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Controllability of nonlinear neutral implicit ABC non-integer
integro-differential equations with state and control delay
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Abstract. The controllability of ABC nonlinear neutral implicit integro-differential equation of fractional
order 0 < a < 1 with delay in state and control has been examined in this work. To obtain the controllability
results of the defined problem, we specifically apply the k-set contraction mapping and Darbo fixed point
theorem. The provided example is used to verify the findings. The graphical illustrations are exhibited to
view the orthogonal eigen-vectors corresponding to the solution.

1. Introduction

Fractional calculus has proven to be highly effective in modeling complex systems, particularly in
capturing memory and hereditary properties inherent in many real-world phenomena. Among various
approaches, the analysis of fractional integro-differential equations (FIDEs) using fixed-point techniques
has shown significant promise [12, 14, 15, 18]. Compared to models involving classical (local) derivatives,
those constructed using FIDEs provide more accurate and robust representations of real-world scenarios
[2,4,5,8,11,16,19].

The authors [5] established the model for heat transfer by means of the mittag-leffler function to capture
the memory impact. In [4], the model developed by the author is dedicated to alcohol drinking habit by
means of two-scale fractal dimension. The researchers developed the model [19] for exhibiting the fractional
dynamics of the diseases caused by virus. The research article [8] was dealt with the bio-medical model to
analyze Hepatitis B. In [11], the authors numerically approached the fractional dynamics of DSEK model
which is familiar in bio-medical field. The fractional dynamics of transmission of [16] Streptococcus suis
infection from pig to human was developed.

The versatility of FIDEs is further underscored by their adaptability to various definitions of frac-
tional (non-local) derivatives, which are particularly suitable for both scientific and engineering appli-
cations. Among these, the non-local derivative with a non-singular kernel based on the Mittag-Leffler
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function—introduced by Atangana and Baleanu in the Caputo sense—has gained considerable attention
[1, 6,9]. This derivative not only highlights the fundamental importance of the Mittag-Leffler function but
also facilitates novel applications across a wide range of disciplines.

Numerous phenomena in the biomedical field exhibit abrupt changes in state, which necessitate spe-
cialized mathematical frameworks for accurate modeling. Impulsive differential equations of non-integer
(fractional) order offer a robust approach to addressing these challenges and have become a focal point for
further research. Several studies have been conducted in this area and controllability results have been
obtained [3, 7, 10, 17]. In particular, researchers have employed semigroup theory and fixed point tech-
niques (FPTs) to investigate the abstract formulation of impulsive fractional integro-differential equations
(IFIDEs). The distinctiveness of fractional-order impulsive systems enhances their relevance, making them
an essential tool for analyzing dynamic systems characterized by sudden shifts and memory-dependent
behavior.

Delay Differential Equations (DDEs) [3, 7, 10, 13, 17, 20] are used to model scenarios incorporated in the
fields of Control systems, Oceanography, Geography, etc. The models involving DDEs only deal with past
states, not rates from the past. In [20], V. Wattanakejorn et al. have analyzed the solution existence for the
problem of implicit fractional relaxation differential equations with impulsive delays. The authors [3, 10]
have discussed the controllability results and existence results respectively for semi-linear neutral implicit
FDEs.

The controllability [3] for semi-linear FDEs including ABC derivative and delay was confirmed by
Aimene, Baleanu, and Seba.

SBEDI[s(1)] = As(t) + Be(t) + f(t, s, x (W), t€[0, T =9, 0<a <1,
A6, = 36s1), 1
s(t) = p(t), t € [-1,0].

The researchers derived the controllability results with the help of k-set contraction mapping and Darbo
fixed point theorem.

Karthikeyan et al. [10] studied the existence of solution of Implicit FIDEs having ABC derivatives of
fractional order mentioned below.

ABEDA[s(t) — gt s¢)] = f(t, 5,00 D), t€[0,T]=F, 0<a <1,
AG)|_ =360,

sm_¢ate[fm 12)
a—1
—3
5(0) = f'( G655
where OABCDf‘— is the ABC derivative of non-integer order a, the functions g,G : xR — R and J:

J xR? = R are continuous, where
3, R>R,3=1,2,..60=tg<t1 <bh<..<t, =T,
Asle = t, = s(8) — s(t)),
s(t)) = tli%} s(t,) — Dands(t) = fli%} s(t, + 1)
denote the limit of s(t) from right and left respectively, at t = t,. For any t € J, we claim s; by s¢(s) =

s(t+s)yand —t<s<0.
The existence of mild solutions and the controllability results have been obtained [7] for neutral FDE
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with ABC derivative by Pallavi Bedi et al.
TECDIs(t) — N(t, s(£)] = As(t) + Be(t) + (¢, (1)), t € U(ri, tinl,
i=0

s(t) = kit s®), t |t 43
i=1

s(0) — (0, s(0)) = sp.

