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On HRB solitons and their submanifolds

Babita Sarkar?, Avijit Sarkar®*

@ Department of Mathematics, University of Kalyani, Kalyani 741235, West Bengal, India

Abstract. In this article we introduce hyperbolic Ricci-Bourguignon solitons, stationary solutions of hyper-
bolic Ricci-Bourguignon flow. We study hyperbolic Ricci-Bourguignon solitons with different vector fields
and consider immersed submanifolds as hyperbolic Ricci-Bourguignon solitons. Further, we characterize
the hyperbolic Ricci-Bourguignon solitons on sequential warped product manifolds.

1. Introduction

Nowadays, soliton theory bears its prime position in the research field of differential geometry as
well as in the arena of non-linear partial differential equations. The topic covers some fundamental
aspects of geometric topology. It is well known that Hamilton introduced the notion of Ricci flow using
methodologies of non-linear partial differential equations in order to solve the century long open problem
Poincare Conjecture [20]. Like second generation of Ricci-flow, the notion of Yamabe flow came in the
literature to solve the famous Yamabe problem [19]. The Ricci-Bourguignon flow interpolates between the
Ricci flow and the Yamabe flow. This flow contains several special cases like Einstein flow, Traceless Ricci
flow, Schouten flow etc. Ricci-Bourguignon flow was first proposed by Jean-Pierre Bourguignon [9] , based
on some unpublished work of Lichnerowicz in the sixties and a paper of Aubin [2]. In 2011, Lu, Qing and
Zheng also proved some results on the conformal Ricci-Bourguignon flow [22]. Some results concerning
solitons of the Ricci-Bourguignon flow (called gradient p-Einstein solitons) can be found in [10-12]. A.
Ghosh [18] and S. Dwivedi [16] also worked on Ricci-Bourguignon solitons and almost solitons. Recently
the second author of the present article has studied Ricci-Bourguignon solitons on three-dimensional quasi-
Sasakian manifolds [24]. In 2021 S. Azami introduced the hyperbolic Ricci-Bourguignon flow [3, 17]. Again,
A. M. Blaga and C. Ozgiir worked on hyperbolic Ricci soliton in 2023 [7] and hyperbolic Yamabe solitons in
2024 [8] respectively and they established various results related with these solitons. However, the aspects
of hyperbolic Ricci-Bourguignon solitons remained uninvestigated. This is why we are motivated to study
hyperbolic Ricci-Bourguignon solitons.

The present paper is organized as follows. In Section 2 we get some properties of hyperbolic Ricci-
Bourguignon solitons assuming second Lie derivative of the metric is divergence free or trace less. In
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Section 3 we derive some results of hyperbolic Ricci-Bourguignon solitons with different vector fields and
in Section 4 we consider isometrically immersed sub-manifolds as hyperbolic Ricci Bourguignon solitons
having potential vector fields as the tangential components 87 of certain vector fields 9 on the ambient
manifold. In the last section we worked on hyperbolic Ricci-Bourguignon solitons on Sequential warped
product manifolds.

2. Hyperbolic Ricci-Bourguignon Flow and Solitons

We consider an n-dimensional compact smooth Riemannian manifold M and introduce the notion of
hyperbolic Ricci-Bourguignon flow on M with a family of metrics g(t) satisfing the following evolution
equation :

9 , )
a—tf = —2Ric+20rg;  9(0) = go(x); 8—ilt=o = k(x),

where Ric is the Ricci tensor, r is the scalar curvature, k(x) is a symmetric tensor on M and ¢ is real constant.
A hyperbolic Ricci-Bourguignon soliton (HRB soliton in short) is a Riemannian manifold (M", g) en-
dowed with a smooth vector field ¥ on M that satisfies

%ESESg + Afyg + Ric = (u + or)g, (@)

for two real scalars A and u, where £3g is the Lie derivative of the metric g into the direction 9 and
£s£og = £5(E99).

Proposition 2.1. Let (M, g, 9, A, 1, 0) be a compact HRB soliton. If the second Lie derivative of g in the direction 9
is trace less then,

f(ny + (np—1)r) =0.
M
Moreover, if o # %, then the scalar curvature r is constant.

Proof. Taking the trace of the soliton equation (1), we have
1 .
Etr(ESESg) + 2Adiv(9) +r = (u + pr)n. (2)
If trace of (£3£9g) = 0, equation (2) gives
2Adiv(9) +r = (u + or)n,
which, by integration over the compact manifold M, gives
f(ny + (nmo—1)r) =0,
M
by means of the divergence theorem.
Thus nu + (np—1)r = 0.

