

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some theorems on matrix transforms between speed-Maddox spaces

P.N. Natarajana, A. Aasmab,*

 a Dept. of Math., Ramakrishna Mission Vivekananda College, Chennai 600 004, India b Department of Economics and Finance, Tallinn University of Technology, Tallinn, Estonia

Abstract.

First, in this paper, the notions of convergence and boundedness with speed, and the notion of speed-Maddox spaces are recalled. Let X, Y be two sets of sequences with real or complex entries, and (X, Y) the set of matrices (with real or complex entries) to map X into Y. Let λ and μ be speeds of the convergence, i.e.; monotonically increasing positive sequences. Necessary and sufficient conditions for a matrix $A \in (X, Y)$, if X is the certain speed-Maddox space defined by λ , and Y is another speed-Maddox space defined by μ are proved. As an application of main results, one example where A is the Zweier matrix $Z_{1/2}$ is presented.

1. Introduction

Let X, Y be two sequence spaces and $A = (a_{nk})$ be a matrix with real or complex entries. Throughout this paper we assume that indices and summation indices run from 0 to ∞ unless otherwise specified. If for each $x = (x_k) \in X$ the series

$$A_n x = \sum_k a_{nk} x_k$$

converge and the sequence $Ax = (A_n x)$ belongs to Y, we say that the matrix A transforms X into Y. By (X, Y) we denote the set of all matrices which transform X into Y. Let ω be the set of all real or complex valued sequences. Further we need the following well-known subspaces of ω : c - the space of all convergent sequences, c_0 - the space of all sequences converging to zero, l_∞ - the space of all bounded sequences, and

$$l_1 := \{x = (x_n) : \sum_n |x_n| < \infty\}.$$

Let throughout this paper $\lambda = (\lambda_k)$ be a positive monotonically increasing sequence, i.e.; the speed of convergence. A convergent sequence $x = \{x_n\}$ with complex entries, where

$$\lim_{k} x_k := s \text{ and } v_k = \lambda_k (x_k - s)$$
 (1.1)

is said to be

2020 Mathematics Subject Classification. Primary 40C05; Secondary 40D05, 41A25.

Keywords. matrix transforms, Maddox spaces, convergence with speed, boundedness with speed, Zweier matrix

Received: 04 July 2025; Revised: 17 July 2025; Accepted: 21 July 2025

Communicated by Eberhard Malkowsky

* Corresponding author: A. Aasma

Email addresses: pinnangudinatarajan@gmail.com (P.N. Natarajan), ants.aasma@taltech.ee (A. Aasma)

- a) zero-convergent with speed λ (or shortly, λ -zero-convergent) if $\lim_k v_k = 0$ (or $(v_k) \in c_0$),
- b) convergent with speed λ (or shortly, λ -convergent), if there the finite limit $\lim_k v_k := b$ exists (or $(v_k) \in c$),
 - c) bounded with speed λ (or shortly, λ -bounded), if $v_k = O(1)$ (or $(v_k) \in l_{\infty}$),
 - d) absolutely convergent with speed λ (or shortly, absolutely λ -convergent), if $(v_k) \in l_1$.

The notions of convergence and boundedness with speed belong to Kangro (see [11], [12], and the notion of absolute convergence with speed belongs to the authors of the present paper (see [2]). We denote the set of all λ -zero-convergent sequences by c_0^{λ} , the set of all λ -convergent sequences by c_0^{λ} , the set of all λ -convergent sequences by l_1^{λ} . It is not difficult to see that

$$l_1^{\lambda} \subset c_0^{\lambda} \subset c^{\lambda} \subset l_{\infty}^{\lambda} \subset c. \tag{1.2}$$

For $\lambda_k = O(1)$, we get

$$c_0^{\lambda} = c^{\lambda} = l_{\infty}^{\lambda} = c.$$

But for unbounded sequence λ these inclusions are strict. Therefore further we assume everywhere that λ is unbounded.