The authors proved the results with the combination of measures of non-compactness and fixed point
techniques.
Sivaranjani et al. [17] analyzed the solution existence and the controllability results of the problem

ABCD[s(t) — N(t, s(1)] = As(t) + Be(t) + I(t, 51,0 ¢ Diis(b),c(t)), t€[0, T =J, 0<a <1,
AG)|, = Tits),
s(t) = (p(t te[-1,0], (1.4)

_ a)a-1
5(0) = f -9 3’ G55,

whence, | BCD"‘ denotes the ABC non-integer derivative with ordera, %, & : TxR — R and [ : TxR3 —

R are contmuous functions. Also, I; : R > R, i=1,2,.n0=ty<ti <t <..<t,=T,Asy =t =
s(tT) —s(t7), s(t7) = rlg(r;_ s(ti) —r)and s(t]) = }H}; s(t; + ) denotes the limit of s(f) with respect to the right and
left side approach respectively at t = t;. For any t € J, we represent s; by s;(h) = s(t + h) and —r <s <0
In [13], Vijayakumar S. Muni et al. have considered the below mentioned semi-linear system with control
delay and interrogated the controllability of the system.

CDa[s(t)] = As(t) + Be(t = 1) + f(t,s1,¢(t), t€[0, TI=F, 0<a <1,
C(t) = CO(t)/ te [_f/ O]/ (15)
S(i’o) = 50.

These days, a lot of scholars are sharing their expertise in examining the approximate and exact control-
lability of the aforementioned systems that involve various non-local derivatives. We were motivated to
examine the controllability of implicit fractional system including state and control delay in terms of ABC,
the non-local derivative of the form, by the influence of the aforementioned research publications.

ABEDA[s(t) — g(t, s(1))] = As(t) + Be(t — 1) + f(t, 51,5 °C Di's(t), c(t)),

tel0,T]=9,0<a<1, 0
S(t) = (p(t)r te [_fr 0]/

C(t) = CO(t)r te [_f/ O]r
where, SBCDY- represents the ABC fractional derivative with order a, and A : D(A) € Q — Q, is an
1nf1n1tes1mal generator of a— resolvent family 7, & S, fort > 0 are the solution operators on the Banach
space (Q,|I.ll). Let c € L2([0, T; C), where ( also a Banach space and B is a bounded linear operator such
that B : C — Q. The functions f£,3:9 X% R® - R and g7:9 xR — R are continuous functions. For any
te€ J,wedenotes; by s(f) =s(t+¥and —t<s<0.

The format of this research article is such that Section 2 provides basic concepts such as definitions and
lemmas. Section 3 has looked at the controllability of the Implicit Impulsive FIDEs using ABC with delay.
To illustrate the relevance of the suggested problem, an example has been included in Section 4.
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2. Preliminaries

Let us denote the Banach space of all continuous functions defined from J to Q is C(J, Q).
[E; is holding the properties of Banach space with norm,

Isllo = sup [s(t)l.
te[-1,T]

For any t € J and s € [E;, there exists an s(¢) € E.

Definition 1 [3, 7, 10, 14, 17] The non-integer order ABC derivative of fi(t) is

N@ (7, [zat =9
ABC — 4
o =1 [ e, | 5D o,

where a € (0,1] and a € E}(0, T). IN(«) is the normalization function satisfying IN(0) = IN(1) = 1 and

(]

- —(ar+1)

is a special function, introduced by Mittag-Leffler.
Definition 2 [3, 7, 10, 14, 17] The non-integer order ABC integral of i is

(t )a 1
AIBC ah d
B0 = K0+ i [, o

whence 3% represents the R-L fractional integral.
Remark 1 [3, 7, 10, 17]1 Few important properties of ABC derivative and the generalized Mittag-Leffler
function during the implementation of Laplace transform.

