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Abstract. In this paper, we introduce a subclass of close-to-convex functions associated with a cubic
polynomial 1 + z — (z8/3) which is a Carathéodary function and related to the nephroid shaped bounded
domain. We discuss the growth and distortion theorems and certain coefficient inequalities using the
concept of subordination for such functions. We also determine bounds on initial coefficients, inverse
coefficients, logarithmic coefficients and logarithmic inverse coefficients. Moreover, we compute bounds
of the second order Hankel determinants and Schwarzian derivatives.

1. Introduction

Let A be the class of normalized analytic functions defined in ID = {z : |z| < 1} having the Taylor series
expansion of the form

f@)=z+ Z a,z" (1.1)

n>2

and S = {f € A: f is one-one} be a subclass of A. For 0 < a < 1, let P(a) be the class of analytic functions
p : D — C satisfying p(0) = 1 and R(p(z)) > a such that P(0) = P. The class P consists of Carathéodary
functions. An analytic function k; is said to be subordinate to an analytic function k», if there exist a Schwarz
function w(z) with |w(z)| < 1 and w(0) = 0 such that ki(z) = kx(w(z))(z € D). It is denoted by ki < ky. In
particular, if k; € S, then k1 < k; if and only if k1(0) = k2(0) and k;(ID) C k(D). It means that the behaviour
of the function k; is restricted by the function k, under some mapping [8].
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For 0 < a < 1, the classes S*(a) and C(a) of starlike and convex functions of order a, respectively
were discussed by Robertson [29]. Analytically, S*(a) := {f € A : zf'(2)/ f(z) € P(a)} and C(a) := {f € A :
(I+zf"(2)/ f'(z)) € P(a)} forallz € D. In terms of subordination, f € S*(a)ifzf'(z)/ f(z) < (1+(1-2a)z)/(1-2)
and f € C(a)if 1 +zf"(z)/f(z) < (1 + (1 = 2a)z)/(1 — z) for all zin ID. In particular, S*(0) = S* and C(0) = C
are the classes of starlike and convex functions, respectively. Kaplan [15] introduced an important subclass
K of S consisting of close-to-convex function which is defined analytically as K := {f e A: A€ R, g €

C : Re ( f'(2) /eiﬁg’(z)) > 0, z € D}. Several authors have introduced and discussed various subclasses of
close-to-convex functions, we refer [11, 17, 31, 35]. Recently, Anand et al. [3] introduced a subclass of
close-to-convex functions associated with the rational function (3 +2 V2 + 22)/(3 + 2V2 — (V2 + 1)z) and
studied certain coefficient problems, growth and distortion theorems and radius of convexity. In 2020, the
authors [36] introduced two subclasses Sy, and Cy, of starlike and convex functions respectively, associated
with cubic polynomial ¥ne(z) = 1 + z — (z%/3). Motivated by the aforementioned literature, we introduce

a subclass Ks(ne) of the class of close-to-convex functions associated with 1n,. Analytically, the subclass
Ks(iPne) is defined as:

-2*f'(2)

Hetpnelta) = {f N @9

< l,bNe(Z); zZ€ D} s

where g is a a starlike function of order 1/2. If f € Ks(¥ne), then f is close-to-convex in ID and hence
univalent. Let P({n.) be the class of analytic functions p in ID and satisfying p(0) = 1 and p < ¥ne. Thus,
f € Ks(Pne) if and only if

-22f'(z) = p(z)9(z)9(-z), z €D
where p € P(Yn.) and g € S*(1/2). The function f : ID — C which is defined as f(z) = szz_#dz belongs to
Ks(Wne)- Thus, the class Ks(Yne) is non empty.

