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Abstract. The dynamic of integer-valued autoregressive model in random environment is governed by
the realization {z,};" , of a Markov chain referred to as the random environment process. At given moment
n € N, the realization z, defines the environment conditions and determines all model parameters at
that moment. In most cases, the K-means clustering technique has been used to estimate {z,} > ,, which
is a necessary step in models application. However, the application of the K-means technique is not
always the optimal solution, as it disregards certain information and may yield suboptimal results in some
scenarios. To enhance clustering performance for data sequences corresponding to generalized random
environment integer-valued autoregressive time series of higher order, the so-called RENES clustering
method was developed. Despite its advantages, RENES also has some drawbacks and is highly complex
to implement. To address these challenges, we propose a modification of the RENES method based
on the Mahalanobis distance, designed to simplify the algorithm and improve its practical applicability
while preserving clustering accuracy. The effectiveness of this modification was evaluated using the same
simulations and real-life data where the RENES method had previously demonstrated its validity, and
notable improvements were observed.

1. Introduction

Integer-valued autoregressive (INAR) models, first introduced in [6] and [1], have proven to be highly
effective in modeling integer-valued data over time. These models rely on thinning operator, which trans-
forms a given integer-valued random variable X to the sum of X independent and identically distributed
random variables. Over the years, several significant contributions to this class of models have appeared
in [5], [14], [15] and [11]. Despite their versatility, the behavior of such models can vary considerably
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depending on the environment conditions in which they are observed. A significant advancement in this
matter was made in [9], where authors presented the first INAR model in random environment, calling it
the random environment INAR model of order 1 with geometric marginals (RrNGINAR(1)). To this end, the
authors first introduced the r-state random environment process {Z,}, n € INy, defined as a Markov chain
taking values in E, = {1,2,...,r}. Further, the marginal distribution of the RrNGINAR(1) model at time n
is governed by the realization of the random environment process z, observed at the same time, which we
denote as X, (z,). Additionally, X,(z,) follows a geometric distribution with expectation p,, € {u1, t2, - . . ).
The model itself is defined as

Xn(zn) =ax* Xn—l(zn—l) + En(Zn, Zn—l)r

where a € (0,1). The operator ax : X > Y.X, U; is the negative binomial thinning operator, which maps
integer-valued random variable X to the sum of X independent random variables, each following the same
geometric distribution with distribution parameter 13-. Consequently, the distribution of a * X conditional
on X = x is negative binomial with parameters x and 7%-.

Over the years, more advanced INAR models were developed. In [10], random environment INAR
models of higher orders were introduced. In addition to the marginal distribution parameter, the authors
proposed that the order of the model is influenced by the environment state at each moment n € IN. A
further significant advancement occurred in [4], where the authors extended previous assumptions by
suggesting that the thinning parameter «, at time # is also dependent on the environment state z, at that
same time. The corresponding model {X;,(z,)}}" , is referred to as a generalized random environment INAR
model of higher order with geometric marginals and negative binomial thinning operator (denoted as
RrNGINAR(M, A, P)) and is given by the following recursive relation:

Az, * Xn—l (Zn—l) + gn(zn/ Zn—l) w.p. ﬂbit‘p”/

Az, * Xn—Z(Zn—Z) + Sn(zn/ Zn—Z) w.p. (Pznp ’
Xu(za) = 1. o (1)

az, * Xu-p,(Zn-p,) + €n(Zn, Zu-p,) W.p. QP .

Here, M = {u1,..., urh, A=1{a1,..., ), P = {p1,...,ps} represent the model’s parameter sets. p,, denotes
the mean of the marginal geometric distribution of X,,(z,), @z, is the thinning parameter and p,, indicates
the maximum value the order P, can take for a fixed state z, € {1,...,r}. Depending on how the model
behaves after a state change, two different versions of the RrNGINAR(M, A, ) model can be identified.
The first is denoted RrNGINAR ;. (M, A, P) and is created in the way that P, = min{p}, p.,} for eachn € N.
Thus, when the state change occurs, the order of the model resets to one. From that point onward, the
order increases as long as the model remains in the same state, continuing until it reaches a predefined
maximum value p,,. Once this maximum is attained, the order remains constant at that value until the
next state change happens. The other version, referred to as RrNGINAR; (M, A, P), slightly modifies the
way that orders reach their maximum values. Namely, here we have that P, = 1 if p;, < p,, and P, = p,,
otherwise. In other words, when the state change occurs and the order of the model resets to one, it does
not necessarily increase to the maximum order. Instead, the model order remains at one until the conditions
that permit its progression to the maximum value within the given state are satisfied. In both versions,
p, =max{i > 1: z,_; = --- = 2,1} represents the number of predecessors of z, that are mutually equal.

The following assumptions must be satisfied for both versions of the model.
. P

a) Foralli € E,, pe{1,2,...,pifand k € {1,2,...,p}, it holds that (P;cp € [0,1]. Besides, Y. qb;cp =1 for all
. ok

ieE,andpefl,2,...,pi.

b) For all i € E,, the counting sequence associated with the negative binomial thinning operator a;+ is
assumed to be independent of all other random variables appearing in (1).
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c) For fixed i, j € E;, {€4(i, )lxen is a sequence of independent and equally distributed random variables.
d) {Z,}, {e.(1, D)}, {4(1,2)},. . ., {€n(r, 7))} are sequences of mutually independent random variables.
e) Random variable X, (/) is independent of both Z,, and ¢,,(i, j) for alln <m and all i, j,I € E,.