Hence, the scalar curvature r is constant if g # 1. [

Proposition 2.2. Let (M, g,9, A, u, o) be a compact HRB soliton. If Ric(9,9) <0, r > 1?—’;@, 0 < %, then S is a
parallel vector field, i.e., V9 = 0.
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Proof. We know [6] that
trace(£3£39) = 2(IIVOI + div(Vgd) — Ric(9, 9)), 3)

and taking trace of (1), we get

trace(Es£sg) = 2nu + 2(np — 1)r — 4Adiv(9). 4)

Equating (3) and (4) and by integration over M, we obtain

f||VS||2:fRic(S,S)+fny+(n@—l)r§0,
M M M

hence V9 = 0.
O

Proposition 2.3. Let (M, g,9, A, u, 0) be a compact HRB soliton with A # 0 and ¢ # . If the second Lie derivative
of g in the direction 3 is divergence free then,

A

Vr =
" 201

(V(div(9)) + Q).

Proof. We know [5] that
(div(£59))(9) = 29(div(I)) + 2Ric(9, ), (5)

for any tangent vector field 9 on M.
If div(£9£sg) = 0, by taking the divergence of (1), we get

Adiv(Esg) + % = odr. (6)

Using (6), we obtain
1 .
(0— z)g(Vr, 9) = 2A(g(V(div(9)), 9) + g(Q39, 9)),
for any tangent vector field 3 to M. Thus we have

A

Vr:2@—1

(V(div(9)) + Q9). (7)

O

Proposition 2.4. Let (M, g,9, A, u, 0) be a compact HRB soliton with A # 0 and o # % If the second Lie derivative
of g in the direction 3 is divergence free then, the scalar curvature is harmonic if and only if

Ar = 20)\—_1(A(div(8)) +div(Q9)).

Proof. Taking the divergence of (7), we get

Ar = ZQL_l(A(div(S)) +div(Q9)).

Hence the scalar curvature is a harmonic function if and only if A = 0 or A(div(9)) = —div(Q9). O
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Proposition 2.5. Let (M, g, 9, A, u, 0) be a compact HRB soliton with A # 0. If the second Lie derivative of g in the
direction 9 is divergence free and n = 2 then, the dual 1-form 1 of 3 is a solution of the Ricci-Schrodinger equation.

Proof. 1f div(£9£sg) = 0, trace (E9£9g) is a constant.
By taking the divergence of the soliton equation (1) and div(Ric) = £, we get

) 20—-1
div(£sg) = i—/\dr. 8)

Now, taking the trace of (1), we obtain
%tr(Esﬁsg) +2Adiv(d) = nu + (np—1yr,
which, by differentiation, gives
2Ad(div(9)) = (np — 1)dr. )

We know that
div(£sg) = (A + Ricy)(n) + d(div(9)),

where A is the Laplace-Hodge operator on differential forms with respect to the metric g and Ricy(n)(X) =
Ric($, X) for X € x(M). From (8) and (9), we obtain

(A + Ricg)(n) = 0,
for n = 2. Hence 1) is a solution of the Schrodinger-Ricci equation. [J

Proposition 2.6. A compact HRB soliton (M, g, 9, A, u, o) with S(Ric) vector field [21] satisfying VO = aQ,a € R,
and trace(£yRic) = 0, such that 2aA + 1 # ng is a Ricci-flat manifold and 9 is a parallel vector field.

Proof. Since
div(9) =ar; £9g = 2aRic; £9£sg = 2aLgRic,

the soliton equation (1) becomes
afyRic + 2aARic + Ric = (u + or)g.

Since tr(£gRic) = 0, we get (2aA + 1 — np)r = np. It follows that r is a constant and since M is compact, we
deduce that r = 0 due to the divergence theorem. From (3), we obtain

IV + div(Ve9) — Ric(9,9) = 0,

and from (5) we get
Ric($,9) = 0.

Since
IVOIP = a?lIQI%;  div(Ve®) = adiv(Q9),

we infer
a?||QIf* + 2adiv(Q9) = 0. (10)

By integrating (10) we get Q = 0, then V§ = 0. Hence the conclusion. [
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3. Different Vector fields on HRB solitons

In the Riemannian geometry of differentiable manifolds, vector fields play the central role to determine
the nature of the manifold. So, it is natural to study geometric properties using vector fields. In the
following we do so.

