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Abstract.
First, in this paper, the notions of convergence and boundedness with speed, and the notion of speed-

Maddox spaces are recalled. Let X,Y be two sets of sequences with real or complex entries, and (X,Y) the
set of matrices (with real or complex entries) to map X into Y. Let λ and µ be speeds of the convergence, i.e.;
monotonically increasing positive sequences. Necessary and sufficient conditions for a matrix A ∈ (X,Y), if
X is the certain speed-Maddox space defined by λ, and Y is another speed-Maddox space defined by µ are
proved. As an application of main results, one example where A is the Zweier matrix Z1/2 is presented.

1. Introduction

Let X,Y be two sequence spaces and A = (ank) be a matrix with real or complex entries. Throughout
this paper we assume that indices and summation indices run from 0 to ∞ unless otherwise specified. If
for each x = (xk) ∈ X the series

Anx =
∑

k

ankxk

converge and the sequence Ax = (Anx) belongs to Y, we say that the matrix A transforms X into Y. By (X,Y)
we denote the set of all matrices which transform X into Y. Let ω be the set of all real or complex valued
sequences. Further we need the following well-known subspaces of ω: c - the space of all convergent
sequences, c0 - the space of all sequences converging to zero, l∞ - the space of all bounded sequences, and

l1 := {x = (xn) :
∑

n

|xn| < ∞}.

Let throughout this paper λ = (λk) be a positive monotonically increasing sequence, i.e.; the speed of
convergence. A convergent sequence x = {xn}with complex entries, where

lim
k

xk := s and vk = λk (xk − s) (1.1)

is said to be

2020 Mathematics Subject Classification. Primary 40C05; Secondary 40D05, 41A25.
Keywords. matrix transforms, Maddox spaces, convergence with speed, boundedness with speed, Zweier matrix
Received: 04 July 2025; Revised: 17 July 2025; Accepted: 21 July 2025
Communicated by Eberhard Malkowsky
* Corresponding author: A. Aasma
Email addresses: pinnangudinatarajan@gmail.com (P.N. Natarajan), ants.aasma@taltech.ee (A. Aasma)



P.N. Natarajan, A. Aasma / Filomat 39:24 (2025), 8265–8272 8266

a) zero-convergent with speed λ (or shortly, λ-zero-convergent) if limk vk = 0 (or (vk) ∈ c0),
b) convergent with speed λ (or shortly, λ-convergent), if there the finite limit limk vk := b exists (or

(vk) ∈ c),
c) bounded with speed λ (or shortly, λ-bounded), if vk = O (1) (or (vk) ∈ l∞),
d) absolutely convergent with speed λ (or shortly, absolutely λ-convergent), if (vk) ∈ l1.
The notions of convergence and boundedness with speed belong to Kangro (see [11], [12], and the

notion of absolute convergence with speed belongs to the authors of the present paper (see [2]). We denote
the set of all λ-zero-convergent sequences by cλ0 , the set of all λ-convergent sequences by cλ, the set of all
λ-bounded sequences by lλ∞, and the set of all absolutely λ-convergent sequences by lλ1 . It is not difficult to
see that

lλ1 ⊂ cλ0 ⊂ cλ ⊂ lλ∞ ⊂ c. (1.2)

For λk = O (1), we get
cλ0 = cλ = lλ∞ = c.

But for unbounded sequence λ these inclusions are strict. Therefore further we assume everywhere that λ
is unbounded.

Let p := (pk) be a sequence of strictly positive numbers, and let

c0(p) := {x = (xk) : lim
k
|xk|

pk = 0},

c(p) := {x = (xk) : lim
k
|xk − d|pk = 0 for some d ∈ C},

l∞(p) := {x = (xk) : |xk|
pk = O(1)},

l(p) := {x = (xk) :
∑

k

|xk|
pk < ∞}.

The sets c0(p), l∞(p), c(p) and l(p) are known as Maddox spaces (see, for example, [16], [17] and [22]). The
reader can refer to the recent textbooks [7] and [19] on Maddox spaces and their various expansions or
contractions, and related topics. For a bounded sequence p, the Maddox spaces are also linear spaces. As
for the proof of main results of the paper we need the linearity of Maddox spaces, then further throughout
the paper, we assume that p is bounded. Then it is easy to prove (see also Corollary 2.11 of [18]) that

c0(p) ⊂ c0, c(p) ⊂ c, l∞ ⊂ l∞(p).

