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Abstract. In this paper, we prove that the star-critical weakened Gallai-Ramsey number 1r2,t
∗ (C5) = t, for

all t ≥ 3. In the process, it is shown that the crtical coloring for 1r2,t(C5) is unique up to isomorphism or
reordering of the colors.

1. Introduction

A Gallai t-coloring of a graph G is a map f : E(G) −→ {1, 2, . . . , t} that satisfies

|{ f (xy), f (yz), f (xz)}| ≤ 2,

for all distinct vertices x, y, z ∈ V(G). When 1 ≤ s < t, the weakened Gallai-Ramsey number 1rs,t(G) is the least
p ∈N such that every Gallai t-coloring of Kp contains a subgraph that is isomorphic to G and is spanned by
edges that use at most s colors. When s = 1, this definition corresponds with that of the usual Gallai-Ramsey
number. A Gallai t-coloring of K1rs,t(G)−1 that avoids a copy of G spanned by edges using at most s colors is
called a critical coloring for 1rs,t(G). Weakened Gallai-Ramsey numbers have been studied in several papers
in recent years (e.g., see [1], [4], and [9]).

The following theorem is fundamental for proving results involving Gallai colorings. It is a reinterpre-
tation of a result due to Gallai [5].

Theorem 1.1 ([6]). Every Gallai coloring of a complete graph can be formed by replacing the vertices in a 2-coloring
of a complete graph of order at least two with Gallai-colored complete graphs.

From this theorem, we obtain a partition of the vertex set of a Gallai-colored complete graph, called a Gallai
partition, into subsets corresponding with the Gallai-colored complete graphs (called blocks) that replace the
vertices in a 2-colored complete graph (called the base graph).

Star-critical Ramsey numbers for graphs were first introduced by Hook and Isaak (see [7] and [8]), and
were later extended to Gallai colorings by Su and Liu [11] (see also [2]). Recently, star-critical weakened
Ramsey numbers were studied in [3]. Denote by Kn ⊔ K1,k the graph formed by taking the disjoint union
of Kn and a single vertex, and joining them together with exactly k edges, where 1 ≤ k ≤ n. When G is
connected, the star-critical weakened Gallai-Ramsey number 1rs,t

∗ (G) is defined to be the least k such that every
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Gallai t -coloring of K1rs,t(G)−1 ⊔ K1,k contains a subgraph that is isomorphic to G and is spanned by edges
using at most s colors.

Most of the known weakened Gallai-Ramsey numbers have complete graphs as their arguments. It can
easily be shown that

1rs,t
∗ (Kn) = 1rs,t(Kn) − 1,

for all n ≥ 3 and 1 ≤ s < t, by using a proof similar to that of Theorem 1 of [3]. Currently, only one nontrivial
weakened Gallai-Ramsey number (when t ≥ 3) is known that has an argument that is not a complete graph.
Namely, it was shown in Theorem 3.2 of [4] that

1r2,t(C5) = t + 3, for all t ≥ 3.

Here, we prove that
1r2,t
∗ (C5) = t,

for all t ≥ 3. In the process of determining this star-critical weakened Gallai-Ramsey number, we also prove
the uniqueness of the critical coloring for 1r2,t(C5).

2. Main Results

The critical coloring that provided the lower bound for 1r2,t(C5) in [4] was constructed in the following
way. Begin with a K3 in color 1, then add in vertex x1, joining it to all of the vertices in the K3 with edges
in color 2. Next, add in vertex x2, joining it to the other four vertices with edges in color 3. Denote the
resulting Gallai 3-coloring of K5 by G3. Recursively, we now form Gt (for t ≥ 4) by taking Gt−1, adding in
vertex xt−1, and joining it to Gt−1 with edges in color t. For example, Figure 1 shows G3 and G4.
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Figure 1: A Gallai 3-coloring of K5 and a Gallai 4-coloring of K6 that avoid a C5 spanned by edges using at most 2 colors.