1 LD RONE) = 1o LI A L)) ~ O,
2. LI VE o (~A)e)] = ZZ <
3 L10) = H

4. L[n(t) = W(B)](s) = LI LIY(H)](s)-

Definition 3 [3, 7, 10, 171 The Kurtawoski measure of non-compactness Y on a bounded set 8 C Y is
considered as follows

Y(L)=infle >0 implies Lc| JM; also diam(M,) <el,
j=1
with the following properties:

1. I c L, gives Y(IL;) < Y(IL,) where IL;, I, are bounded subsets of Y.

2. Y(L) = 0iff L is relatively compact in Y.
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3. Y({z} UL) =Y(L) forallze YL C Y.
4. Y(IL; U Ly) < max{Y(IL1), Y(IL2)}.
5. T(]Ll + ]Lz) < Y(]Ll) + T(]Lz)

6. Y(RL) < |3IY(IL) for 3 € R.
Let M c C(I,Y) and M((3)) = {v(r) € Y|v € M}. We define

tM d3 = t d M t
[ M= { [ oo e, el

Proposition 4 [3, 7,10, 17] If M C C(J, Y) is equi-continuous and bounded, then ¢t — Y(IM(t)) is continuous
on I, also

t t
Y(IM) = maxY(IM(t)), Y(f v(3)d3) < f Y(v(3))d3, for tel.
0 0
Proposition 5 [3, 7, 10, 17] Let the functions {v, : ] = Y, n € N} are Bochner integrable, Forn € N, ||v,|| < m(t)
aeme L(f,R*) and &(t) = Y({va(£)}2,) € L1(f,R*) then it satisfies

f f
1 fo ond3:n € NJ) <2 fo Q).

Proposition 6 [3, 7, 10, 17] Let M be a bounded set. Then for each C > 0, there exists a sequence {v,,}” | ¢ M,
such that
YM) <2Y{v,}, +C.

Definition 7 [3, 7,10, 17] Let 0 < u < mand -1 < < 0. We define 52 ={v € C\ {0} thatis |argv| < p} and
the closure of the form S, thatis S, = {v € C\ {O}]argv| < u} U{0}.

Definition 8 [3, 7,10, 17] For -1 < < 0,0 < w < 7, we define {(Df)} as a family of all closed linear operators
A : D(A) € Q — Q this implies

1. o(A) € S,, where 0(A) is the spectrum, which is a complement of the resolvent set.

2. For all € (w, n), M, implies
IRz, Al < Mylzlf
where R(z, A) = (zI — A)™! is the resolvent operator and A € @f, is said to be an ASO on Q.

Proposition 9 [3, 7, 10, 17] Let A € &b for -1 < B <0and 0 < w < 5. Then the following properties are
fulfilled.
1. 7(t) is analytic and %T(t) = (=A™ (t)(t € S).
2. T(t+s)=T (T (s) ¥ t,seS.
2

3. 1T (Bl < Cot P71t > 0); where Cy = Co(B) > 0 is a constant.
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4. LetYr ={x€Q :lim_,7 (t)x = x}. Then D(AY) C Y if Y > 1 +B.

5. R(z,—A) = [} =T (s)ds, z € C with R(z) > 0.
6. The range R(7 (t)) of T (), t € S%_w is contained in D(A)®. Particularly, R(7 (t)) is contained in D(A)
2
forall f € Cwith R >0,

APT (H)x = L f ZFe™*R(z : A)xdz, forallx € X
27 Jrg

and hence there exists a constant C" = C'(¢g, ) > 0, such that
NAPT (1)) < C’'t~¢~RB~1 forall t > 0.

Definition 10 [3, 7, 10, 17] Observe the system represented by the problem given below.

SBEDIs(t) = As(t) + h(t),0 <a < 1
s(0) = sp.

The solution of the given problem is of the form,

_ (1-a) ! . aP? [t
S0 = PToso + QPR [ (=9 s + s [ ot =i

Here, IP and Q represents the linear operators.
P = x(kI - A)~" and Q = ~AA(xI - A}~ where x = 1% and

1-a

T = E-QU) = 5 [ e i0 -0

S = 7B (-0 = 7 [ 01~y

Lemma 11 [3, 7, 10, 17] Let Q be a Banach space and D is bounded and equi-continuous in C(J, Q) then,
W(D(t)) is continuous on J and

W(D(t)) = sup ¥(D(1)),
teg
where D(t) = {s(t) : s € D)} C Q.
Lemma 12 [3, 7, 10, 14, 17] Let Q be a Banach space and D C Q is bounded then there exists a countable
subset of Dy C D for which

Y(D) < 2¥W(Dy).