Finally, let z,-1 = g and z, = s for some gq,s € E,. If 0 < a5 < Hmaim, then the distribution of the

random variable ¢,(g, s) can be written as

Geom (£ wp.1— =t
en(q,s) £ { (vez), 1=

Qs g
Geom(lm ) wp.

This also holds for both RrNGINAR (M, A, P) and RrNGINAR(M, A, P) models.

Modeling using random environment INAR models first requires estimating the environment state for
each realization in the observed sample (see [4]). The K-means technique has long been a popular choice
due to its relatively simple algorithm and ease of application. In general, K-means divides a set of N
p-dimensional data points {x,}) | into K clusters by minimizing the objective function

N K
0= ZZh il O, 1), )

n=1 j=1

where for all 7 and j, x; is the column vector, h,; = 1 if x, belongs to cluster j and £,; = 0 otherwise, while
1, is a centroid of the j-th cluster. Furthermore, d represents the Euclidean distance metric, given by

P
A0 1) = | D i = 4P = O = ) (s = ). ()
i=1

Initially, this approach performed well, particularly in models where realizations within the each envi-
ronment state were sufficiently similar. As noted in [2] and [8], K-means works best when clusters are
spherically distributed. The mentioned similarity of data within each state causes the data to be organized
into spherical clusters, allowing K-means to separate clusters with high accuracy and correctly assign en-
vironment states to most realizations. However, with the development of more complex INAR models
in random environment, some issues emerged. Namely, these models introduced significant variability
in realization values within the same state. In other words, realizations within the same environment
state may exibit both very high and very low values, leading clusters to take on an elongated (ellipsoidal)
rather than spherical shape. Since K-means assumes spherical clusters, its performance in such cases was
significantly reduced. Another challenge arises when realizations from different states start to have similar
values, i.e. when mean values within different states are approximately equal. Even if data within each state
are spherically distributed, the spheres will overlap considerably. In this case, K-means fails to accurately
separate the states, and forms clusters that do not reflect the true structure of the data.

Considering the aforementioned challenges, the authors in [13] developed a new clustering method
to address them. Although the method is in theory applicable to data sequences corresponding to any
INAR time series in a random environment, the authors have specifically focused on the case where the
data to be clustered correspond to the RrNGINAR(M, A, P) time series (described in [4]). They began with
the observation that the K-means algorithm considers only the realization value x, when estimating the
environment state z, at time n, n € IN. However, the model parameters p,, a,, and P, also contain valuable
information about z,. To minimize the information loss, the authors” primary objective was to construct
a three-dimensional sequence of ‘pre-estimators” derived from real-life realizations, that replicates the be-
havior of {(y,, az,, Py)};; ;- Finally, the K-means algorithm was applied on the resulting three-dimensional
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data sequence. In this manner, the information about z, stays preserved. It is important to highlight that
the given sequence of so-called "pre-estimators’ serves only as a supportive tool for estimating {z,},; ;, and
does not constitute an alternative set of model parameter estimates.

Although it has brought improvements in clustering data corresponding to the RrNGINAR(M, A, P)
time series, the RENES method also has certain drawbacks. First and foremost, the method is highly
complex, making its implementation far from straightforward. Secondly, it partially relies on the standard
K-means algorithm, thereby inheriting some of its limitations. The shortcomings of the RENES method
will be discussed in more detail in the next section.

In this manuscript, we introduce a modified RENES method (MRENES) designed to address the weak-
nesses of the original approach. The main idea is to minimize the number of steps preceding K-means
within the RENES algorithm as much as possible, thereby reducing and the number of parameters required
for the method to operate. Additionally, the metric used in the K-means technique has been adjusted to
better accommodate the structure of the data being clustered.

The manuscript is organized as follows. In Section 2, we give the RENES clustering algorithm and
outline all the identified shortcomings. These shortcomings motivate us to introduce modifications to the
RENES in Section 3, leading to the development of the MRENES clustering method. Section 4 provides
an extensive simulation study of the newly proposed MRENES method in scenarios with 2 and 3 different
environment states. In Section 5 we present the results of applying the MRENES method to real-life data.
Finally, Section 6 concludes the manuscript.

2. Troubles with RENES

To enable the reader to fully understand the essence of the RENES method and identify the source of its
shortcomings, we will first describe, step by step, how the method works. For more details about RENES,
see [13].