If, in addition to the boundedness of p, infk pk > 0, then (see [13], p. 487)

c0(p) = c0, c(p) = c, l∞(p) = l∞. (1.3)

Next we consider the zero-convergence, convergence, boundedness and absolute convergence with
speed in Maddox spaces. Let

(c0(p))λ = {x = (xn) : lim
n

xn := s and {λn(xn − s)} ∈ c0(p)},

(c(p))λ = {x = (xn) : lim
n

xn := s and {λn(xn − s)} ∈ c(p)},

(l∞(p))λ = {x = (xn) : lim
n

xn = s and {λn(xn − s)} ∈ l∞(p)},

(l(p))λ = {x = (xn) : lim
n

xn = s and {λn(xn − s)} ∈ l(p)}.

We call the sets (c0(p))λ, (c(p))λ, (l∞(p))λ and (l(p))λ as speed-Maddox spaces. First the speed-Maddox spaces
are introduced in [20] and [21].
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The zero-convergence, convergence, boundedness and absolute convergence with speed in Maddox
spaces provides an additional method for evaluating the speed (or the rate) of convergence of converging
sequences. For example, if x1 and x2 are two convergent sequences belonging l∞(p) so that x1

∈ (l(p))λ, but
x2 does not belong (l(p))λ for an unbounded speed λ, then we can say that x1 converges faster than x2.

Let µ := (µk) be another speed of convergence, i.e., a monotonically increasing positive sequence. Matrix
classes (X,Y), where X is one of the sets lλ∞, cλ, cλ0 or lλ1 and Y is one of the sets lµ∞, cµ, cµ0 or lµ1 have been
characterized by Kangro in [11] and [12], and by the authors of the present work in [2] and [3]. A short
overview on the convergence with speed has been presented in [4] and [15].

We note that the results connected with boundedness, convergence and absolute convergence with
speed can be used in several applications. For example, in the theoretical physics such results can be used
for accelerating the slowly convergent processes, a good overview of such investigations can be found, for
example, from the sources [8] and [10]. These results also have several applications in the approximation
theory. Besides, in [5] and [6] such results are used for the estimation of the order of approximation of
Fourier expansions in Banach spaces.

The characterization of matrix classes (lλ1 , c
µ
0 ), (lλ1 , c

µ), (lλ1 , l
µ
∞), (lλ1 , l

µ
1 ), (cλ0 , l

µ
1 ), (cλ, lµ1 ) and (lλ∞, l

µ
1 ) are given in

[2]. Necessary and sufficient conditions for a matrix A ∈ (X,Y), if X is one of the sets lλ∞, cλ, lλ1 or cλ0 , and Y is
one of the sets (l∞(p))µ, (c(p))µ, (c0(p))µ or (l(p))µ have been presented in [20] and [21]. Let q := (qk) be another
sequence of strictly positive numbers. The matrix transforms from (l(p))λ into (c0(q))µ, (c(q))µ, (l∞(q))µ or
(l(q))µ, and from (c0(p))λ, (c(p))λ, (l∞(p))λ into (l(q))µ are studied in [1]. The present paper is the continuation
of the paper [1]. We give the characterization of matrix classes ((l∞(p))λ, (c0(q))µ), ((l∞(p))λ, (c(q))µ) and
((l∞(p))λ, (l∞(q))µ). As an application of the main results we present an example, where A is the Zweier
matrix Z1/2.

2. Auxiliary results

For the proof of main results, we need some auxiliary results. For presenting these results throughout
this section by B = (bnk) and C = (cnk) we denote arbitrary matrices with real or complex entries, and by
p := (pk) and q := (qk) bounded sequences of strictly positive real numbers.

Lemma 2.1 (Corollary in [14], p. 102-103). A matrix B ∈
(
l∞(p), c

)
if and only if∑

k

|bnk|M1/pk conver1es uni f ormly in n f or all inte1ers M > 1, (2.1)

there are f inite limits lim
n

bnk = bk, for k = 1, 2, .... (2.2)

Moreover,

lim
n

Bnx =
∑

k

bkxk (2.3)

for every x = (xk) ∈ l∞(p).

The following Lemmas 2.2 - 2.4 are presented in [9] and [18].