The coefficient estimates and related results like the Koebe distortion theorem, the Bieberbach conjecture
and the Zalcman conjecture of the univalent function have many important role and applications in the
univalent function theory. Bieberbach [5] gave an estimate for a, for the class of univalent functions. The
bound on the initial coefficient was useful in proving the distortion, growth and covering theorems for the
class S. The sharp bounds for growth and distortion were obtained in [14]. Finkelstein [10] determined
the growth estimates for the class S* which was later generalized for the class S*(«) by Tepper in [34]. Let
F be the inverse function of f € S, having the Taylor series expansion F(w) = f(w) = w + Y, A,w" or
fEw) = f(fw) =w (wl < ro(f),ro(f) = 1) or w = fHw) + L2p an[f " (w)]". For more details, we
refer [1, 16]. Let the function f € S, the logarithmic coefficients y,,n € IN are defined as log(f(z)/z) =
2Y21 Va(f)z". The sharp logarithmic coefficient bound for the class S have been obtained for n = 1 and
n=2,givenby |yil < 1land |y, <1/2+1 /€2, respectively. Milin [22] has conjectured that for the function

feS then), 4 Yil, (klykl2 - %) < 0 for n > 2 where the equality is attained if and only if it is a rotation

of the Koebe function. This was confirmed by De-Branges in the proof of Bieberbach conjecture [4]. The
concept of logarithmic coefficients I';,n € IN for the inverse function of f € S was studied in [28]. For
n € N, the logarithmic coefficients I, of inverse function F are defined as log(F(C)/C) = 2 Y=, T',C", |C] < %.
Thus, we have some initial coefficients

Ay =—ap, Az =—az+ 2a§, Ay = —ay + 5araz — 5&13, As = —as + 6aya4 — 21a§a3 + 3a§ + 14a§ (1.2)
1 1 1, 1 1,
== = — - — = = — - 1.
y1=502 2 2(013 2012), V3 2(014 203 + 3%), (1.3)
1 1 3 1 10
I=- 52 Ih= —E(% - 551%) and I3 = _E(M — 4ara3 + ?“2)~ 14)

For more details, we refer [2, 8, 12, 33]. The problem of Hankel determinants is one of coefficient problems
which has been studied extensively by many authors. For g,n € N, the " order Hankel determinant for
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the function f € A given by (1.1) is defined as H,,(f) = det{a;; j+n_2}qj, 1<1i,j<gq,a; = 1. In particular,

i

H2,1(f) =da3z — a%, Hz,z(f) = doldy — aé and H2,3(f) = aszas — ai. (15)
For the inverse function F of f € S, we have
Hy1(F) = Ay — A3, Hpo(F) = AyAy — A% and Hy5(F) = AsAs — A (1.6)

Let f be the locally univalent functions. Then, the Schwarzian derivative is defined as Sf(z) = (%)/ -
N2
%(]}((ZZ))) . Denote 03(f) = S¢(z) and from [30], the higher order Schwarzian derivatives are 0,4+1(f) =

(0n(f))Y — (n = D)o (f)f"/f', n =2 4 and we assume that 0,(f)(0) =: S, so that the third and fourth order
Schwarzian derivatives are given as

S; = 6(a; —a3) and Sy = 24(as — 3axa3 + 243). (1.7)

Fekete and Szegd [9] discussed Hy(1) = a3 — a3 for the class S. They computed the upper bound on the
Fekete-Szegd functional las — pa3| where y € C and this functional plays a very important role in univalent
function theory. For instance, a3 — a2 = S¢(0)/6. Nehari [23] gave a criteria of univalency for an analytic
function using Schwarzian derivatives. Dorff and Szynal [7] investigated Schwarzian derivatives for the
convex univalent functions. Many authors started investigating the Fekete-Szegt functional and Hankel
determinants of the functions belonging to many subclasses of S. Pommerenke initiated the study of Hankel
determinant for starlike functions in [25, 26]. The sharp bounds for the second Hankel determinant for
the classes of starlike and convex functions were obtained in [13]. In [1], the author determined the upper
bound on the Fekete-Szegt functional involving the inverse coefficients of the strongly starlike functions of
order a (0 < @ < 1). Further, authors [19] determined sharp estimates on second order Hankel determinant
H;z) (f) = apas — ag for Ma-Minda starlike and convex functions. For more details, we refer [20, 32].