1. Let {X,}N, = {Xu(z4)}"_, be a sample of size N € N from the RPNGINAR(M, A, P) model. The first
step in constructing the method is to derive sequences of pre-estimators { ﬁn}fq\le, {5(,1}112121 and {Pn}f;]:l
for the parameter sequences {u., N |, {a.,}Y |, and {P,}"_. These pre-estimators are constructed solely
based on the observed sample, without knowing the realizations {z,}"_, of the random environment
process. More precise, for all n € {1,2,...,N}, fi,, &, and P, are defined as functions of x, and,
potentially, several neighboring realized elements of the sample. The three-dimensional sequence

{ [an,d,,,P,,};\’:l such obtained is supposed to mimic the behavior of the model parameters over time.
Based on the formulas given in [4], the pre-estimators are defined as follows:

,an = Xn/ ne{llzl"'/N}/

~ n
a, = ————, nefl,2,...,N},
max «,
n=1,...,
max pacfk(Xa, ... Xad,+1), n<dp,
p, = max pacfk(XnN-24,,---, XN), n>N—dp,

K}’{la); pach(Xn_dp, corr Xnrd,), dy <n <N -—d,

where d, € N and pacfy is the partial auto-correlation function at lag K. Furthermore,

An/Bn/ Bn + O, n> 1,
OL*: 1, An:Bn:01n>1’
max{(%’: lef2,...,N},B > 0)}, otherwise,
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foralln € {1,2,...,N}, whereas A, = (x, — T({iu, ¢m))+ and B, = % Y1 Auifors=min{n—1,P,}.

2. Although clustering of three-dimensional data {(fi,, &, Pn)}f;’:1 is feasible, the pre-estimators are fur-

ther refined by involving trimmed (truncated) means. For that purpose, the function

T( ) a,, n<korn>N-k,
a,,c) =
" Z;l::_kq]'_maj, k<n<N-k

is used, where N > 2k and ¢ = (cg,c1, ..., ¢) is a (k + 1)-dimensional vector of non-negative weights

k
such thatcg > ¢; 2 -+ 2 ¢, ¢; >0, j=0,1,...,k and ¢g +2 }. ¢c; = 1. Namely, since all of the
j=1
pre-estimators {u }N , {a; )N, and {P,}) are defined as functions of sample realizations, their
values may vary considerably within the same state if realizations themselves fluctuate significantly.
Given that the pre-estimators are intended to approximate model parameters-which are assumed to
be fixed within each state-such variability is undesirable. To mitigate this issue, a trimmed mean
is introduced to reduce excessive fluctuations in the values of pre-estimators and to stabilize them

around representative levels.

3. The function

T(a,,c)-N
S@n, )=
(a C) Zf’l\]:l T(lln, C)

is applied in order to equalize the impact of each particular coordinate of the three-dimensional

sequence {(T(ﬂn, cn), T(@n, ¢), T(P,, c,,))}:]:1 on clustering procedure.

4. By introducing three additional parameters, C,;, C;,C, € R, the influence of each coordinate on the
clustering process has been regulated.

5. Finally, the RENES procedure ends with the application of the K-means clustering method to the
three-dimensional data sequence

{(Cms(ﬂn/ Cm)/ Cas(dn/ Cﬂ)’ Cps(p"’ Cp))}fq\jzl )

At first glance, the RENES method appears quite complex to implement, which is also its main drawback.
Specifically, in order to assess the states of the environment, the method first requires the estimation of seven
unknown parameters (dp, ¢, s, €5, Cii, Cg, Cp). This raises a logical question: Is it possible to apply K-means
clustering earlier in the RENES algorithm, for example, after Step 2? Doing so would eliminate Steps 3 and
4, thereby reducing the number of unknown parameters required by the method. While this adjustment
does simplify the RENES method, it also introduces several other challenges.

i. As mentioned in the introduction, K-means performs best when data within clusters are spherically
distributed. The coefficients C,,, C, and C, from the fourth step of the RENES method are specifically
introduced to provide this. More precisely, they are selected in such way to maximize the sphericity
of data within clusters. Omitting these coefficients disrupts sphericity, which prevents the K-means
from performing clustering with the desired accuracy.

ii. The coordinate values of the three-dimensional data sequence {(T(ﬂn,cm), T(@n, ca), T(P,,, c,,))}nN=1 can
vary significantly from one another. Specifically, pre-estimators {fi,}), can take arbitrarily large
values, depending on the phenomenon being analyzed. In contrast, pre-estimators {@,}) | always

falls within the range [0, 1], while {15,1};\’:1 aren’t greater than 5 in most cases. According to (3), if one

pre-estimator is consistently much larger than the others, it will have a disproportionately greater
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Figure 1: Three-dimensional pre-estimators {(T(/Zt,,,cm), T(ay, c), T(P,z,cp))}n: 1 associated with the corresponding exact states. The
pre-estimators were obtained based on the simulated R2NGINAR(2, 4) time series.

influence on the clustering process. However, such an uneven influence of the pre-estimators is
undesirable, as the RENES assumes that all pre-estimators carry approximately the same piece of
information about {z,}. To address this issue, Step 3 was introduced within the RENES method.
Eliminating this step would cause the problem to reappear.
iii. If we examine the formulas for calculating the initial pre-estimators fi,,, @, and p, givenin Step 1, it can
be expected that a correlation between the sequences {f1,}"_, and {@,}_, will emerge. This correlation
is likely to persist to some extent even after the transformation in Step 2 happens. Additionally,
correlations may also appear in the other two pairs of pre-estimators. However, K-means is not well-
suited for clustering data sequences with correlated coordinates, as it does not take the covariance
structure of the data into account (a limitation that will become evident later). This can lead to
suboptimal clustering when there are significant correlations between the sequences of pre-estimators.