Let $p := (p_k)$ be a sequence of strictly positive numbers, and let

$$c_0(p) := \{x = (x_k) : \lim_k |x_k|^{p_k} = 0\},$$

$$c(p) := \{x = (x_k) : \lim_k |x_k - d|^{p_k} = 0 \text{ for some } d \in \mathbb{C}\},$$

$$l_{\infty}(p) := \{x = (x_k) : |x_k|^{p_k} = O(1)\},$$

$$l(p) := \{x = (x_k) : \sum_k |x_k|^{p_k} < \infty\}.$$

The sets $c_0(p)$, $l_\infty(p)$, c(p) and l(p) are known as Maddox spaces (see, for example, [16], [17] and [22]). The reader can refer to the recent textbooks [7] and [19] on Maddox spaces and their various expansions or contractions, and related topics. For a bounded sequence p, the Maddox spaces are also linear spaces. As for the proof of main results of the paper we need the linearity of Maddox spaces, then further throughout the paper, we assume that p is bounded. Then it is easy to prove (see also Corollary 2.11 of [18]) that

$$c_0(p) \subset c_0, \ c(p) \subset c, \ l_\infty \subset l_\infty(p).$$

If, in addition to the boundedness of p, inf_k $p_k > 0$, then (see [13], p. 487)

$$c_0(p) = c_0, \ c(p) = c, \ l_{\infty}(p) = l_{\infty}.$$
 (1.3)

Next we consider the zero-convergence, convergence, boundedness and absolute convergence with speed in Maddox spaces. Let

$$(c_0(p))^{\lambda} = \{x = (x_n) : \lim_n x_n := s \text{ and } \{\lambda_n(x_n - s)\} \in c_0(p)\},$$

$$(c(p))^{\lambda} = \{x = (x_n) : \lim_n x_n := s \text{ and } \{\lambda_n(x_n - s)\} \in c(p)\},$$

$$(l_{\infty}(p))^{\lambda} = \{x = (x_n) : \lim_n x_n = s \text{ and } \{\lambda_n(x_n - s)\} \in l_{\infty}(p)\},$$

$$(l(p))^{\lambda} = \{x = (x_n) : \lim_n x_n = s \text{ and } \{\lambda_n(x_n - s)\} \in l(p)\}.$$

We call the sets $(c_0(p))^{\lambda}$, $(c(p))^{\lambda}$, $(l_{\infty}(p))^{\lambda}$ and $(l(p))^{\lambda}$ as speed-Maddox spaces. First the speed-Maddox spaces are introduced in [20] and [21].

The zero-convergence, convergence, boundedness and absolute convergence with speed in Maddox spaces provides an additional method for evaluating the speed (or the rate) of convergence of converging sequences. For example, if x^1 and x^2 are two convergent sequences belonging $l_{\infty}(p)$ so that $x^1 \in (l(p))^{\lambda}$, but x^2 does not belong $(l(p))^{\lambda}$ for an unbounded speed λ , then we can say that x^1 converges faster than x^2 .

Let $\mu := (\mu_k)$ be another speed of convergence, i.e., a monotonically increasing positive sequence. Matrix classes (X, Y), where X is one of the sets l_{∞}^{λ} , c^{λ} , c_0^{λ} or l_1^{λ} and Y is one of the sets l_{∞}^{μ} , c^{μ} , c_0^{μ} or l_1^{μ} have been characterized by Kangro in [11] and [12], and by the authors of the present work in [2] and [3]. A short overview on the convergence with speed has been presented in [4] and [15].

We note that the results connected with boundedness, convergence and absolute convergence with speed can be used in several applications. For example, in the theoretical physics such results can be used for accelerating the slowly convergent processes, a good overview of such investigations can be found, for example, from the sources [8] and [10]. These results also have several applications in the approximation theory. Besides, in [5] and [6] such results are used for the estimation of the order of approximation of Fourier expansions in Banach spaces.

The characterization of matrix classes $(l_1^{\lambda}, c_0^{\mu}), (l_1^{\lambda}, c_0^{\mu}), (l_1^{\lambda}, l_1^{\mu}), (c_0^{\lambda}, l_1^{\mu}), (c_0^{\lambda}, l_1^{\mu}), (c_0^{\lambda}, l_1^{\mu})$ and $(l_{\infty}^{\lambda}, l_1^{\mu})$ are given in [2]. Necessary and sufficient conditions for a matrix $A \in (X, Y)$, if X is one of the sets $l_{\infty}^{\lambda}, c^{\lambda}, l_1^{\lambda}$ or c_0^{λ} , and Y is one of the sets $(l_{\infty}(p))^{\mu}, (c(p))^{\mu}, (c_0(p))^{\mu}$ or $(l(p))^{\mu}$ have been presented in [20] and [21]. Let $q := (q_k)$ be another sequence of strictly positive numbers. The matrix transforms from $(l(p))^{\lambda}$ into $(c_0(q))^{\mu}, (c(q))^{\mu}, (l_{\infty}(q))^{\mu}$ or $(l(q))^{\mu}$, and from $(c_0(p))^{\lambda}, (c(p))^{\lambda}, (l_{\infty}(p))^{\lambda}$ into $(l(q))^{\mu}$ are studied in [1]. The present paper is the continuation of the paper [1]. We give the characterization of matrix classes $((l_{\infty}(p))^{\lambda}, (c_0(q))^{\mu}), ((l_{\infty}(p))^{\lambda}, (c(q))^{\mu})$ and $((l_{\infty}(p))^{\lambda}, (l_{\infty}(q))^{\mu})$. As an application of the main results we present an example, where A is the Zweier matrix $Z_{1/2}$.