In this paper, we determine the growth and distortion estimates and bounds on initial coefficients, initial
inverse coefficients, initial logarithmic coefficients and the initial logarithmic inverse coefficients, Krushkal
inequality and Zalcman conjecture for the functions f € Ks(in.). We also find bounds for second order
Hankel determinants H, 1, H>» and H; 3 involving initial coefficients and initial inverse coefficients as well
as the third and fourth order Schwarzian derivatives S; and S,.

2. Growth and Distortion Theorem

In this section, we obtain growth and distortion theorem for the functions f € Ks(in). In order to prove
our main results, we need to prove the following lemma.

Lemma 2.1. Let the function p € P(Yne). Then, for |zl =1, 0 <r<1

3
%—r—lslp(z)|$§+r+1. 2.1)
Proof. If p € P(Yne), then
3
p@) <Yne=1+z- 3 (2.2)

For |z] = r, we have
3 3

|1/)Ne|=1+z—%$1+1’+% 2.3)
and
2l
ol =1 -—=|>=-r-1L 2.4
[Pl +z 3 3 r (2.4)
Using (2.2), (2.3) and (2.4), we get the required result. O
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Theorem 2.2. If the function f € Ks(Pne), then for |z| = v, 0 < r < 1, we have

r3_3r—3<|f,(z)|<r3+3r+3
31+r2) ~ T31-r)

Proof. Let f € Ks(ine). Then, we have —z%f(z) = p(z)g(z)g(—z) where p € P(¥n.) and g € S*(1/2). Let

z
so that
_zf'(2)

From (2.1) and (2.5), we have

r zf'(z) r

377" < G2 s1+r+§. (2.6)
Since G is an odd starlike function, thus using [8, p. 70], we have

<1G@)| < — (2.7)
1+7r2 7 T 1-r '

Using (2.7) in (2.6), we get

r3_3r—3<|f,(z)|<r3+3r+3
31+r%) T 31-r2)

O

Theorem 2.3. If the function f € Ks({Pne), then for |z| =1, 0 < r < 1, we have
L2 -1 2 1, _»
g(r —tan " (r) —4log(l + %)) < |f(z)| < g(—r —7log(1l —r) —log(1 + ).

Proof. Let the function f € Ks(in,) and let z = re’® (0 < r < 1) for some real 6. Then
fz) = ff’(teie)eiedt.
0

Using Theorem 2.2, we get

If(z)l < f |’ (te"))1e®)dt < f %dt:%(—rz—7log(1—r)—1og(1+r)).
0 0

To find the lower bound for |f(z)|, we consider a point zj (|zg| = 7 < 1) such that |f(z)| > |f(zo)| for all z with
|z| = r. Let y be an arc in ID which is mapped by the function w = f(z) on to a line segment L joining the
origin to that point f(z9) and lying entirely in the image of f. From Theorem 2.2, by making use of the lower
bound of |f’(z), we get
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wmmmw;pmwfwww

rr3—3r—3 1., 1 )
> mdt—g(r —tan™"(r) — 4log(1 + r%)).
0

This completes the proof. [J

Next, we give a sufficient condition for a function f € A to be in the class Ks(yn.) for which we need
following lemmas.

Lemma 2.4. [21] Let q be univalent in ID and ¢ be analytic in a domain Q) containing q(ID). It zq'(z)$lq(z)] is
starlike, then zp'(z)plp(2)] < zq' (2)Plq(z)] implies p < q and q is the best dominant.

’ 2, (2)
Lemma 2.5. Let Yne(z) =1+z—(2%/3),z€ Dand p € P. Then ZZ(S) < %’;(z)

is the best dominant of p.

implies that p € P(Pn.) and Pne

Proof. Let ¢p(w) = 1/w be analytic in the domain Q such that ¢n.(ID) C Q. Then, we have
ozl -2
Yne(z)  1+2-(2/3)

It is noted that the function H is univalent in ID. Thus,

zH'(z)\ _ 3-9z2% — 47
Re( H) ) - Re((zz “1)(z° —32-3)