Considering all the previously mentioned points, we can now define the research objective. The aim
is to modify the RENES method to reduce the number of required parameters, while avoiding negative

consequences that such modifications might introduce. The way to achieve this is outlined in the next
section.

3. Modified RENES method

We aim to explore whether the RENES method can be simplified by applying the K-Means algo-

_ N
rithm directly to {(T(ﬁn,cm), T(@y, c,), T(P”’CP))}nzf In order to investigate this possibility, we simulated
a RZNGINAR(2,4) time series and applied the first two steps of the RENES method to the resulting data

sequence. Such obtained three-dimensional data were then associated with the corresponding exact states,
which is presented in Figure 1.
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The figure demonstrates that the three-dimensional pre-estimators {(T(ﬁn, ), T(ay, cy), T(f’n,cp))}:]_1
might serve as reliable indicators of the exact states. One state (the red cluster) predominantly consists of
points with low values for both T(fi,,, ¢,;) and T(&,, ¢,), while the other state (the blue cluster) includes points
with either a high T({i,, c¢,,) value or a high T(&,, c¢,) value. Significant mixing of points occurs only in the
boundary region. These observations suggest that estimating environment states {z,}"_, by clustering the

three-dimensional set of pre-estimators {(T(yn,cm), T(d@y, ca), T(P,, cp))}n=1 is a reasonable approach. How-
ever, the points in both states do not exhibit a spherical, but rather an elongated ellipsoidal shape. Besides,
Table 1 shows significant correlations between sequences {T(fi,, )N, (T(@n, )N ., and {T(Pn,c:,,)}f;’:1

N
Consequently, the standard K-Means technique applied to {( (fin, em), T(@n, ca), T(P,, cp))}n:1 produces poor
results, and introduction of certain modifications is necessary.

n=17 n=1’

Pre-estimators | (T(@n, ca)i_, | {T(Pu, )}
{T(fin, en)_, 0.198 0.268
[0.0421] [1.064-10%]
{T(@n, ), -0.437
[2212-1079]

Table 1: Correlations between sequences of pre-estimators. The table contains Spearman correlation coefficient p with the correspond-
ing p-value shown in brackets.

As given in [8], this is a case where the Euclidean distance within K-means must be replaced by the
Mahalanobis distance. It is given by formula

A 1) = 0% — ) TEF (60 — ), @

where for all 7 and j, x, is again a p-dimensional column vector, while y; and Z; represent the centroid and
covariance matrix of the j-th cluster, respectively. By comparing (3) and (4), it can be said that the Euclidean
distance is a special case of the Mahalanobis distance where X; = I()xy), i.e., where data coordinates are
supposed to be uncorelated. On the other hand, the Mahalanobis distance from a point to its cluster center
can be understood as the Euclidean distance scaled by the inverse of the square root of the variance in the
direction of the point. In other words, the presence of the inverse of the covariance matrix in (4) allows dif-
ferent scales on which the pre-estimators are measured. Beside this, it allows nonzero correlations between
pre-estimators.

As described in [7], for standardizing a variable X one must divide X by its standard deviation. This

means that Mahalanobis distance, given by (4) and applied on {(T(yn, cn), T(dn, ¢2), T(P,, cp))} v , first trans-
forms data into an uncorrelated, standardized data sequence and then computes the Euclidean distance
between the resulting three-dimensional pre-estimators and the transformed cluster centroids. Conse-
quently, the K-Means technique enhanced with the Mahalanobis distance should facilitate the clustering
of the three-dimensional sequence {(T(/J,,, ¢n), T(@n, ca), T(P,, cp))}i\]:1 while avoiding all the negative conse-
quences discussed in the previous chapter.

However, proper initialization of y; and Xj, j = 1,2,...,K, is required. For that purpose we use
initialization with stretching (see [12]). In essence, the ”stretching” technique relies on the result that
dy; ~ X, asymptotically and it consists of the following steps.

L1. Form an initial cluster of size w by identifying a point near the data mode and selecting the w — 1
nearest neighbors.
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Figure 2: Clustering of the three-dimensional pre-estimators {(T(un, cn), T(@n, ¢a), T(Py, cp))] v performed using K-means enhanced
with the Mahalanobis distance. The pre-estimators were obtained based on the simulated R2N GINAR(2,4) time series.

L2. Estimate p and X using these w points.

L3. Construct the 95% confidence ellipsoid for the cluster and involve all the additional points falling
within the ellipsoid into further calculation.

L4. Update p and X.
L5. Repeat steps L3 and L4 until no additional points are captured by the confidence ellipsoid.

L6. Finally, remove all these points from the data set and repeat steps L1-L5 until K initial clusters are
formed.

Foreachj=1,2,...,K, the most straightforward way to estimate X; in steps L2 or L4 is to use the sample
covariance matrix of the points assigned to cluster j. When a cluster contains fewer than p points or X; is
nearly singular, a regularization becomes a suitable alternative. Finally, if per-cluster estimation is unstable
or noisy, one may instead use a global sample covariance matrix, computed over the entire set of N points.
While such estimate is more robust, it sacrifices the flexibility of capturing cluster-specific shapes.