Lemma 2.2. A matrix C ∈
(
l∞(p), c0(q)

)
if and only if

lim
n

∑
k

|cnk|M1/pk


qn

= 0 f or every M > 0. (2.4)

Lemma 2.3. A matrix C ∈
(
l∞(p), c(q)

)
if and only if∑

k

|cnk|M1/pk = O(1) f or every M > 0 (2.5)
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and there exists a sequence (ck) such that

lim
n

∑
k

|cnk − ck|M1/pk


qn

= 0 f or every M > 0. (2.6)

Lemma 2.4. A matrix C ∈
(
l∞(p), l∞(q)

)
if and only if∑

k

|cnk|M1/pk


1

qn

= O(1) f or every M > 0. (2.7)

3. Main results

Let λ = {λn} be an unbounded speed of convergence, and p = {pn} - a bounded sequence of strictly
positive real numbers. First we prove the result, which we need for the proof of main theorems of the paper.

Lemma 3.1. If at least one of the conditions

inf
k

pk > 0 (3.1)

and

lim
k
λpk

k = ∞ (3.2)

holds, then for every v := (vk) ∈ l∞(p) there exists a sequence x := (xk) ∈ (l∞(p))λ, such that relation (1.1) holds.
Proof. Let condition (3.1) be satisfied, and v ∈ l∞(p). As in this case l∞(p) = l∞, then v ∈ l∞, and hence

lim
k

vk

λk
= 0. (3.3)

Denoting

xk :=
vn

λn
+ s (3.4)

for some s ∈ C, we obtain that relation (1.1) holds with x := (xk) ∈ (l∞(p))λ.
Let condition (3.2) be satisfied, and v ∈ l∞(p). Then |vk|

pk = O(1) by the definition, and

lim
k

∣∣∣∣∣ vk

λk

∣∣∣∣∣pk

= 0

by (3.2). This implies (3.3). Defining now x := (xk) by (3.4) for some s ∈ C, we obtain that relation (1.1) holds
with x := (xk) ∈ (l∞(p))λ.

To formulate the main results of the paper, in addition to p and λ we need another bounded sequence
of strictly positive real numbers, another unbounded speed µ = {µn}, and matrices B = (bnk), C = (cnk)
matrices, defined by

bnk :=
ank

λk

and

cnk :=
µn(ank − ak)
λk

= µn

(
bnk −

ak

λk

)
,
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provided that

there are f inite limits lim
n

ank = ak, for k = 1, 2, .... (3.5)

Also, we need the sequences
e := (1, 1, ...) and ek := (0, ..., 0, 1, 0, ...),

where 1 is in the k-th position. We note that

e, ek
∈ (l∞(p))λ.

Theorem 3.2. If at least one of the conditions (3.1) and (3.2) holds, then a matrix A = (ank) ∈
(
(l∞(p))λ, (c0(q))µ

)
if

and only if conditions (2.1), (2.4), (3.5) hold, and

Ae = (Ane) ∈ (c0(q))µ, τn := Ane =
∑

k

ank. (3.6)

Proof. Necessity. Assume that A ∈
(
(l∞(p))λ, (c0(q))µ

)
. Since, from (1.1) we have

xk =
vk

λk
+ s; s := lim

k
xk, (vk) ∈ l∞(p)

for every x := (xk) ∈ (l∞(p))λ, it follows that

Anx =
∑

k

bnkvk + sτn (3.7)

for every x ∈ (l∞(p))λ. As e ∈ (l∞(p))λ, then condition (3.6) is satisfied, from which we conclude that the
finite limit

τ := lim
n
τn (3.8)

exists. Hence, from (3.7) we obtain that B transforms this sequence (vk) ∈ l∞(p) into c. Thus, by Lemma 3.1,
B ∈
(
l∞(p), c

)
. Consequently conditions (3.5) and (2.1) are satisfied, and the finite limit

ϕ := lim
n

Anx =
∑

k

ak

λk
vk + sτ

exists for every x ∈ (l∞(p))λ by Lemma 2.1. Writing

µn(Anx − ϕ) =
∑

k

cnkvk + sµn(τn − τ), (3.9)

we conclude by (3.6) that C ∈ (l∞(p), c0(q)). Hence condition (2.4) is satisfied by Lemma 2.2.