A vector field ¥ on a Riemannian manifold M is said to be torse-forming vector field if it satisfies
Vud = mU + p(U)9Y, for any vector field U on M, m is a smooth function defined on M, ¢ is a 1-form and V
is the Levi-Civita connection on M. When the 1-form is identically zero on the manifold, the vector field 9
is called concircular. If m = 1 and ¢ = 0, then the vector field 9 is called concurrent. If m = 0 and ¢ # 0, the
vector field 9 is called recurrent. In the following we prove some important results.

Proposition 3.1. If (M, g, 9, A, u, o) is a HRB soliton with concurrent vector field 3, then the Ricci tensor is given
by Ric(U, V) = (u + or — 2 = 2A)g(U, V), and (M, g) is an Einestein manifold.

Proof. Forany U,V € x(M),

EspU, V) = g, V)) - g([3, U], V) - g [3,V])

= g(VUS, V) + g(u/ VVS)
= 29U V) (1)
and
(EsLsg)(U, V) = 49(U, V). (12)

Using (11) and (12), we get from (1),
RicU, V) = (u+ or =2 -21)9(L, V).
Hence M is an Einestein manifold. [
Corollary 3.1. If (M, g,9,A, u,0) is a HRB soliton with concurrent vector field 3, then the scalar curvature r is
constant if o # L.
Proposition 3.2. If (M, g, 9, A, u, o) is a HRB soliton with concircular vector field S, then
Ric(U, V) = (u + or — 2mA — 3(m) — 2m*)g(U, V).

Proof. For any U,V € x(M),

Esg)(LV) = 3(g(U, V) - g9, U], V) - g(U,[3, V])
= g(Vud, V) +g(U,Vy9)
= 2mg(U, V), (13)
and
(E£s£39)(U, V) = (28(m) + 4m*)g(U, V). (14)

By virtue of (13) and (14), we get from (1),

Ric(U, V) = (u + or — 2m* = 2mA — 9(m))g(U, V).

So, M is an Einestein manifold. [



B. Sarkar, A. Sarkar / Filomat 39:24 (2025), 8303-8314 8308

Remark 3.1. If 9 is conformal vector field i.e. £3g = 2mg, for a smooth function m on M, then we get the same result
as before.
Proposition 3.3. If (M, g, 9, A, u, 9) is a HRB soliton with torse forming vector field 3, then

Ric(U, V) = (u+or —2m* = 8(m) - 2mA)g(U, V) — I8IPp(D)p(V)
@+ 39(8) + DpUn(V) + nU)p(V))

SV E)U = 21(U)Esg)V (15)
Proof. Forany U,V € x(M),
EspULV) = g, V) —g([3,U], V) - g(U, [5,V])

g(Vud, V) + g(U, Vi 9)
2mg(U, V) + p(U)g(d, V) + p(V)g(U, 9), (16)

and

(EsLe)(UL V) = 224 + 3(m))g(U, V) + 2[191Pp(U)p(V) + (4a + () (@(U)n(V)
+ p(V)n(UD) + n(V)(Es@)U + n(U)(Es)V. (17)

With the help of (16) and (17), from (1), we obtain the result. [

Proposition 3.4. If (M, g,9, A, 11, 0) is a HRB soliton with torse forming vector field 9, and if £3¢ = I withlas a
smooth function M, then (M, g) is a generalized quasi-Einstein manifold.

Proof. Putting £5¢ = lp in (15) we have

Ric(U V) = (u+ or—2m* = 8(m) = 2mA)g(U, V) = I8|Pp()e(V)
1 !
= @t 39() + A+ )EWNV) + nWp(V)).
Thus, it follows that (M, g) is a generalized quasi-Einstein manifold. [J

Proposition 3.5. If (M, g, 9, A, 1, 0) is a HRB soliton with torse forming vector field 9, given by V9 = mU +n(U)9
and 1 is dual to 9 then the manifold is quasi-Einstein manifold of infinite scalar curvature for o = 1.

Proof. Putting ¢ = 17, we get from (15)
Ric(U, V) = (i + or — 2m? = S(m) — 2mA)g(U, V) = 21181 + 3m + A)(U)n(V). (18)

In other words (M, g) is a quasi-Einestein manifold.
Contracting the equation (18) with respect to an orthonormal basis {u1, uy, ...., 9}, we obtain

r=(u+ or —2m? — 9(m) — 2mA)n — 2(2||9|* + 3m + A).
Therefore

(1 —2m? — 9(m) — 2mA)n — 2(2||9|1> + 3m + A)
1-np ’

(19)

Hence the result. J
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4. Submanifolds as HRB Solitons

According to theory of shape analysis, a submanifold provides prime information of the ambient
manifolds. So, the study of submanifold is complementary to the investigation of the ambient manifold.
Hence, it is urgent to study immersed submanifolds besides analyzing ambient manifolds. The following
section revolves around submanifolds possessing soliton character. Here we establish some informative
and analytical results after stating the required formulas.