When we applied K-means enhanced with the Mahalanobis distance to the same data sequence

{(T(yn, cn), T(@n, ¢a), T(P,, cp))} __ that generated Figure 1, we obtained the result as shown in Figure 2.
As expected, the clusters are not spherical. However, that’s desirable in this case, as the original data are
not spherically distributed either. A comparison of Figure 1 and Figure 2 reveals a noticeable alignment
between the corresponding clusters. In other words, the modified K-means method successfully identified
the environment states with satisfactory accuracy in this specific instance. Although the presented figures
illustrate results based on a single simulation, they indicate that the proposed approach is well-founded
and merits further examination through a larger set of simulations.

Finally, we propose a modified RENES clustering method (MRENES) for data sequences corresponding
to the RPINGINAR(M, A, P) time series, structured as follows.

S1. Calculate pre-estimators {y,,}n 1 {an}n 1, and {15,1}2’:1 as proposed in [13].



B. A. Pirkovi¢ et al. / Filomat 39:24 (2025), 8551-8566 8559

S2. Create {(T([]n, ), T(ay, cq), T(15n,cp))}:]=1 same as in [13].

- N
S3. Apply K-means with Mahalanobis distance to {(T(ﬁn, cn), T(@y, cq), T(Py, cp))inzl.

4. Simulation study

We aim to evaluate the performance of the new MRENES method using the same simulations where
RENES has already demonstrated its effectiveness. If MRENES proves to be competitive even in this setting,
this will serve as a strong argument for its further application to real-life data. To this end, we simulated
time series of length 500 corresponding to the RrNGINAR(M, A, P) model, considering cases with 2 and
3 different environment states. The model parameters are the same as those used in [13]. Each parameter
combination is simulated in 50 replications. Additionally, for each parameter combination, both versions
of the model (RINGINAR0x(M, A, P) and RrNGINAR: (M, A, P)) are analyzed simultaneously.

We will compare the clustering results obtained using the MRENES method with those obtained us-
ing the RENES method and the standard K-means method. Since the comparison will be performed on
the same simulations that were already used in [13], we are not going to estimate the optimal parameter
values required for applying the RENES method (d;;, ¢, €1, ¢5, Cin, Cs, Cp). Instead, we will take those values
directly from [13]. In this way, we will also obtain parameter estimates required by the MRENES method
(dp, €, €a, Cp).

The comparison will be based on two criteria: the number of correctly estimated states (referred to as
Ncgs in the results table) and the Adjusted Rand Index (ARI). For all clustering methods, we report the
mean values of Ncrs and ARI with corresponding standard deviations, obtained across 50 simulations.
Here, we provide a brief explanation of ARI. Let X = {x,}\.| be a realized sample of length N, and let
A={A1,Ay,...,A}and B = {By, By, ..., B;} be two different clusterings (partitions) of the set X. The overlap
between clusters from A and clusters from B is defined by a contingency table (Table 2), where for all i and
j vij = 1Ai N Bj|. Now, ARI is defined by the formula

Partitions | By B, ... B | Sums
Aq U U2 ... Ul m
A U1 Un ... U ap
A, U1 O ... Up s
Sums by by ... b

Table 2: Contingency table for partitions A and B.

where v;j,a; and b; are from Table 2 for alli = 1,2,...,r and j = 1,2,...,s. In general, ARI € [-1,1],
greater values of ARI indicate stronger similarity between partitions and ARI = +1 determines the perfect
match. For more information regarding ARI, see [3]. In this particular case, one partition represents real
environment states, while the other corresponds to the clustering results obtained using one of the proposed
methods.
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4.1. Simulations with two environment states

Table 3 presents the parameter combinations used for simulating RrNGINAR(M, A, P) time series with
two environment states. As previously mentioned, these are the same combinations used in [13]. The

clustering results obtained using the K-means, RENES and MRENES techniques will be discussed for each
combination separately.

Casel. M=(1,15), A=(005,0.6), P = (2,4), pucc = (0.6,0.4), Pmm=[ o s ]
1 0 0 0

[ 1 o o1 09 o0 0
?1=109 01| %=| 01 045 045 o0
01 01 04 04

08 02
Case2. M =(3,5), A=(04,05), P=1(2,5), poec =(0.5,0.5), pruat = [ 025 075 ],

1 0 0 0 0
Lo 02 08 0 0 0

¢ = [ ] ¢p=|04 04 02 0 O
04 06 03 03 03 01 0

04 02 02 01 01

Table 3: Parameter combinations used for simulating R2RNGINAR(M, A, P) time series.

4.1.1. R2NGINAR(2,4) simulations

To start the procedure, 50 replications of the RZNGINARx(2,4) time series and 50 replications of the
R2NGINAR:(2,4) time series are simulated. For each version, Standard K-means, RENES and MRENES
are applied on each replication. Table 4 shows optimal values of the parameters required for the RENES
clustering method. Thus, optimal values of the parameters required for the MRENES method are also

defined. The clustering results obtained using the three specified techniques across 50 simulations are
presented in Table 5.