Sufficiency. Let conditions (2.1), (2.4), (3.5) and (3.6) be fulfilled. Then relation (3.7) also holds for every
x ∈ (l∞(p))λ and (τn) ∈ (c0(q))µ by (3.6). Hence, B ∈ (l∞(p), c) and the finite limit ϕ exists for every
x ∈ (l∞(p))λ by Lemma 2.1. This implies that relation (3.9) holds for every x ∈ (l∞(p))λ. As (2.4) is valid, then
C ∈ (l∞(p), c0(q)) by Lemma 2.2. Therefore, due to (3.6), A ∈

(
(l∞(p))λ, (c0(q))µ

)
.

Theorem 3.3. If at least one of the conditions in (3.1) and (3.2) holds, then a matrix A = (ank) ∈
(
(l∞(p))λ, (c(q))µ

)
if

and only if conditions (2.1), (2.5), (3.5) hold, there exists a sequence (ck) such that condition (2.6) holds, and

Ae = (Ane) ∈ (c(q))µ, τn := Ane =
∑

k

ank. (3.10)
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Proof is similar to the proof of Theorem 3.2. The only difference is that now C ∈ (l∞(p), c(q)). Therefore
instead of Lemma 2.2 we use Lemma 2.3, and instead of (3.6) we have (3.10).

Theorem 3.4. If at least one of the conditions (3.1) and (3.2) holds, then a matrix A = (ank) ∈
(
(l∞(p))λ, (l∞(q))µ

)
if

and only if conditions (2.1), (2.7), (3.5) hold, and

Ae = (Ane) ∈ (l∞(q))µ, τn := Ane =
∑

k

ank. (3.11)

Proof is similar to the proof of Theorem 3.2. The only difference is that now C ∈ (l∞(p), l∞(q)). Therefore
instead of Lemma 2.2 we use Lemma 2.4, and instead of (3.6) we have (3.11).

Remark 3.1. If condition (3.1) holds, then l∞(p) = l∞ (see (1.3)), and hence (l∞(p))λ = lλ∞. Therefore in this case
Theorems 3.2 - 3.4 actually give necessary and sufficient conditions correspondingly for A ∈

(
lλ∞, (c0(q))µ

)
,

A ∈
(
lλ∞, (c(q))µ

)
and A ∈

(
lλ∞, (l∞(q))µ

)
.

Remark 3.2. If infk qk > 0, then relation (1.3) holds for p = q, and hence (c0(q))µ = cµ0 , (c(q))µ = cµ and
(l∞(q))µ = lµ∞. Therefore Theorems 3.2 - 3.4 actually give necessary and sufficient conditions correspondingly
for A ∈

(
(l∞(p))λ, cµ0

)
, A ∈

(
(l∞(p))λ, cµ

)
and A ∈

(
(l∞(p))λ, lµ∞

)
.

Now we present one example for Theorems 3.2 - 3.4, if A is the Zweier matrix Z1/2, i.e.; A = Z1/2 = (ank),
where (see [4], p.3) a00 = 1/2 and

ank =

 1
2 , if k = n − 1 or k = n;
0, if k < n − 1 or k > n

for n ≥ 1.

Example 3.1. Let λ = (λk), µ = (µk), p = (pk) and q = (qk) be defined as follows:

λk := (k + 1)k+1; µk := k + 1, pk :=
1

k + 1
, qk :=

1
k + 1

.

We show that then

Z1/2 ∈
(
(l∞(p))λ, (c0(q))µ

)
⊂

(
(l∞(p))λ, (c(q))µ

)
⊂

(
(l∞(p))λ, (l∞(q))µ

)
. (3.12)

As for a bounded sequence q we have

(c0(q))µ ⊂ (c(q))µ ⊂ (l∞(q))µ,

then
(
(l∞(p))λ, (c0(q))µ

)
⊂

(
(l∞(p))λ, (c(q))µ

)
⊂

(
(l∞(p))λ, (l∞(q))µ

)
, and hence for the proof of statement (3.12) it

is sufficient to show that all conditions of Theorem 3.2 are satisfied for A = Z1/2.
First, we see that presumption (3.2) of Theorem 3.2 holds, since

lim
k
λpk

k = lim
k

(k + 1) = ∞,

and condition (3.5) holds with ak ≡ 0. Also condition (3.6) is satisfied, since Ae = (1/2, 1, 1, ...) with limit 1.
For B = (bnk) and C = (cnk) we obtain b00 = c00 = 1/2, and

bnk =


1

2(n+1)n+1 , if k = n;
1

2nn , if k = n − 1;
0, if k < n − 1 or k > n,
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cnk =


1

2(n+1)n , if k = n;
1
2

(
1 + 1

n

)
1

nn−1 , if k = n − 1;
0, if k < n − 1 or k > n

for n ≥ 1. Let us denote
Rn(M) :=

∑
k

|bnk|M1/pk , M > 1,

Tn(M) :=
∑

k

|cnk|M1/pk , M > 0.