ZPN@)P[PNe(2)] = H(z). (2.8)

>0, forlz|<1/2. (2.9)

Therefore, the function H is starlike in ID. From (2.8) and (2.9), we observe that zi)} ,(z)p[¢ne(2)] is starlike

in ID. Further, zp’(2)p(p(2)) <z}, P(Pne(2)) gives ZZ;S) < ngfg;. In view of the Lemma 2.5, we have p < ¢y,

that is, p € P(¥n.) and P, is the best dominant of p. [J

Theorem 2.6. Let Yne(z) =1+ 2z — (z%/3), (z € D) and f € A. Then, for some g € S*(1/2),

Q) ) —2(2) W)
f@ " 9@ T e o

implies f € Ks(Pne) and e is the best dominant.

2+

Proof. Let f € Aand g € §*(1/2). The functions p and H defined on ID as

_ —Zf(2)
PO = oe)
and
_ 9(2)9(-2)
G(Z) = ——Z

Then H is an odd starlike function and p(z) = zf"(z)/G(z). On differentiating logarithmically, we get

Ve _1, '@ 6

Pz fz Gk’ (2.10)
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and

G _g@ g2 1
Giz) gk g(-2) =z’ (2.11)

In view of (2.10) and (2.11), we obtain

7@, HQ @ )
E) N

It follows from the given condition that

zp'(2) ZIPNE(Z)
PE) - Une@)

Using the Lemma 2.5, we get p € P(Yn.) which implies f € K(Yn.). O

3. Coefficient Estimates

We begin this section by determining the bounds on various type initial coefficients of the function
f € Ks(iPne). We need following lemmas in the proof of coefficient estimates related results.

Lemma 3.1. [11] Let g(z) = z + Y25 byz" € S*(1/2). Then

where |Byy—1| = [2byy—1 — 2b2boy—g + ... + 2(=1)"by_1bps1 + (=1)"02| < 1 forn = 2,3,4, - . The estimate is sharp.
Lemma 3.2. [6, 27] Let the function p(z) = 1+ p1z + paz® + p3z> +--- € P (p1 = 0). Then for all n,m € N, we have
lpul <2 (n21),

and

1, 0<A<,
[Prem = Apupml < 2max(l, [2A 1]} = 2{ 2A =1|, elsewhere.

If 0 < A < 1, then the inequality is sharp for the function p(z) = (1 + z2"*")/(1 — 2"*"). In the other cases, the
inequality is sharp for the function po(z) = (1 +z)/(1 — z2).

Theorem 3.3. Let f € K lee) be a function. Then, we have
(i) laol < %, las| < %, lasl < B and |as| < 2.
(i) |Azl < 3, A3 < 2 and |A4 < B.
(iii) [y1] < 3, lyal < % and |ys| < Z.
<
6"

(iv) || < §, Tl < & and T3] <

Proof. Since f € 7(5(1/}1\18) then we have é);( © -1+ w(z) — (w(z)) where w(z) is the Schwarz function. Since
P3p(z) = 1”” (z € D), then

—sz'(Z) (P =1\ 1(pz)-1)]
19— (p(z) n 1)_ E(p(z) T 1)
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or equivalentely

-2 f'(2) ;2 Pl
@ T2 (

|\ E)Z + —(p1 6p1p2 + 6p3)z°

+%ﬁm—%—@mwﬁmﬁ
+ 31—2(—;9? + 8p1p§ + 8p%p3 — 16pyps — 16p1ps + 16;75)25 +e (3.1)
Let G(z) = (—g(z)g9(—z))/z. Then G(z) is an odd starlike function. Using Lemma 3.1 in (3.1), we get
P ( P P2)

7+ 2a,7% + 3a32° + dagzt + -+ —z+7z + | b3 —Z+E

1
+ E(6b3p1 + pf —6p1p2 + 6p3)z4
1
+ Z(4b5 - b3p% + 2b3pr + p%pz - p% - 2pips + 2p4)z5 +