R2INGINAR px (2, 4)
dp Cm Ca cp Cn | G | G
8 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) 6 2 9
R2NGINAR; (2, 4)
dp Cm C p Cn | G | G
15 | (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) 8 2 3

Table 4: Optimal values of the RENES method parameters in the case of simulated R2RNGINAR(2, 4) time series.

R2NGINAR(2,4)

Comparison R2NGINAR y0x(2,4) R2NGINAR;(2,4)
technique K-means | RENES | MRENES || K-means | RENES | MRENES
Ncks 311 323 328 316 333 356

[30.09] [22.79] [11.97] [31.79] [20.14] [12.57]
ARI 0.042 0.073 0.092 0.069 0.098 0.153
[0.021] [0.020] [0.011] [0.031] [0.025] [0.018]

Table 5: Mean values of Ncgs i ARI, with corresponding standard deviations shown in brackets, reported across 50 simulated
R2NGINAR(2,4) time series.
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As table shows, both RENES and MRENES methods outperformed the K-means technique in each of
two versions of the RZNGINAR(2, 4) time series. This advantage was confirmed by the average number of
correctly estimated states (Ncgs) and by the average ARI value. However, in the case of R2NGINAR.(2, 4)
simulations, the difference in the accuracy of state estimation between the RENES and MRENES methods
is very small, almost negligible. This is not surprising, as both methods are based on the same underlying
logic. While the MRENES method has two fewer steps, it compensates for the omitted steps by incorporat-
ing the Mahalanobis distance. Additionally, although the MRENES shows a slight advantage over RENES
in terms of average values of Ncgs and AR], its key benefit lies in simplifying the algorithm and reducing
the number of required parameters. This significantly improves the practical applicability of the clustering
method without compromising the estimation quality, which is an advantage that should not be overlooked.

The difference in accuracy of state estimation between the RENES and MRENES methods is more
pronounced in the case of RZNGINAR;(2,4) simulations, where the MRENES method provided more
accurate estimation of the environment state sequence compared to RENES. Interestingly, the average
values of Ncgs and ARI indicate that the improvement achieved by MRENES over RENES is even greater
than the improvement that RENES achieved over K-means.

4.1.2. R2NGINAR(2,5) simulations

Same as in previous case, 50 replications of the RZNGINAR:x(2,5) time series and 50 replications of
the R2NGINAR;(2,5) time series are simulated. Table 6 shows optimal values of the parameters required
for the RENES clustering method. The clustering results obtained using Standard K-means, RENES and
MRENES across 50 simulations are presented in Table 7.

R2NGINAR ;yar (2, 5)

dp Cm Ca cp Cn | G | G

17 | (0.16,0.14,0.14,0.14) | (0.16,0.14,0.14,0.14) | (0.4,0.3) 4 2 3
R2NGINAR:(2,5)

dp Cm C p Cn | Co | G

9 0.2,02,02) 0.16,014,014014) | (0403) | 9 | 6 | 7

Table 6: Optimal values of the RENES method parameters in the case of simulated R2ZNGINAR(2, 5) time series.

R2NGINAR(2,5)
Comparison R2NGINARy4x(2,5) R2NGINAR;(2,5)
technique K-means | RENES | MRENES || K-means | RENES | MRENES
Ncks 262 300 298 265 296 297
[28.82] [21.13] [12.25] [30.87] [22.01] [13.78]
ARI 0.043 0.069 0.068 0.045 0.068 0.068
[0.020] [0.018] [0.012] [0.022] [0.018] [0.014]

Table 7: Mean values of Ncgs i ARI, with corresponding standard deviations shown in brackets, reported across 50 simulated
R2NGINAR(2,5) time series.

Table 7 demonstrates a strong similarity in the accuracy of state estimation between the RENES and
MRENES, both of which significantly outperform the K-means. As previously noted, achieving comparable
results with a considerably simplified algorithm is a noteworthy finding for MRENES. This same conclusion
holds for both the RRNGINAR,,x(2,5) and R2ZNGINAR;(2,5) simulations.

Additionally, it is important to highlight that the RENES method exhibited significantly higher volatility
compared to the MRENES. In simulations, the number of correctly estimated states obtained using the
RENES method spanned the interval from 245 to 361. On the other hand, the MRENES method consistently
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produces the Ncgs results within 20 of the mean. Moreover, the standard deviations for MRENES method
are lower across both criteria compared to those for RENES, indicating consistent clustering performance.
This consistency represents an additional advantage the MRENES method offers.

4.2. Simulations with three environment states

In case of simulated RrNGINAR(M, A, P) time series with three environment states, required parameter
combinations are presented in Table 8. Again, these are the same combinations used in [13].

07 02 01
Casel. M=(05,1,15), A=(0.1,0.35,0.6), P =(2,4,2), poec =(0.3,0.4,0.3), par = [ 01 08 01 },

02 02 06
1 0 0 0

1 0 02 08 0 0 1 0
1 :[ 09 0.1 ] P2=| 02 04 04 o0 | :[ 01 09 ]
02 02 03 03

09 005 0.05
Case2. M=(2,4,6), A=(020306), P=(24,5), puc = (035035,03), ppr =| 02 07 01 |,

01 01 08
1 0 0 0 0
1 0 0 0
|1 0 |1 05 05 0 0 _ 8§ 82 003 8 8
P15l 07 03 |03 03 04 o |9 025 03 02 025 0
03 02 02 03 . ! ‘ '

02 02 03 01 02

Table 8: Parameter combinations used for simulating RANGINAR(M, A, P) time series.