Note that Gt has order t + 2. The subgraph spanned by edges in color 1 is a K3, while the subgraph
spanned by edges in any other color is a star. Every C5-subgraph contains at most two edges in a given
color, and hence, uses at least three colors. In Theorem 2.3, we will show that Gt is the unique critical
coloring for 1r2,t(C5). First, we require the following lemmas.

Lemma 2.1. For t ≥ 3, no critical coloring for 1r2,t(C5) contains a monochromatic P4 (i.e., a path of order 4).

Proof. For t ≥ 3, consider a Gallai t-coloring of Kt+2 that avoids a C5 spanned by edges using at most 2
colors. Without loss of generality, assume that it contains a P4 in color 1 given by x1x2x3x4. Let y be a vertex
not contained in the P4 and consider the edges yx1 and yx4. If either of these edges are in color 1 or if they
are both the same color, then yx1x2x3x4y is a C5 spanned by edges using at most 2 colors. So, without loss
of generality, assume that yx1 is given color 2 and yx4 is given color 3. In order to avoid a rainbow triangle,
x1x4 must receive either color 2 or color 3 (assume color 2). Avoiding a rainbow triangle now forces edge
yx2 to receive either color 1 or color 2, and it follows that yx2x3x4x1y is a C5 spanned by edges using at most
2 colors. Hence, no critical coloring for 1r2,t(C5) exists that contains a monochromatic P4.
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Lemma 2.2. For t ≥ 3, every critical coloring for 1r2,t(C5) contains a vertex that is incident with edges in only one
color. Furthermore, the subgraph induced by the leaves of the resulting monochromatic spanning star does not contain
any edges in the same color as the edges of the star.

Proof. Consider a Gallai t-coloring of Kt+2 that avoids a C5 spanned by edges that use at most 2 colors.
Let B be the base graph for this Gallai coloring, chosen to have minimal order. Theorem 1.1 implies that
2 ≤ |V(B)| ≤ 4 and Lemma 3.1 of [10] implies that |V(B)| , 3.

If |V(B)| = 2 and both blocks have order at least 2, then without loss of generality, let x1 and x2 be vertices
in block X and let y1, y2, and y3 be vertices in block Y. Regardless of the color of y1y3, the cycle y1x1y2x2y3y1
is a C5 whose edges use at most 2 colors. So, this situation does not occur. If |V(B)| = 2 and some block only
contains a single vertex, then that vertex is incident with edges in only one color, satisfying the statement
of the lemma.

If |V(B)| = 4, then since Kt+2 has order at least 5, some block contains at least two vertices. Denote the
blocks by W, X, Y, and Z. Without loss of generality, suppose that w is a vertex in block W, x is a vertex in
block X, y is a vertex in block Y, and z1 and z2 are vertices in block Z. Then wz1xz2yw is a C5 whose edges
use at most 2 colors. So, this case does not occur.

It follows that every critical coloring for 1r2,t(C5) contains a vertex that is incident with edges in only one
color. Without loss of generality, suppose that x1 is the center vertex for a monochromatic spanning star in
color 1 with leaves y1, y2, . . . , yt+1 in a critical coloring for 1r2,t(C5). If some edge in the subgraph induced
by {y1, y2, . . . , yt+1} has color 1, say edge y1y2, then y2y1x1y3 is a monochromatic P4, which cannot occur by
Lemma 2.1. Thus, the subgraph induced by {y1, y2, . . . , yt+1} does not contain any edges in color 1.

We are now able to prove the uniqueness of the critical coloring for 1r2,t(C5).

Theorem 2.3. Let t ≥ 3. Up to a reordering of the colors, every critical coloring for 1r2,t(C5) is isomorphic to Gt.

Proof. We proceed by induction on t ≥ 3. For the base case, consider a Gallai 3-coloring of K5 that avoids a
C5 spanned by edges using at most 2 colors. By Lemma 2.2, some vertex, say x1, must only be incident with
edges in one color (suppose it is color 3). Denote the other vertices by y1, y2, y3, y4. The subgraph induced
by {y1, y2, y3, y4} only contains edges in colors 1 and 2. Up to isomorphism or a reordering of the colors,
Figure 2 shows all of the ways in which this subgraph can be colored. Note that only the last image of

Figure 2: All 2-colorings of K4, up to isomorphism or switching of the colors.