On comparing, we get

@:%, (32)
1 pi

%zﬂm—f+%) 3.3)
1

ag =E(6b3pl + p% - 6}71}72 + 6p3), (3.4)
1

as :%(4175 - bgp% + 2b3p2 + p%pz — p% - 2p1p3 + 2}74). (3.5)

(i) In view of (3.2), (3.3), (3.4) and (3.5) and using Lemmas 3.1, 3.2, we have

|ll2| |F 1 | <— 7
2
2

roop Pi

2 P2

2
sl < 5131 + | )<=

)33@+2

23
sl < (|b3llp1l+ |P1|3+6Ip3—p1;92|)_12

as| < == (4[5 3lip2 — —P1 p2lip1 — P2 Pa — P1P3
| |< (4|b|+2|b|| 3+ Ipallp? | +2] )

4

< 20 (4 +2|p2 - §P1| +Ipallp? — pal + 2lpa — papal) < z

(ii) Using (1.2), (3.2), (3.3) and (3.4), we get

il
Az] =2F,

1As| s—(SIbsl +4

52)

p2_4p1

Al <—(56|b3IIP1I + 64ip1lpz -

< 21+ 241ps1).

64P1
From Lemma 3.1 and Lemma 3.2, we get |A,| < 1/2, |A3| < 5/6 and |A4| < 13/6.
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(iii) In view of (1.3), (3.2), (3.3) and (3.4), we get

121

b/ll :?/

1
lyal <= |b3| + 1

11
PZ - 6p1

_4
3171]02 .

sl sj—8|b3||p1| +—elpP + 2 lpy
From Lemma 3.1 and Lemma 3.2, we get [y1| < 1/4, [y2| <1/3 and |y3] < 7/16.
(iv) In view of (1.4), (3.2), (3.3) and (3.4), we get
Il

T —? <1/4,
1 11|17
2| < |53| + 1 6P1 P2,
5 15 1
T3] Sﬂ|b3||]!71| + ﬂlpll %P% —pa| + §|P3|-

From Lemma 3.1 and Lemma 3.2, we get [I'1| < 1/4, [I'»| £17/48 and [I'3] < %.

O

Krushkal inequality |a), - ag(m_l)l < 20D b (m = 4,p = 1and m = 5, p = 1) is related to the coefficient
estimates which introduced and discussed initially for the class of univalent functions [18]. The authors [24]
established Krushkal inequality for the class U. Next, we investigate Krushkal inequality and the Zalcman
conjecture involving initial coefficients and initial inverse coefficients for a function f € Ks({ne).

Theorem 3.4. Let f € Ks(Pne) be a function. Then

13 13
|a4—a2| < 7 and |Ag —A3| < <

Proof. Let the function f € Ks(in.). In view of (3.2) and (3.4), we get

1 1 1
ay—aj = @p‘;’ + §b3P1 + g(Ps ~pip2)

such that

lay — a3] < Ib3llp1l + g|Ps ~Pip2l-

3,
< 192 —pil° +

Using Lemma 3.1 and Lemma 3.2, we get |a4 — a | < ;Z Further, using (3.2), (3.3) and (3.4), we get

7 1 1 9
Ay Al = ﬂb3pl —ght 5}71(772 - 1—619%)
such that

|Ay — A3| <

1 9
< o Isllpal + glpsl + 3lprllps = 2opi).

On applying Lemma 3.1 and 3.2, we obtain |A4 — A3| < ;3 OJ

Theorem 3.5. Let f € Ks(ine) be a function. Then

7 23
lasay —az| < A and |A,As — As| < L
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Proof. Since the function f € Ks(in.), then using (3.2), (3.3) and (3.4), we get

1 1 1 1
axaq —az = 3—2b3P% - §b3 + @Péf + 3—2171(—1711?2 +p3)+ = (2}71 p2)

which implies

lazay — az| < §|b3||l71|2 |173| + @lpll4 |P1|| —pip2 +p3l+ = ‘zpl p2

By making use of Lemma 3.1 and Lemma 3.2, we get the desired estimate on |a,a4 — a3|. Next, from (3.2),
(3.3) and (3.4), we have

17, 5, 1, 1. 1
ArAy— Az = 3b3 96b3P1 + 12P1C1 + 6C2 + 35P1Ps
where

39 5
Gi=-p2+ 6_47]% and G =p2 - 1?’?