Lemma 13 [17] Let the non negative function v(.), on [0, T], which is locally integrable and the real function
p : [0, T] — (0, o0) and presume the constants c; > 0 & 0 < ¢; < 1 such that

f
vt < plt) + fo (- 3 v(3)d3

which implies a constant C = C(cp) such that

t
v(t) < p(t) + Ca f (t—3)"?v(3)d3, forevery t € [0, T].
0
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Definition 14 [3, 7, 10, 17] Let the BVP with nonlinear integral boundary conditions, if /i € L(J),

SBEDI[s(1)] = As(t) + Be(t) + f(t,s1,s(¥(1), t€ [0, T]=T, 0<a <1,

AG)|_, = fitsi),
S(t) = (P(t)/ te [_fr O]r
then, the solution s € AC(J) of the above is,

(P(t)/ te [_f/ 0]

PTo(0) + QPR [t = 3 [B(es () + £, 55, S(P ()3

+ A ) Salt = DIBEs() + £, S(WG)Id3, if t € [0, ],

s(t) =
— t 2
P70 = )s() + QP [ (=3 B9 + £, PO +

t
X f Sa(t = 3)[Bles(3) + £, 53, S(PEI3 + 3,(s(t))), if t € (), 1], 7 =1,2,..m.

Here, IP and Q represents the linear operators.
P = «(xI — A)~! and Q = —~AA(xI — A)™ where x = T2

E-Q) = 5 [ v,

Su = " Eaa(-Q(1)) = L f e (v - Q) dv.
2mi Jr

Definition 15 [13] The solution integral of (6) is defined by

t—1
s(t) =Ea(#* A)so + ao(t) + f (t= 3= D" Eual(t - 3 — " A)Be3)d
0

t
b [ =9 B~ 30,5, s forall 1€ [0,T)
0
Definition 16 [13, 17] The equivalent fractional solution integral for the prescribed system (I) is

(P(t)r te [_fr 0]

(1 — (X) ya—1
N(t,s1) + PTLp(0) + QIPW f f (t=3—1H""Bco(3)d3

_ ) o
SO =4+ 2 [1.8a(t— 3~ DB(3)ds + QP s [ (¢ — 5~ 1" Bes(3)ds (I1)

FEE St — 3~ DBes(3)3 + QP RS2 [t = 313G, 53,8 Dfs(3), c(3)d3

RS [ Sa(t = 3G, 5305 DIs(3), cG))ds, if £ € [0, T].
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Definition 17 [3, 7, 10, 17] Let ¢ € E be an initial function and s; € Q, there exists a control ¢ € 127, 0),
corresponding to the mild solution s(t) of (I), fulfills s(T) = s,, then the system is controllable on [0, T].
Theorem 18 [3,7,10,17] Let S be a bounded, closed, convex and nonempty subset of a Banach space Q.
Consider a continuous mapping /i : S + S is for all the closed subsets of D of S, such that

V(D)) < kV(D), where 0 <k <1.

Then 7 has a fixed pointin S.
The mapping 7 satisfies the above condition is called k-set contractions.
Remark 2 [3,7,10,17].
The readers may verify the mild solution and the solution operator in [3, 7, 10, 14, 17].
Remark 3 [3, 7,10, 17].
IfAe A"‘(oco, ‘30), then
IT2()ll < Me®* and 1S, (f) < MyeP(1 + 27|

forallt >0, B > Bo. Therefore, we get

w1 = sup |[Ta(®)ll, p2 = sup Qef'(1 + +*71)
t>0 t=0

and so
”Ta(t)” < Hl,”Sa(t)” < ta_l[l,lz,

3. Controllability Results

We examine the controllability of the mild solution (II) of the proposed system (I) by assuming the below
postulates.
(P1) For 17, > 0 and for any s, p € (),

llg(t, st)Il < ng-
P2) f: T x R3® — Q is a continuous function for any sy, 82,83 € Q and there exists a constant 1y > 0 for
which
172, 51(8), s2(£), ss()II < 1.

(P3) The linear operator L*(7, C)~- Qis

alP?
N(a)

_ (1 — 0() o a-1
W) = QPR fo (= 3 — O Bes(3)d3 +

f—1
f Sa(t =3 —1)Bes(3)d3.
0

Here, we get an invertible operator W™ : Q  L2( 7, C)/ker(‘W), W' is also bounded and hence we have
IBll < w1 and [ W] < w,.
(P4) There exists three constants y1, )2 and y3 > 0, such that

W(f(t, Di(t), Da(t), D3(1)))) < y1W (D) + 12 W (Ds) + 3 (D3).