2. Auxiliary results

For the proof of main results, we need some auxiliary results. For presenting these results throughout this section by $B = (b_{nk})$ and $C = (c_{nk})$ we denote arbitrary matrices with real or complex entries, and by $p := (p_k)$ and $q := (q_k)$ bounded sequences of strictly positive real numbers.

Lemma 2.1 (Corollary in [14], p. 102-103). A matrix $B \in (l_{\infty}(p), c)$ if and only if

$$\sum_{k} |b_{nk}| M^{1/p_k} \text{ converges uniformly in } n \text{ for all integers } M > 1,$$
(2.1)

there are finite limits
$$\lim_{n} b_{nk} = b_k$$
, for $k = 1, 2, ...$ (2.2)

Moreover,

$$\lim_{n} B_n x = \sum_{k} b_k x_k \tag{2.3}$$

for every $x = (x_k) \in l_{\infty}(p)$.

The following Lemmas 2.2 - 2.4 are presented in [9] and [18].

Lemma 2.2. A matrix $C \in (l_{\infty}(p), c_0(q))$ if and only if

$$\lim_{n} \left(\sum_{k} |c_{nk}| \, M^{1/p_k} \right)^{q_n} = 0 \, \, for \, every \, M > 0. \tag{2.4}$$

Lemma 2.3. A matrix $C \in (l_{\infty}(p), c(q))$ if and only if

$$\sum_{k} |c_{nk}| M^{1/p_k} = O(1) \text{ for every } M > 0$$
 (2.5)

and there exists a sequence (c_k) such that

$$\lim_{n} \left(\sum_{k} |c_{nk} - c_k| M^{1/p_k} \right)^{q_n} = 0 \text{ for every } M > 0.$$
 (2.6)

Lemma 2.4. A matrix $C \in (l_{\infty}(p), l_{\infty}(q))$ if and only if

$$\left(\sum_{k} |c_{nk}| M^{1/p_k}\right)^{\frac{1}{q_n}} = O(1) \text{ for every } M > 0.$$
 (2.7)

3. Main results

Let $\lambda = \{\lambda_n\}$ be an unbounded speed of convergence, and $p = \{p_n\}$ - a bounded sequence of strictly positive real numbers. First we prove the result, which we need for the proof of main theorems of the paper.

Lemma 3.1. If at least one of the conditions

$$\inf_{k} p_k > 0 \tag{3.1}$$

and

$$\lim_{k} \lambda_k^{p_k} = \infty \tag{3.2}$$

holds, then for every $v := (v_k) \in l_{\infty}(p)$ there exists a sequence $x := (x_k) \in (l_{\infty}(p))^{\lambda}$, such that relation (1.1) holds. **Proof.** Let condition (3.1) be satisfied, and $v \in l_{\infty}(p)$. As in this case $l_{\infty}(p) = l_{\infty}$, then $v \in l_{\infty}$, and hence

$$\lim_{k} \frac{v_k}{\lambda_k} = 0. ag{3.3}$$

Denoting

$$x_k := \frac{v_n}{\lambda_n} + s \tag{3.4}$$

for some $s \in \mathbb{C}$, we obtain that relation (1.1) holds with $x := (x_k) \in (l_{\infty}(p))^{\lambda}$.

