}. For L c V(K,), we define &, := V(K,)\(& n (N(L)\L)).

The domination polynomial of \/ G.
K,,S

For L € V (K,), we observe the following:

o IfL = &, then N(L) = V(H).

e If L = {v} for some v e V(K,),then L’ = L, L* = @f and N(L)\L = L = V(K,))\L.
e If L] > 1then Lt = Land N(L)\L = L = V(K,)\L.

Then by Theorem the number of dominating sets of size k in G is given by

di(G) = Z 1_[ d;kz(Gv)'i' Z Z ((dav(Gv)_d;kﬂ(Gv)) H da,,(G[_u])>

ag, =k veV (K,) veV(Ky) LT =k ueV(K, )\ (Eu{v})

+ 2 (Hdi:(cn I1 %(G[s_v]))

LcV(Ky) ag, =k \ vEL veV(K,)\(LLE)
ILI>2
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Hence by Corollary

Po(Gix)= [ Pox(Guix)+ D, ((%(Gv;x)—%*<cv;x>) I1 %(Gﬁ]m))

veV(Ky) veV(Ky) ueV(Ki\(Eu{o})

+ (H%S(Gv;x) I P@(G[S_v];x)>
LeV(Ky) \ vel veV(K)\(LUE)
ILI=2

The minimal domination polynomial of G = \/ G.
K,,S
Let us calculate the minimal domination polynomial of G. One can see that L ¢ V(K,,) does not have a
vertex that satisfies property P if and only if either |L| < 2 or L ¢ V(K,)\&. Now, for L c V(K,) that does
not have a vertex that satisfies property P, we observe the following:

If L = & then N(L) = V(K,).

If L = {v} for some v € V(K,) then L® = LY = L, LT = ¢f and N(v)[1] = N(L)\L = V(K,)\L.

IfL = {u,0} © V(K,) then L° = &, N(u)[1] = {0}, N()[1] = {u}, L* = & and N(L)\L = V(K,)\L.

IfIL| > 3thenL ¢ V(K,)\&, L° = @&, Nw)[1] = @ forallu e L, Lt = Lt = [PP25 — |, N(L)\L =
V(Ky)\L.

By Theorem the minimal domination polynomial of G is given by

V(G|
Pm(G;x) = D, mi(G) ¥,

=
—_

where

m(G) = Y mh(VE)+Y, Y (mh @)ml (VK \o}) + 0, (0)f(0))

kg g =k i=1 a(H,g{vl}):k

+ > > Su(, o) mE(V(K)\{oi,0}) + D, 1 mi(Lym] (V(Ky)\L).
LcV(Ky) aHE ) =k LcV(K,)\E aHE ) =k
L={v;,v;} |L|=3

.....

Suppose that H is a complete multipartite graph K, ,, withn; < n, < ... < ny,. Let G = \/ G.

Knl ..... nm/S
Write V(H) = o V; with |Vi| = n;. Let & = {v € V(H) : S, = @}. For L c V(H), we define

& := VIH)\(E n (N(L)\L)).

The domination polynomial of G = \/ G.
Knl/,..,nm rS
Now for L < V(H), we observe the following:

o If L = @ then N(L) = V(H).
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o If L c V;forsomei thenl’ =L, Lt = @&, N(L)\L = V(H)\V; and N(L) = V;\L.
e IfL AV, # & foratleasttwoithen L’ = ¢, N(L) = &, LT = Land N(L)\L = L.

Let pv,,.v,,(V(H)) = H)\Ui~; p(Vi), where p(A) is the power set of a set A.
Then by Theorern. the number of dommatmg sets of size k in G is given by

- a6 v % (n(d%(ca—d;(cv)) M 45D

ag=kveV(H i=1 F#LCViag, =k \ vEL veV(H)\(V,uE)
I1 d;*;(@)) DD (Hda,, ) T dav<c[s_v]>>
veVA\L Lepv,,..vm (V(H)) ag, =k \ v€L vel\E
Hence by Corollary
= [[ Pox(Gux) +Z > (H(PD(Gv;x)—P@*(GU;x)) [T PolGISx)
veV(H) i=1 J#LcV; \ vel veV(H)\(V,uE)
I1 PD*(Gv;x)) + D <HPDS(Gv;x) I1 PD(G[S_D];x)>
Z;EVII\L LEPVl ----- Vm(V(H)) veL UEE\S

The minimal domination polynomial of G = \/ G.
K S

Y e 1 1

Let us calculate the minimal domination polynomial of G = \/ G. One can see that if L ¢ V(G) has
Knl Jee /S

a vertex that satisfies property P if and only if L n & # ¢ and one of the following holds.
e [ nV; # & for at least three i € {1, ..., m}.

o If L nV; # J for exactly two i € {1,...,m}, say i1, i, then either [L n V;| # 1 foralli =4,i, or |L| > 3
with|[Ln V| =1and & n (L\V}) # .

Hence, if L < V(G) does not have a vertex that satisfies property P if and only if L satisfies one of the
following:

e [ c V,; for some i.

L] <2

IL| > 3 and L intersect exactly two V; such that L n V; = {v} for some i. Moreover if & n L # J then
EnL={v}.

L n & = ¢ and either L intersect at least three V; or L intersect exactly two V; with |L n V;| > 2 for
both i.

Now, we observe the following:
1. f L = & then N(L) = V(H).

2. If L = {o} for some v € V; < V(H) then L°=L9 =1L, LT =g, NL)\L = NL)[1] = V(H)\V; and
N(L) = Vi\{o}.
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3. Lc Viforsomeie€ {1,..,m} with|L| >2then L’ =LY =L, L* = &, N(L)\L = N(L)\L = V(H)\V; and

N(L) = V/\L.

4. If L = {w;,u;,} < V(H), where u;; € V; then L = &, L* = L, N(u;)[1] = Vi, N(u;,)[1] =

Vi, N(ui))[1] n L = L\{u;;} and N(L)\L = V(H)\(V;, u V).

5. LnV; # & for exactly two values, say iy, i, with |L| # 2suchthat LnV}, = {v} and Ln & # J implies

LAE={v}thenl® = &, L+ = L, N(v)[1] = Vi, L* = {0}, LP'P?® = [\ {0}, N(L)\L = V(H)\(V;, u L),
N(@)[1] n (N(L)\L) = V,\L, N(9)[1] A LP'P?® = [\ {0}, and N(L) = &.

6. L c V(H)\E and either L intersect at least three V; or L intersect exactly two V; with |L n V;| > 2 for

bothithen [0 = ¥, LT = LPP2B — [, N(L)\L = V(H)\L, N(L) = &.
By Theorem we have

m(G) = Y, my(VE)+2 Y, N (il @ml (VENV) +m, (0) () (mh, (Vi\o}) )

H(ngg) =k i=1veV; a(H'S{U})=k
n
20 N (mwmvE Vs vaD) + Y Y (S @)
i=1 LCV; ague, )=k {vi,0}cV(H) e =k
ILI>1 vEV, i#]

il (VENViOV)) = 3 Y (i @ml (Vi \D) ml (L\{o}) + m (@) (0)

Lisasin5 agug )=k

mi VNV, 0L)) + D) Y (ml(Lml(V(H\L),
LC;;(iI:ng\a amg )=k

where f7(0) = ¥ o xcvinv, n%v}(K)viv}(Kc) and

£ (0) = Sgrsocvine (1Q 0 Vi\L) n1(Q A I\[0})o} (QF n Vi \L) o(QF n L\{o}))
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