4.2.1. R3BNGINAR(2,4,?2) simulations

First of all, we simulated 50 replications of the RINGINAR.x(2, 4, 2) time series and 50 replications of the
R3NGINAR;(2,4,2) time series. The optimal parameter values required for the RENES clustering method

are given in Table 9, while clustering results obtained using Standard K-means, RENES and MRENES across
50 simulations are presented in Table 10.

R3NGINAR 022, 4,2)

dr' Cn C, (o) Cn | G | G
17 | (0.16,0.14,0.14,0.14) | (0.16,0.14,0.14,0.14) | (0.4,0.3) 9 7 2
R3NGINAR:(2,4,2)

Cn Cy p Cm Cq Cp
18 | (0.16,0.14,0.14,0.14) | (0.16,0.14,0.14,0.14) | (0403) | 6 | 1 | 8

Table 9: Optimal values of the RENES method parameters in the case of simulated RBNGINAR(2,4, 2) time series.

When discussing RANGINAR(2, 4,2) simulations, MRENES achieved performance almost identical to
RENES (in the RBNGINAR4x(2,4, 2) version) or slightly worse (in the RSNGINAR;(2,4,2) version). These

results are satisfactory, given other benefits the significantly simplified MRENES algorithm offers. Both
methods significantly outperformed K-means.

4.2.2. R3BNGINAR(2,4,5) simulations

Finally, we still need to examine the performance of the MRENES clustering method on RANGINAR(2, 4, 5)
simulations. For this purpose, we simulated 50 replications of the RANGINAR,x(2,4,5) time series and 50
replications of the RANGINAR;(2,4,5) time series. The optimal parameter values required for the RENES
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R3NGINAR(2,4,2)
Comparison R3NGINAR 10x(2,4,2) R3NGINAR;(2,4,2)
technique K-means | RENES | MRENES || K-means | RENES | MRENES
Ncks 162 208 210 159 212 202
[20.44] [14.19] [10.22] [19.09] [15.32] [9.93]
ARI 0.013 0.026 0.028 0.012 0.028 0.024
[0.017] [0.015] [0.016] [0.017] [0.016] [0.016]

Table 10: Mean values of Ncgs i ARI, with corresponding standard deviations shown in brackets, reported across 50 simulated
R3NGINAR(2,4,2) time series.

clustering method are given in Table 11. The clustering results obtained using Standard K-means, RENES
and MRENES are presented in Table 12.

R3NGINAR yar(2, 4, 5)
dp Cm C p Cn | G | G
12 | (0.16,0.14,0.14,0.14) | (0.16,0.14,0.14,0.14) | (04,03) | 10 | 3 | 1
R3NGINAR,(2,4,5)
dp Cm C Cp C
11 (0.16,0.14,0.14,0.14) (0.16,0.14,0.14,0.14) (0.4,0.3)

3
@)
2

LD

N
a1
N

Table 11: Optimal values of the RENES method parameters in the case of simulated R3INGINAR(2, 4, 5) time series.

R3NGINAR(2,4,5)
Comparison R3NGINAR;4x(2,4,5) R3NGINAR;(2,4,5)
technique K-means | RENES | MRENES K-means | RENES | MRENES
Ncks 170 201 221 168 199 218
[19.37] [15.42] [11.01] [18.87] [16.03] [10.83]
ARI 0.019 0.035 0.044 0.020 0.033 0.043
[0.021] [0.015] [0.013] [0.020] [0.014] [0.012]

Table 12: Mean values of Ncgs i ARI, with corresponding standard deviations shown in brackets, reported across 50 simulated
R3NGINAR(2,4,5) time series.

As shown in Table 12, the MRENES method achieved noticeably better results than the RENES method
in RBNGINAR(2, 4, 5) simulations. Both Ncgs and ARI confirm this. Additionally, both clustering methods
significantly outperformed K-means.

5. Real-life data application

In this section, we will apply the same reasoning as in the simulation section. Specifically, we will
evaluate the practical value of the MRENES clustering method using the same real-life dataset on which
RENES has already demonstrated its effectiveness. To that end, we will analyze data representing the daily
number of newly detected COVID-19 cases on the island of Mauritius, covering the period from March 18,
2020, to April 25, 2021. This dataset is available on http://www.data.europa.eu. As described in [13], both
the beginning and the end of the data sequence are characterized by frequent and abrupt increases and
decreases in the number of newly identified COVID-19 cases (see Figure 3). Hence, these two subperiods
can be interpreted as representing a single, distinct environment state. The remaining data, which fluctuate
within expected limits, will be considered as having been observed under a different environment state.
Further, [13] demonstrates that the given data sequence is well-suited for modeling using R2ZNGINAR(2, 4)
and R2ZNGINAR(2,5) models, as the autocorrelation function indicates that all lags up to order 5 are statis-
tically significant.
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Figure 3: Daily number of newly detected COVID-19 cases on Mauritius