Let condition (3.2) be satisfied, and $v \in l_{\infty}(p)$. Then $|v_k|^{p_k} = O(1)$ by the definition, and

$$\lim_{k} \left| \frac{v_k}{\lambda_k} \right|^{p_k} = 0$$

by (3.2). This implies (3.3). Defining now $x := (x_k)$ by (3.4) for some $s \in \mathbb{C}$, we obtain that relation (1.1) holds with $x := (x_k) \in (l_{\infty}(p))^{\lambda}$. \square

To formulate the main results of the paper, in addition to p and λ we need another bounded sequence of strictly positive real numbers, another unbounded speed $\mu = \{\mu_n\}$, and matrices $B = (b_{nk})$, $C = (c_{nk})$ matrices, defined by

$$b_{nk} := \frac{a_{nk}}{\lambda_k}$$

and

$$c_{nk} := \frac{\mu_n(a_{nk} - a_k)}{\lambda_k} = \mu_n \left(b_{nk} - \frac{a_k}{\lambda_k} \right),$$

provided that

there are finite limits
$$\lim a_{nk} = a_k$$
, for $k = 1, 2, ...$ (3.5)

Also, we need the sequences

$$e := (1, 1, ...)$$
 and $e^k := (0, ..., 0, 1, 0, ...),$

where 1 is in the *k*-th position. We note that

$$e, e^k \in (l_{\infty}(p))^{\lambda}$$
.

Theorem 3.2. If at least one of the conditions (3.1) and (3.2) holds, then a matrix $A = (a_{nk}) \in ((l_{\infty}(p))^{\lambda}, (c_0(q))^{\mu})$ if and only if conditions (2.1), (2.4), (3.5) hold, and

$$Ae = (A_n e) \in (c_0(q))^{\mu}, \ \tau_n := A_n e = \sum_k a_{nk}.$$
 (3.6)

Proof. Necessity. Assume that $A \in ((l_{\infty}(p))^{\lambda}, (c_0(q))^{\mu})$. Since, from (1.1) we have

$$x_k = \frac{v_k}{\lambda_k} + s$$
; $s := \lim_k x_k$, $(v_k) \in l_\infty(p)$

for every $x := (x_k) \in (l_{\infty}(p))^{\lambda}$, it follows that

$$A_n x = \sum_k b_{nk} v_k + s \tau_n \tag{3.7}$$

for every $x \in (l_{\infty}(p))^{\lambda}$. As $e \in (l_{\infty}(p))^{\lambda}$, then condition (3.6) is satisfied, from which we conclude that the finite limit

$$\tau := \lim_{n} \tau_n \tag{3.8}$$

exists. Hence, from (3.7) we obtain that B transforms this sequence $(v_k) \in l_\infty(p)$ into c. Thus, by Lemma 3.1, $B \in (l_\infty(p), c)$. Consequently conditions (3.5) and (2.1) are satisfied, and the finite limit

$$\phi := \lim_{n} A_{n} x = \sum_{k} \frac{a_{k}}{\lambda_{k}} v_{k} + s\tau$$

exists for every $x \in (l_{\infty}(p))^{\lambda}$ by Lemma 2.1. Writing

$$\mu_n(A_n x - \phi) = \sum_k c_{nk} v_k + s \mu_n(\tau_n - \tau), \tag{3.9}$$

we conclude by (3.6) that $C \in (l_{\infty}(p), c_0(q))$. Hence condition (2.4) is satisfied by Lemma 2.2.

Sufficiency. Let conditions (2.1), (2.4), (3.5) and (3.6) be fulfilled. Then relation (3.7) also holds for every $x \in (l_{\infty}(p))^{\lambda}$ and $(\tau_n) \in (c_0(q))^{\mu}$ by (3.6). Hence, $B \in (l_{\infty}(p),c)$ and the finite limit ϕ exists for every $x \in (l_{\infty}(p))^{\lambda}$ by Lemma 2.1. This implies that relation (3.9) holds for every $x \in (l_{\infty}(p))^{\lambda}$. As (2.4) is valid, then $C \in (l_{\infty}(p),c_0(q))$ by Lemma 2.2. Therefore, due to (3.6), $A \in ((l_{\infty}(p))^{\lambda},(c_0(q))^{\mu})$. \square

Theorem 3.3. If at least one of the conditions in (3.1) and (3.2) holds, then a matrix $A = (a_{nk}) \in ((l_{\infty}(p))^{\lambda}, (c(q))^{\mu})$ if and only if conditions (2.1), (2.5), (3.5) hold, there exists a sequence (c_k) such that condition (2.6) holds, and

$$Ae = (A_n e) \in (c(q))^{\mu}, \ \tau_n := A_n e = \sum_k a_{nk}.$$
 (3.10)