(P5) P & Q are linear operators which are bounded on 8 and hence |[P|| < {; and ||Q|| < {y, respectively.

Theorem 3.1 Let us consider the hypothesis (P1) — (P5) hold, then the proposed problem (I) is controllable

if
GG ((1-a)

2nG(T ="+ Tl v+ vl (REST R T

+ GN(@)2) < 1

and )
0G0 -a) & )

G =207+ 2wl T * R
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Proof We define the operator /i : () — () defined by,

@(b), t € [-1,0]

9(t,s1) + PToap(0) + QP =—="~ f (t—3—1)*"'Beo(3)d3

N( )T( )

2 0 a t—t N
Ti(s(t)) = 4+ g [ Salt =3 = DBco(3)d3 + QP i Jy (¢ — 3 — D ' Bes()d3
2 t—t
B [ Su(t - 5~ DBes(3)d3 + QPR [t = 3)*1 (5, 5,,85C DEs(3), c(3))ds

+ RS [ Sa(t = 3)f (5,85 DEs(3), c()d3, if t € [0, T].

By (P2), we define the control, c,(t)

1- -
)= W s = PTop0) = QPR [ (1= 3= 07,5, 85 DEs), co

2 t—t
‘nfrlfm f Salt =3 =G, 5,0 Dyis(3),c(3)d3], if t € [0, T].
0

Consider the set E, = {s € [E; : |Is|| < p}, here

Ny + Cun@(0) + p'[wr(T = H¥ @2y = co) + TR, — Fawico)
1- a)lwz(T - f)ap*

p=

and
_ Lul-a) | G
" N@I(a+1) N(a)

Step-1: 7 is continuous.

I(sc) = BN < llgt,se(8)) = gt s + QI ““’“Ni ko f (t =3~ "Bl
[P

N@) IISa(t—?)—f)IIIIBII llese (3) = cs(3)IId3

X |les,(3) — esGd3——

+IQUIP s f (= 3" 1 G, 563)6 Di'se(3),¢3) = £G,56)0 " i), el

aIIIPZII
"N

f ISa(t = 3G, 5e(3)5 " Dise), cB3) = £3,5G3),6 > Diis(3), ¢(3))lld3

B G601 -a) -t L ma
< Iyt 0) = 6,500 + et [ a=3-9
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x {w (aad-o (6= 0~ 05 Dis), (o)

*UN@)T (@)
ABC o alt e
- F@s AR DEstctgDlidp + o [ =g

XN f (@, se(@),5 " Ditse(@), c(@)) = (@, 50,5 ¢ Dis(), C((p))lld<p}}d3

al} -t C1C2(1 @) a-1
o [ st s- o S208) (M-

X £ (@, 5e(@), 5B Dse(), () — f(@, 50,55 Diis(), clep))

)
X ISa(t = @ = D@, 5e(@) 2B Dse(@), () — F(@, 59,85 Dis(e), c(@))udqo}}ds

N G16(1-a)
]N(Of)F( )

R f ISt = MFG,5e3):6 Dyse@), €3) = £, 5315 ™ Dis), el

f (t= 3" £ G, 50(),6C Di'se(3), c(3)) = £(3,5G3),6°C DIs(3), ¢(3))ld3

We easily observe that 7i(s¢) — 7i(s) in Q € R due to the continuity of the functions g and f. This implies the
proof of continuity of .
Step-2: /1 maps the bounded sets in to bounded sets.

lles(®)ll = W™ s = PT2p(0) — f (t=3 =0 fG, 530 ¢ Dfs(3), c3)ds

lN( )T()

0(1[)2 t—1 ABC
- N() f(; Salt =3=DfG550 Dis(3),c3)dslll

_ t—1
< W D+ [P O+ QI P fo (t=3-0""

allP?||

X |If(3, 53,0 2C DIs(3), ¢(3))lld3 + NG

Salt =3 = DIfG, 535" Dis(3), c(3))lld3]
ift e[0Tl

From the assumed postulates (P1) — (P5), we can derive

IICs(t)IISwz[IISTII+C1szI(P(0)II+CzC1N( e )f (t=3=1)""ned3

(XC% -t a-1
+ m L (t=3—-D" panpdsl,
GG =t = Guang(t- f)a]
IN(a)T (o + 1) N(a)