Then R0(M) = T0(M) =M/2, and

Rn(M) =
Mn+1

2(n + 1)n +
Mn

2nn , M > 1,

Tn(M) =
1
2

Mn+1

(n + 1)n +
1
2

(
1 +

1
n

) Mn

nn−1 =
1
2

f (n + 1) +
1
2

(
1 +

1
n

)
f (n) (3.13)

for n ≥ 1, where

f (n) :=
Mn

nn−1 , n ≥ 1, M > 0.

As

lim
n

Mn

nn = 0, lim
n

Mn+1

(n + 1)n = 0, M > 1,

then condition (2.1) holds. Considering f as a continuous function with respect to n, we obtain

f ′(n) = f (n)
(
ln f (n)

)′ = f (n)
(1

n
− ln n + ln M − 1

)
, M > 0.

As f (n) > 0 for every n ≥ 1, then f ′(n) < 0 if

1
n
− ln n + ln M − 1 < 0 or

1
n
− ln n < 1 − ln M, M > 0.

Hence for every M > 0 there exists a positive number n0 such that f ′(n) < 0 for every n > n0, because

lim
n

(1
n
− ln n

)
= −∞.

Consequently f is decreasing with respect to n for n > n0 and M > 0. Therefore from (3.13) we have

0 < Tn(M) ≤
(
1 +

1
n

) Mn

nn−1 for some M > 0 and for all n > n0.

Then we have

0 < (Tn(M))qn
≤

(
1 +

1
n

)1/(n+1)

M1/(n+1)
(M

n

) n−1
n+1

for some M > 0 and for all n > n0. (3.14)

Since

lim
n

(
1 +

1
n

)1/(n+1)

= 1, lim
n

M1/(n+1) = 1 and lim
n

(M
n

) n−1
n+1

= 0 for M > 0,

then from (3.14) we conclude that
lim

n
(Tn(M))qn = 0, M > 0,

thus condition (2.4) holds.
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Remark 3.3. As in Example 3.1 the sequence p is bounded and infk pk = 0, then we obtain the strict inclusion
l∞ ⊂ l∞(p) and hence lλ∞ ⊂

(
l∞(p)

)λ. Therefore from Example 3.1 we conclude that if

λk := (k + 1)k+1; µk := k + 1, qk :=
1

k + 1
,

then
Z1/2 ∈

(
lλ∞, (c0(q))µ

)
⊂

(
lλ∞, (c(q))µ

)
⊂

(
lλ∞, (l∞(q))µ

)
.

Remark 3.4. As in Example 3.1 the sequence q is bounded and infk qk = 0, then we obtain the strict inclusions
c0(q) ⊂ c0 and c(q) ⊂ c, hence

(
c∞(q)

)µ
⊂ cµ0 and

(
c(q)
)µ
⊂ cµ. Therefore from Example 3.1 we conclude that if

λk := (k + 1)k+1; µk := k + 1, pk :=
1

k + 1
,

then
Z1/2 ∈

(
(l∞(p))λ, (c0)µ

)
⊂

(
(l∞(p))λ, cµ

)
.
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2022.
[8] E. Caliceti, M. Meyer-Hermann, P. Ribeca, A. Surzhykov and U.D. Jentschura, From useful algorithms for slowly convergent

series to physical predictions based on divergent perturbative expansions, Physics Reports-Review Section of Physics Letters 446
(2007) 1-96.

[9] K-G. Grosse-Erdmann, Matrix Transformations between the Sequence Spaces of Maddox, J. Math. Anal. Appl. 180 (1993) 223-238.
[10] C. Heissenberg, Convergent and Divergent Series in Physics. A short course by Carl Bender, In: C. Heissenberg (Ed.) Lectures of

the 22nd “Saalburg” Summer School, 2016.
[11] G. Kangro, On the summability factors of the Bohr-Hardy type for a given speed I., Proc. Estonian Acad. Sci. Phys. Math. 18

(1969) 137-146 (in Russian).
[12] G. Kangro, Summability factors for the series λ-bounded by the methods of Riesz and Cesàro, Acta Comment. Univ. Tartu. Math.
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