Proof is similar to the proof of Theorem 3.2. The only difference is that now $C \in (l_{\infty}(p), c(q))$. Therefore instead of Lemma 2.2 we use Lemma 2.3, and instead of (3.6) we have (3.10). \square

Theorem 3.4. If at least one of the conditions (3.1) and (3.2) holds, then a matrix $A = (a_{nk}) \in ((l_{\infty}(p))^{\lambda}, (l_{\infty}(q))^{\mu})$ if and only if conditions (2.1), (2.7), (3.5) hold, and

$$Ae = (A_n e) \in (l_\infty(q))^\mu, \ \tau_n := A_n e = \sum_k a_{nk}.$$
 (3.11)

Proof is similar to the proof of Theorem 3.2. The only difference is that now $C \in (l_{\infty}(p), l_{\infty}(q))$. Therefore instead of Lemma 2.2 we use Lemma 2.4, and instead of (3.6) we have (3.11). \square

Remark 3.1. If condition (3.1) holds, then $l_{\infty}(p) = l_{\infty}$ (see (1.3)), and hence $(l_{\infty}(p))^{\lambda} = l_{\infty}^{\lambda}$. Therefore in this case Theorems 3.2 - 3.4 actually give necessary and sufficient conditions correspondingly for $A \in (l_{\infty}^{\lambda}, (c_0(q))^{\mu})$, $A \in (l_{\infty}^{\lambda}, (c(q))^{\mu})$ and $A \in (l_{\infty}^{\lambda}, (l_{\infty}(q))^{\mu})$.

Remark 3.2. If $\inf_k q_k > 0$, then relation (1.3) holds for p = q, and hence $(c_0(q))^{\mu} = c_0^{\mu}$, $(c(q))^{\mu} = c^{\mu}$ and $(l_{\infty}(q))^{\mu} = l_{\infty}^{\mu}$. Therefore Theorems 3.2 - 3.4 actually give necessary and sufficient conditions correspondingly for $A \in ((l_{\infty}(p))^{\lambda}, c_0^{\mu})$, $A \in ((l_{\infty}(p))^{\lambda}, c_0^{\mu})$ and $A \in ((l_{\infty}(p))^{\lambda}, l_{\infty}^{\mu})$.

Now we present one example for Theorems 3.2 - 3.4, if A is the Zweier matrix $Z_{1/2}$, i.e.; $A = Z_{1/2} = (a_{nk})$, where (see [4], p.3) $a_{00} = 1/2$ and

$$a_{nk} = \begin{cases} \frac{1}{2}, & \text{if } k = n - 1 \text{ or } k = n; \\ 0, & \text{if } k < n - 1 \text{ or } k > n \end{cases}$$

for $n \ge 1$.

Example 3.1. Let $\lambda = (\lambda_k)$, $\mu = (\mu_k)$, $p = (p_k)$ and $q = (q_k)$ be defined as follows:

$$\lambda_k := (k+1)^{k+1}; \ \mu_k := k+1, \ p_k := \frac{1}{k+1}, \ q_k := \frac{1}{k+1}.$$

We show that then

$$Z_{1/2} \in \left((l_{\infty}(p))^{\lambda}, (c_0(q))^{\mu} \right) \subset \left((l_{\infty}(p))^{\lambda}, (c(q))^{\mu} \right) \subset \left((l_{\infty}(p))^{\lambda}, (l_{\infty}(q))^{\mu} \right). \tag{3.12}$$

As for a bounded sequence q we have

$$(c_0(q))^{\mu} \subset (c(q))^{\mu} \subset (l_{\infty}(q))^{\mu},$$

then $((l_{\infty}(p))^{\lambda}, (c_0(q))^{\mu}) \subset ((l_{\infty}(p))^{\lambda}, (c(q))^{\mu}) \subset ((l_{\infty}(p))^{\lambda}, (l_{\infty}(q))^{\mu})$, and hence for the proof of statement (3.12) it is sufficient to show that all conditions of Theorem 3.2 are satisfied for $A = Z_{1/2}$.