On applying the triangle inequality, we have
1 7 1 1 1
|A2A4 — As| < §|b3| + %|17:‘3||771|2 + ﬁ|P1|2|C1| + €|Cz| + 3—2|P1||P3|-

From Lemma 3.1 and Lemma 3.2, we have |(;| < 2 and |(,| < 3. Thus, we get

1 7
[A2Ay = A < = + %IPHZ Ipll ICil + = ICzI 35 IP1IIP3| < 12

O

Next, we obtain the bounds on the second order Hankel determinants involving initial coefficients and
initial inverse coefficients for the function f € Ks({'ne).

Theorem 3.6. Let f € Ks(ine) be a function. Then, we have

I%Aﬂﬁmﬂﬁng

Proof. Let the function f € Ks(yn.). On using the values of 4, and a3 from equations (3.2) and (3.3), we have

1 1 7
Ho1(f) = gba + 6(—519% + p2).

Using triangle inequality in the above expression, we obtain

1
Faa () < 5l + ¢ ‘8m+m

From Lemma 3.1 and Lemma 3.2, we get |[Hy1(f)| < 3. It is also noted that |[Hp1 (f )| = |As — A2| = a3 —a2| =
IHa1 (). O

Theorem 3.7. Let f € Ks(ine) be a function. Then, we have

43 49
|Ha2(f)| < 7 and |Hap(f )| < =— -
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Proof. If f € Ks( leg), from (3.2), (3.3) and (3.4), we have
1 4
9 b5~ 576!

where (3 = —p, + 2p? and (4 = p3 — %plpz. Using triangle inequality, we have

1 1 1
Hyo(f) = - gpé + §b3C3 + 3—2P1C4,

1 1
|Ha2(f)l < §|b3|2 =T |I?1|4 |r72|2 + §|b3||C3| + 3—2|P1||C4|-

From Lemma 3.1 and Lemma 3.2, we have |(3| < 2 and |(4| < 2. Therefore,

43
<2
[Hp o (f)] < 7

Next, in view of (3.2), (3.3) and (3.4) we get

1 1 1
Hoo(fh) = —b§ + —b3C5 + (6 — 36}?% + 3pP1Ps

72 pl
19.2 172

where (5 = —py + 33p; and (g = —pa2 + 33p7- On applying the triangle inequality in the above expression, we
have

1 1 1 1 1
Hoo(F Y < 2153 + = b + —p1 Pl + =Ipal* + = .
|[Hoo(f )l < 9| 3 9| 3/1Csl 72|}71| |Cel 36|}72| 32|l71||}73|

From Lemma 3.1 and Lemma 3.2, we have |(5| < 2 and |(g| < 2. Thus, we get [Hap(f 1) <49/72. O
Theorem 3.8. Let f € Ks(Pne) be a function. Then, we have

1817
e 1
Has(l < 2t and 1Haa(f ) < 0

Proof. Let the function f € Ks(in.). In view of (3.3), (3.4) and (3.5), we get
11520H, 5(f) = 768bsbs — 372b%p + 384b%p, + 360bsp>ps — 744bsp1ps
- 192b5p1 - 12173]01 + 384b3p4 + 384bsp; + 12p1p2
— 36p7p; + 36p;ps — 96pips — 96p; + 168p1p2ps
+192p,ps — 180p3 — 5p5.