< wpllls+ll + Cullp(O)]] +
Hence, we get a positive constant A such that,

QLA —-anpt =1 Guans(t—1)*

< =
N@f@a+1) | N@ wllsTll + w2y = A

lles(Oll < @allsll + Crpnallp(O))l +




S. Ramasamy et al. / Filomat 39:24 (2025), 8607-8622 8617
where,
CG((1- a)nf(t -H* C%[Jzﬂf(f -1~
N(@)I'(a+1) N(a)

A = GuallpO)ll +

Now, for s € [E, and by the above result, we get

(1-0() ° a—
N f (4= 3= 0" Baoo)dy

Hﬂﬂ) f Salt - f)Bco(g)d3+Q]P

(sl = llg(t, 1) + PTagp(0) + QP

)r( f(t—s—f)“ 'Bes(3)d3
alP?

f—t
— 2= a 1
i [ sat-s f)Bcs<a>ds+@1PN( 2 [

X f(3,5,25€ Di(3), C(%))d%+]N( f Sult = DG 5,5 DEs(3), ()3l

1- )0 N
sng+cly1nqo<0>n+$ f (=3 - D o lld3

<
* i@ [ ISu == Dl + o f (t = 3~ sl

2

aC] -t C2Gi(1 - a) a-1
gy [ 1a0 5= ilesonas + S [Ty

X |If(3, 55,5 °C DIs(3), c(3))lld3 +

ABC M«
N )f ISa(t = 3IfG 30" Dy's(3), c(3)lld3

(1 - )G Cwico Clancopz

<1y + CuallpO)l + N@)T (@ +1)[ — =D+ N(a)

1- Cw 1-a
Cala( Oé)wlp(t_ oy S 19#2(t_f)a+ Cala( )Uf(t) Gy 0"
N@)I'(a + 1) IN(«) N(a)T'(« + 1) N(a)
<p.
As a consequence, |[7i(s)|| < p, hence i(E,) C E,.
Step-3: Verify the equi-continuity of 7.
Consider s € Qand py, p; € (t,-1,t;]. Here & < (3,7 =1,2,..L.

(t-1)"

I 6)pa) = 60l = Nz 5p) + PTo(0) + QPR f (p2=3-9""

alP? 1-a)
B + 15 | ' Su(pz 3~ DB + P N@)T(a)

Pt a—1 a]PZ Pt
X fo (p2—3-1%) BCs(S)d3+M f Sa(p2 — 3 —HBes(3)d3

+ leu pz(p2 — 37 f(3,5,,5BC Dg,5(), c(3))d3
N@(@) J, o0 '

2 2
R Sap2 =658 D), e

3 0
—(g(pl,sp])+m<p<0>+«zu)ﬂ\§ o [ s

(1-a)
IN(a)I ()

BcO(3)d3+N( ) ﬁ Sa(p1 —3 = HBco(3)d3 + QP
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2 p1—t

N@) Sa(p1 — 3 —HBes(3)d3

p1-t
X f (p1 — 3 — D* ' Bes(3)d3 + —
0

le(— a) 1( —3)* 1f(3 55, Da S(?)) c(3))d3
IN(a)I'(@v) P o ’
N(a) Jo a\p1 — 379310 p153), C(3))4: L T

This result converges to 0 during p; tends to p,. By the compactness and the strongly continuity of the
operators 7,(t) and S,(t), we easily get 71 is continuous in uniform operator topology. Hence 7i((2) satisfies
the condition of equi-continuous.

Step-4: 7i is a strict set contraction on Q.

Consider a subset D of [E,, by the result of Lemma 12, there exists a countable set {s;},2; C D, such that
W(R(D))(t) < 2W({sc};2,), due to the equi-continuous of IE,, we conclude that D is also equi-continuous. For

e [-t,0],
WHD)(E) = Wi(lse(t), s € DIE) = V() 5 € DY) = 0.