First, we see that presumption (3.2) of Theorem 3.2 holds, since

$$\lim_{k} \lambda_{k}^{p_{k}} = \lim_{k} (k+1) = \infty,$$

and condition (3.5) holds with $a_k \equiv 0$. Also condition (3.6) is satisfied, since Ae = (1/2, 1, 1, ...) with limit 1. For $B = (b_{nk})$ and $C = (c_{nk})$ we obtain $b_{00} = c_{00} = 1/2$, and

$$b_{nk} = \begin{cases} \frac{1}{2(n+1)^{n+1}}, & \text{if } k = n; \\ \frac{1}{2n^n}, & \text{if } k = n-1; \\ 0, & \text{if } k < n-1 \text{ or } k > n, \end{cases}$$

$$c_{nk} = \begin{cases} \frac{1}{2(n+1)^n}, & \text{if } k = n; \\ \frac{1}{2} \left(1 + \frac{1}{n} \right) \frac{1}{n^{n-1}}, & \text{if } k = n-1; \\ 0, & \text{if } k < n-1 \text{ or } k > n \end{cases}$$

for $n \ge 1$. Let us denote

$$R_n(M) := \sum_k |b_{nk}| M^{1/p_k}, M > 1,$$

$$T_n(M) := \sum_k |c_{nk}| M^{1/p_k}, M > 0.$$

Then $R_0(M) = T_0(M) = M/2$, and

$$R_n(M) = \frac{M^{n+1}}{2(n+1)^n} + \frac{M^n}{2n^n}, M > 1,$$

$$T_n(M) = \frac{1}{2} \frac{M^{n+1}}{(n+1)^n} + \frac{1}{2} \left(1 + \frac{1}{n} \right) \frac{M^n}{n^{n-1}} = \frac{1}{2} f(n+1) + \frac{1}{2} \left(1 + \frac{1}{n} \right) f(n)$$
(3.13)

for $n \ge 1$, where

$$f(n) := \frac{M^n}{n^{n-1}}, \ n \ge 1, \ M > 0.$$

As

$$\lim_{n} \frac{M^{n}}{n^{n}} = 0, \lim_{n} \frac{M^{n+1}}{(n+1)^{n}} = 0, M > 1,$$

then condition (2.1) holds. Considering f as a continuous function with respect to n, we obtain

$$f'(n) = f(n) (\ln f(n))' = f(n) \left(\frac{1}{n} - \ln n + \ln M - 1\right), M > 0.$$

As f(n) > 0 for every $n \ge 1$, then f'(n) < 0 if

$$\frac{1}{n} - \ln n + \ln M - 1 < 0 \text{ or } \frac{1}{n} - \ln n < 1 - \ln M, M > 0.$$

Hence for every M > 0 there exists a positive number n_0 such that f'(n) < 0 for every $n > n_0$, because

$$\lim_{n} \left(\frac{1}{n} - \ln n \right) = -\infty.$$

Consequently f is decreasing with respect to n for $n > n_0$ and M > 0. Therefore from (3.13) we have

$$0 < T_n(M) \le \left(1 + \frac{1}{n}\right) \frac{M^n}{n^{n-1}}$$
 for some $M > 0$ and for all $n > n_0$.

Then we have

$$0 < (T_n(M))^{q_n} \le \left(1 + \frac{1}{n}\right)^{1/(n+1)} M^{1/(n+1)} \left(\frac{M}{n}\right)^{\frac{n-1}{n+1}}$$
 for some $M > 0$ and for all $n > n_0$. (3.14)

Since

$$\lim_{n} \left(1 + \frac{1}{n} \right)^{1/(n+1)} = 1, \ \lim_{n} M^{1/(n+1)} = 1 \ \text{and} \ \lim_{n} \left(\frac{M}{n} \right)^{\frac{n-1}{n+1}} = 0 \ \text{for} \ M > 0,$$

then from (3.14) we conclude that

$$\lim_{n} (T_n(M))^{q_n} = 0, \ M > 0,$$

thus condition (2.4) holds. \Box

Remark 3.3. As in Example 3.1 the sequence p is bounded and $\inf_k p_k = 0$, then we obtain the strict inclusion $l_{\infty} \subset l_{\infty}(p)$ and hence $l_{\infty}^{\lambda} \subset (l_{\infty}(p))^{\lambda}$. Therefore from Example 3.1 we conclude that if

$$\lambda_k := (k+1)^{k+1}; \ \mu_k := k+1, \ q_k := \frac{1}{k+1},$$

then

$$Z_{1/2} \in \left(l_\infty^\lambda, (c_0(q))^\mu\right) \subset \left(l_\infty^\lambda, (c(q))^\mu\right) \subset \left(l_\infty^\lambda, (l_\infty(q))^\mu\right).$$