Asweknow, to assess the fitting quality of any INAR model in random environment, it is first necessary to
estimate the sequence of environment states {z,}. This also holds for R_NGINAR(2,4) and R2ZNGINAR(2, 5)
models. However, we mentioned earlier that the data with such significant oscillations is not well-suited
for clustering using the K-means clustering technique. K-means in such cases fails to predict the states
with sufficient accuracy, which leads to inadequate model application. As a result, significant discrepancies
arise between observations and corresponding predicted values obtained using the aforementioned models.
Authors in [13] showed that the RENES method has produced better results in this context. We will now
investigate the fitting quality of given data using the same R2ZNGINAR(2,4) and R2ZNGINAR(2,5) models,
where the sequence {z,,} will be estimated using the MRENES clustering method. Parameters requested for
the MRENES method will be taken from Section 4. The obtained results will be compared with the modeling
results given in [13], that were preceded by state estimation using the K-means and RENES techniques.
The root mean square (RMS) of the differences between observed and predicted values will be used as
the measure of goodness of fit. Corresponding RMS-s obtained after application of R2ZNGINARx(2,4),
R2NGINAR1(2,4), RRNGINAR 4x(2,5) and R2ZNGINAR;(2,5) models are provided in Table 13.

R2NGINARmax(2,4) R2NGINAR;(2,4)
Clustering method || K-means | RENES | MRENES || K-means | RENES | MRENES
RMS 4.259 3.870 3.762 4.216 3.827 3.617
R2NGINARu4x(2,5) R2NGINAR;(2,5)
Clustering method || K-means | RENES | MRENES || K-means | RENES | MRENES
RMS 4.150 3.768 3.830 4.152 3.797 3.841

Table 13: RMS-s obtained after application of two different R2RNGINAR (M, A, P) and R2ZNGINAR; (M, A, P) models on selected
real-life data (three clustering methods are considered).

Table 13 clearly demonstrates that the choice of clustering method significantly influences the fitting
quality for data corresponding to R2NGINAR(M, A, P) time series. In particular, the fit improves substan-
tially when the environment state sequence {z,} is estimated using either the RENES or MRENES methods.
This observation holds for both the R2RNGINAR(2,4) and R2ZNGINAR(2,5) models. However, when com-
paring the RMS values that models produce after applying the RENES method with those produced after
using the MRENES method, the conclusions are not entirely straightforward. Specifically, the fitting ac-
curacy of the R2NGINAR(2,4) model shows a slight improvement with the application of the MRENES
clustering technique. The improvement is more noticeable for the R2NGINAR;(2,4) model compared to
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R2NGINAR;4x(2,4). Conversely, the fitting quality of the R2RNGINAR(2,5) model experiences a marginal
decline after applying the MRENES. Nonetheless, the observed decrease is minimal and does not signif-
icantly impact the practical utility of the method itself. Moreover, it is important to highlight here the
simplification brought by MRENES relative to RENES, particularly in terms of the reduced number of re-
quired parameters. The fact that we obtained nearly the same fitting quality with the help of a significantly
simplified clustering method represents a meaningful contribution in its own right. This way, usefulness
of the MRENES method is proved and the benefits of its use are confirmed. Finally, for comparing the
modeling results given in Table 13 with the results obtained using various models with stationary or non-
stationary nature, see [13].

6. Conclusion

This article defines a useful modification of the RENES method (called MRENES) for estimating random
environment sequence {z,} for data corresponding to the RrNGINAR (M, A, P) time series. Although the
RENES method significantly improves clustering performance on the given data, it is quite complex to im-
plement. It requires the estimation of a large number of parameters and demands numerous steps to execute
the algorithm. The newly proposed MRENES clustering method aims to address these drawbacks by elim-
inating two of the four preliminary steps in the RENES algorithm that precede the application of K-means.
The impact of the removed steps is compensated by replacing the Euclidean distance within K-means with
the Mahalanobis distance. This substitution allows K-means to effectively cluster p-dimensional data with
correlated coordinates measured on different scales. As a result, less preprocessing of the input data is
needed, rendering two steps in the RENES algorithm redundant.

The performance of the MRENES technique was evaluated on both simulated and real-life datasets, with
results compared to those obtained using RENES and standard K-means. The findings show that MRENES
can be a suitable technique for clustering data generated by RrNGINAR (M, A, P) time series. First of all, it
significantly outperforms standard K-means in terms of the number of correctly estimated states and ARI
values. Compared to RENES method, MRENES yields similar or slightly better results. However, when
assessing the contribution of the MRENES method, one must also consider the simplifications it introduces.
Achieving comparable (or even superior) results with a significantly simplified and more user-friendly
approach is, in itself, a noteworthy contribution.

Future research may proceed in several directions. First, one could investigate the conditions under

which K-means can be applied directly to the three-dimensional sequence of pre-estimators {fl,, &, P},
without using the trimmed means function T. This would further reduce the burden of the clustering
process. Furthermore, it would be interesting to examine the applicability of the proposed MRENES method
for clustering high-dimensional data. In addition, identifying a procedure for the automatic selection of
MRENES parameter values (dy, ¢, €4, ¢y) would be of particular importance, as it would greatly facilitate
the method’s use and enhance its practical applicability.
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