A simple calculation gives

1 1 1 1 93
_ 6 1. 4 1 1 Ry

Haa(f) = =3500P1 =~ gp22P1 + 5p0aPs + 15babs + 350307 + 144ob3p 1Gs

1 1
+ %175@ + ﬁ]ﬂ%m(ﬁo 120P1C11 + 64P3C12 + 60P2C13,
where
31 15
G=p2— 3—2]0%, Cs=-p3+ 37P1P2 Co=p2— —Pl,

1 3 1
Cio=-p2+ gpf, Ci1 = —ps+ 3PP, Cio =—-p3+ EP1P2, Ciz=ps— EP%

On applying the triangle inequality, we get

IHa5(f)I <

1 1 1 1 1
2304|}71|6 + —|b3||271|4 + —|b3||p4| + 1—|b3||b5| + —|b3|2|C7|
|P1|2|P2||C10|

|b3||P1||C8| + 0|l75||C9| + ==

1440 320

SETT |P1|2|C11| +g |P3||C12| + @|P2||C13|'



R. K. Pandey et al. / Filomat 39:24 (2025), 8289-8301

Thus, by Lemma 3.1,the above expression becomes

1 6 4
[Haa(P)l < gsrlpl + %0|p1| |p4|+15 30|c7|

——|p1llCs| + |C9| + =—Ip1PIp2llCiol

1440 320

* 10 |P1|2|C11| tg |P3||C12| + @|P2||C13|'

8299

Using Lemma 3.2 and we have |(;]| < 2 (7 < i < 13). Therefore, we get |H3(f)| < 587/720. Again using (3.3),

(3.4) and (3.5), we have

11520H,5(f ") = 768bsbs + 588b3p7 — 1536b3p, + 1320bspips — 744b3p1ps
— 192bsp? — 252bsp] + 384bsps + 384bsp, — 108p1p,
+204pip3 + 36p3ps — 96pips — 252p; + 168p1paps
+192p,ps — 180p3 + 15p5 — 128003 — 960b3p;3.

A simple calculation yields

7 1 1 1
-\ _ 6 L g 4 g 2 2 Il 2
H2,3(f ) = 768p1 320b3p1 12b3p2 + b3b5 9b3 + 30173}04
2 17
+ E%CM +— 480 b3P1C15 Ob5C16 + %P%PZCU
1
ﬁﬁ%ClB + 6—4P3C19 + @PzCzo/
where
49 55 1
Ciy=—p2+ @P%, Cis = —p3 + 37P1P2, Ci6 =p2 = QP%’

9 3 14 21
C7=p2— EP%, Cig=—ps+ gPips Ciog =—-p3+ T5PP2 Coo = pa— 6P§

Using triangle inequality, we get

1
IHaa(f )l < 763 |r71|6 + === 320 |b3||P1|4 + 7 |b3||}72|2 + E|b3“b5| + = |b3|2 + —|ba||P4|

1 1
Z1hal? el il
+1 |b3| |C1al +2 |b3||P1||C15| + 30|b5”C16| + — 960

1
METT |P1|2|C18| + o |P3||C19| + @|P2||Czo|-

From Lemma 3.1, the above expression becomes

1 1
-1 64 4y 2, 11
|[Ho3(f ) < 768 —Ip1l” + 320 |P1| |P2| 15 9 30 |P4|

+ —|C14| +

480 960

ETT |P1|2|C18| + |P3||Cl9| + @|P2||C20|-

|P1|2|P2||C17|

|P1||C15| +3 |C16| + —|P1|2|P2||C17|

By the Lemma 3.2 we have [Ci4l, |Ci6l, [Ci7], ICisl, [Ci9l < 2, [Cis5] < 158/31 and |Cy| < 13/4. Thus, we get the

desired bound on |Hp3(f™)|. O

Next result gives the bounds on Schwarzian derivatives Sz and Sy for the functions f € Ks(ne).
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Theorem 3.9. Let f € Ks(iPne) be a function. Then, we have |S3| < 4 and |S4| < 36.

Proof. Since f € Ks(iPne), then from (3.2) and (3.3), we get |S3| < [2b3] +
3.2, we get |S3| < 4. Again using (3.2), (3.3) and (3.4), we get

. Using Lemma 3.1 and

7.2
~ g1t P2

11
IS4l < 3Ibsllp1] + 3lpsl + 6lp1l| — p2 + ﬂr’%

Thus, by Lemma 3.1 and 3.2, we get [S4| < 36. [
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