For t € (0, T] and from P(4)

(1—6() ' a— C Mo
““QPNGEGSOU‘Q LG, 5,45 DYs), @3}, )

2C2C1(1

N(a)r(a) ( = 3" (£, 530" Ds(3), c3) )

2C2C1(1 - )

t
IN(a)I'(«) fo (t- 5)a_1[V1 + vy + v3|V(D)

<2 C2Gi(1—a)

NaT@+ D | 1+ vl?o)

Also,

2

(1(1() sz“[vl + vy + V3]‘P(Z))

Wt [958 Dt e <2

Hence we get

W(les, (0)2;) = W({ W[5+ - PTag(0)

a— C o
N(a)F( )f (t=3=D""fG, 55" Df's(), c(3)d3

~ alP?
IN(a)

f Sult = 3= (5,25 Dis(s), <) )

0G0 -a) N G
NaTa+D Nt

< ZR_lTa[Vl + vy + 1/3]( )‘I](.@)

= GY(D).
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Now,

W((D))(t) = W(Ai{se(t), se € DIpy))

_ 0
= W({g(t ) + PTagp(0) + Qﬂ’% f (=3 =0 Beo()ds
Oé]PZ 0 (1 _ a) t—t -
* N@ @ I f St —3—1)Beo(3)d3 + QJP—N Ot ), (t — 3 —5* 'Bcs(3)d3

a]PZ t—t (1 _ a) t .
*N@ J, St 3 DBesMs + QPR fo (- !
(X]PZ t
X £(3, 55,8 BC D¥s(3), c(3))d3 + NG fo Salt = 3)f (35,25 D?S(s),c(a))dg})

LG - a) . G
< 2N@r@r n@ 9T - VO + 2

Gul-a) _, g
ZIN(a)l"(a D THvi + vy + V3]‘I](Z)) + 2N(0{)
001 —a)
T IN@)I'(a+1)
2

1
N

pow1G(T = H*W(D)

T v +v2 + v3]W(D)

(@1G(T = 9" + T[v1 + v2 + v3])W(D)

+ (@1G(T = 9" + TO[v1 + v2 + v3])W(D)

00 (1 -a)
N(@)T(@+ 1)

Hence the proof for k-set contraction of i on Q3. Based on the k-set contraction and Darbo fixed point
theorem, the system (I) is controllable.

< 2@ G(T = 1) + Ty + vz +v3] + GN(@)2)W(D).

4. Implementation

The following application has been discussed for evidencing the theoretical results.

—kt )
ABC e [s(t, ) — elO ] = 2500 4 ) + % + tanh(c(t, 1)), « € [0,1],

s(t,0) =s(t,m)=0,t €[0,1],k € Q 4.1)
s(t, k) = spe’ k € [-1,0], k € [0, ] £ > 0
c(t, ) = 0(x — xg), ko € [-£,0].

Here, A : D(A) c Q + Q is an infinitesimal generator, Ax = x” where, Q = £2[0, ] and the domain is
defined by

D(A) = {x € Q: y and )’ are absolutely continuous, x” € Q, x(0) = 0 = x(1)}

and

(o8]

Ax=Y £ <xxeDA),
(=1

whence, the eigen functions which are orthogonal, are x;(p) = \/gsin({’ 9), € € N. Hence, the corresponding
analytic semi-group S(f) related to A in Q is

St)x = Ze‘tﬁ <x, x€Q and ||(S(#)|| < 1.
=
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The resolvent operator Q(u, A) = (ul — A)~! where p € p(A). So the proposed system (4.1) will take the form
of (I), by replacing s(t, x) = s(t) and c(t, x) = c(t). Also,

eﬂct
10’

g(t,s(t)) =

Ps(t, )

T2 + tanh(c(t, x))

f(t,s,p,c) =

where p =BC Das(1).
We can easily verify that (4.1) fulfills the postulates (P1) — (P5) and so the proposed system is controllable
by theorem (3.1) on [0, 7t].
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Figure 1: Various representation of orthogonal eigen function
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Orthogonal eigen function
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Figure 2: Various representation of orthogonal eigen function
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Figure 3: Various representation of orthogonal eigen function
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Figure 1, Figure 2 and Figure 3 give the representation of orthogonal eigen-function x,(p) = \/% sin(ng), £ €
N, corresponding to the eigen values n = 1,5 and 10, respectively and ¢ € [0, 1].

5. Concluding Remarks

This work has successfully investigated the controllability results for the fractional implicit differential
equation involving state and control delay. These type of problems have numerous applications in math-
ematical modeling of human diseases and dynamical problems. Based on k-set contraction mapping and
Darbo fixed point theorem, we have established the adequate results.The derived results have been justified
by proving suitable example. In future, the work can be extended with numerical results.
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