Figure 2 avoids a monochromatic P4, making this the only possibility by Lemma 2.1. The result is a Gallai
3-coloring of K5 that, up to a reordering of the colors, is isomorphic to G3.

Now assume that the theorem is true for some t ≥ 3. That is, up to a reordering of the colors, every
critical coloring of 1r2,t(C5) is isomorphic to Gt. Consider a Gallai (t + 1)-coloring of Kt+3 that avoids a C5
spanned by edges using at most 2 colors. By Lemma 2.2, there exists a vertex, say x1, that is only incident
with edges in one color (assume it is color t+ 1). Denote the other vertices by y1, y2, . . . , yt+2. The subgraph
induced by {y1, y2, . . . , yt+2} only contains edges in colors 1, 2, . . . , t. By the inductive hypothesis, up to a
reordering of the colors, this subgraph is isomorphic to Gt. Hence, up to a reordering of the colors, every
critical coloring for 1r2,t+1(C5) is isomorphic to Gt+1.

Theorem 2.4. For all t ≥ 3, 1r2,t
∗ (C5) = t.

Proof. To prove that t is a lower bound, take a copy of Gt, introduce a vertex v, and join it to each xi with
an edge in color i + 1 for each i ∈ {1, 2, . . . , t − 1} (e.g., see Figure 3 for the t = 3 case). The result is a Gallai
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Figure 3: A Gallai 3-coloring of K5 ⊔ K1,2 that avoids a C5 spanned by edges using at most 2 colors.

t-coloring of Kt+2 ⊔ K1,t−1 in which the subgraph spanned by edges in color 1 is a K3, while the subgraphs
spanned by edges in each of colors 2, 3, . . . , t are stars. Every C5-subgraph contains at most two edges in a
given color, and hence, uses at least three colors. It follows that

1r2,t
∗ (C5) ≥ t.

To prove the reverse inequality, consider a Gallai t-coloring of Kt+2⊔K1,t and let v be the vertex of degree
t. Delete vertex v, and consider the resulting Kt+2. If it avoids a C5 spanned by edges using at most 2 colors,
then by Theorem 2.3, up to a reordering of the colors, it is isomorphic to Gt. In this Gt, denote the vertices
in the K3 in color 1 by y1, y2, y3 and assume that the other vertices x1, x2, . . . , xt−1 were sequentially added
in, with vertex xi joining to the existing graph with edges in color i + 1, for each i ∈ {1, 2, . . . , t − 1}.

Since v has degree t, it must join to at least one of y1, y2, y3 and at least t − 3 of x1, x2, . . . , xt−1. We must
consider a few cases.

Case 1: Suppose that v joins to only one of y1, y2, y3 and all of x1, x2, . . . , xt−1. Without loss of generality,
suppose that v joins to y1. If vy1 has color 1, then vx1 must receive one of the colors 1 or 2. Either way,
vy1y2y3x1v is a C5 spanned by edges using at most two colors. If vy1 has a color other than 1, say color 2,
then edge vx2 must receive one of the colors 2 or 3. Either way, vy1x1y2x2v is a C5 spanned by edges using
at most 2 colors.

Case 2: Suppose that v joins to two or more of y1, y2, y3. Without loss of generality, suppose that v joins
to y1 and y2. If both vy1 and vy2 have color 1, then vy1y3x1y2v is a C5 spanned by edges using at most
2 colors. Now assume that at least one of vy1 and vy2 receives a color other than color 1 and note that
they cannot both receive distinct colors other than 1. If color i appears on at least one of vy1 and vy2, then
vy1y3xiy2v is a C5 spanned by edges using at most 2 colors.

In all cases, it has been shown that a Gallai t-coloring of Kt+2⊔K1,t contains a C5 that is spanned by edges
using at most 2 colors. It follows that

1r2,t
∗ (C5) ≤ t,

completing the proof of the theorem.
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