Remark 3.4. As in Example 3.1 the sequence q is bounded and $\inf_k q_k = 0$, then we obtain the strict inclusions $c_0(q) \subset c_0$ and $c(q) \subset c$, hence $(c_\infty(q))^\mu \subset c_0^\mu$ and $(c(q))^\mu \subset c^\mu$. Therefore from Example 3.1 we conclude that if

$$\lambda_k := (k+1)^{k+1}; \ \mu_k := k+1, \ p_k := \frac{1}{k+1},$$

then

$$Z_{1/2} \in \left((l_{\infty}(p))^{\lambda}, (c_0)^{\mu} \right) \subset \left((l_{\infty}(p))^{\lambda}, c^{\mu} \right).$$

References

- [1] A. Aasma, P. N. Natarajan, Some Classes of Matrix Transformations between the Subsets of Maddox Spaces Defined by Speed, WSEAS Trans. Syst. 23 (2024) 508-516.
- [2] A. Aasma, P. N. Natarajan, Absolute convergence with speed and matrix transforms, TWMS J. App. and Eng. Math. 14 (2024) 1109-1120.
- [3] A. Aasma, P. N. Natarajan, Matrix transforms between sequence spaces defined by speeds of convergence, FILOMAT 37 (2023) 1029-1036.
- [4] A. Aasma, H. Dutta, P.N. Natarajan, An Introductory Course in Summability Theory, John Wiley and Sons, Hoboken, USA, 2017.
- [5] A. Aasma. On the summability of Fourier expansions in Banach spaces, Proc. Est. Acad. Sci. Phys. Math. 51 (2002) 131-136.
- [6] A. Aasma, Comparison of orders of approximation of Fourier expansions by different matrix methods, Facta Univ. Niš. Ser. Math. Inform. 12 (1997) 233-238.
- [7] F. Başar, Summability Theory and its Applications, 2nd ed., CRC Press/Taylor & Francis Group, Bocà Raton · London · New York, 2022
- [8] E. Caliceti, M. Meyer-Hermann, P. Ribeca, A. Surzhykov and U.D. Jentschura, From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions, Physics Reports-Review Section of Physics Letters 446 (2007) 1-96.
- $[9]\ \ K-G.\ Grosse-Erdmann, Matrix\ Transformations\ between\ the\ Sequence\ Spaces\ of\ Maddox, J.\ Math.\ Anal.\ Appl.\ 180\ (1993)\ 223-238.$
- [10] C. Heissenberg, Convergent and Divergent Series in Physics. A short course by Carl Bender, In: C. Heissenberg (Ed.) Lectures of the 22nd "Saalburg" Summer School, 2016.
- [11] G. Kangro, On the summability factors of the Bohr-Hardy type for a given speed I., Proc. Estonian Acad. Sci. Phys. Math. 18 (1969) 137-146 (in Russian).
- [12] G. Kangro, Summability factors for the series λ -bounded by the methods of Riesz and Cesàro, Acta Comment. Univ. Tartu. Math. 277 (1971) 136-154 (in Russian).
- [13] C. G. Lascarides, A study of certain sequence spaces of Maddox and generalization of a theorem of Iyer, Pacific. J. Math. 38(2) (1971) 487-500.
- [14] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68 (1970) 99-104.
- [15] T. Leiger, Methods of functional analysis in summability theory, Tartu University, Tartu, 1992 (in Estonian).
- [16] I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc. 64 (1968) 335–340.
- [17] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. 18(2) (1967) 345-355.
- [18] E. Malkowsky, F. Başar, A survey on some paranormed sequence spaces, Filomat 31(4) (2017) 1099–1122.
- [19] M. Mursaleen, F. Başar, Sequence Spaces: Topics in Modern Summability Theory, Series: Mathematics and Its Applications, CRC Press/Taylor, Francis Group, Boca Raton · London · New York, 2020.
- [20] P. N. Natarajan, A. Aasma, Matrix transforms into the subsets of Maddox spaces defined by speed, WSEAS Trans. Math., 24 (2025) 82-89.
- [21] P. N. Natarajan, A. Aasma, Some Classes of Matrix Transforms Connected with Subspaces of Maddox Spaces Defined by Speeds of Convergence, Filomat, 38 (2024) 8039-8046.
- [22] S. Simons, The sequence spaces $l(p_v)$ and $m(p_v)$, Proc. London Math. Soc. 15(3) (1965) 422–436.