Let (M, 7) be smooth Riemannian manifold and M be an isometrically immersed submanifold of it with
induced metric g. Let V and V be the Levi-Civita connection of (M, §) and (M, g) respectively. Then for any
tangent vector fields U, V € x(M) and any normal vector field N, the Gauss and Weingarten equations are

vuV: VuV+G(LI, V), VuN: —ANU+VJ'L[N,

where ¢ is the second fundamental form and A is the shape operator and V+ is the normal connection. The
shape operator A is defined by g(AxU, V) = §(o(U, V), N) for U, V € x(M) [13].
Now we assume 3 is a torse-forming vector field of (M, 7). So, V8 = mU+¢(U)3. Then for any U € x(M),
we have
VudT +o(U, 8T) — Ag U + V4184 = mU + p(UD)9,
hence
VudT = mU + )9 + Ag: UL

Theorem 4.1. Let M be a submanifold that is isometrically immersed into a Riemannian manifold (M, §), and let 9
be a torse forming vector field on M. Then (M, g, 9T A, U, 0) is a HRB soliton if and only if the Ricci tensor field of M
satisfies
Ricp(U, V) (1 + or —2mA — 8T (m) — 2m*)g(U, V) — 2(4 + A)g(Agr U, V)
= @m+eET) + D@UnV) +e(V)nh) - n(V)Esrp)U
— W EsP)V = 2p(Up(V)g(87, 9) - 49(A2, U, V)
— 29((VerAg)U, V) — p(U)(mg(87, V) + 2g(As. V, 9))
- p(V)(mg(8",U) +29(As: U, 9)).
Proof. For any U,V € x(M),
EDWUY) = g(Vud, V) +gU, Vv
= 2a9(U, V) +29(As: U, V) + o(U)n(V) + p(V)n(U), (20)

and

(Es£59)(U, V) (28" (a) +4a*)g(U, V) + (3a + p(3)(@(U)n(V) + p(V)n(U))

+ N(V)(Esrp)U + N Egr@)V + 2p(U)p(V)g(87, 9) + 4g(A5. U, V)

+ 89(As:U V) +29((VerAs)U, V) + o(U)(mg(ST, V) + 29(As:V, 9))

+ p(V)(mg(8T, U) +2g(As: U, 9)). (21)
In view of (20) and (21), from (1), we conclude the result. [

Proposition 4.2.(i) If the vector field ST is concircular then ¢ = 0 and
Ricy(ULV) = (u+ or—2mA — 8T (m) — 2m*)g(U, V) — 2(4 + A)g(As: U, V)
- 49(ALU V) - 2g(VerAg)U, V). (22)
(ii) If T is concurrent vector field then m = 1 and ¢ = 0 and hence
Rieq(ULV) = (u+or—-21=-2)g(LL V) =24 + A)g(As- U, V)
- 49(ALU V) = 2g(VerAs)U, V). (23)
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(iii) If 87T is recurrent vector field then m = 0 and ¢ # 0 and hence
Ricw(UV) = (u+on)g(U, V) =24+ Dg(AgU, V)
= (@B + M(@U)n(V) + p(V)n(Uh) - n(V)(Esrp)U
= U)EP)V - 2pU)p(V)g(ST, 9) - 49(A2, U, V)
= 29((VerAs)U, V) = 2g(As:V, 9)p(U)
- 29(Ae: U, 9)p(V).

Proposition 4.3. A totally geodesic HRB soliton (M, g, 9T, A, u, o) which is isometrically immersed into a Riemannian
manifold (M, §) with concurrent vector field § is an Einestein manifold provided that dim(M) > 2.

Proof. Since M is totally geodesic As: = 0. Then from (23), we get
Ricp(U, V) = (u + or — 24 = 2)g(U, V).
Hence the conclusion. [J

Proposition 4.4. A totally umbilical HRB soliton (M, g, 9T, A, U, o) that is isometrically immersed into a Riemannian
manifold (M, §) with concircular vector field 9 is an Einestein manifold provided dim(M) > 2.

Proof. If M is totally umbilical, then Ag. = fI, where f is a smooth function on M and I is the identity map.
Therefore
9(As- U V) = fg(U, V),

gAL U V) = V),
g(Ver(As:U), V) = 91 (Hg(UL V) + fg(Ver U, V).

Now from (4.3), we have
Ricp(U, V) = (u + or — 2mA — 8T (m) — 2m® — 2f (4 + A) — 4f> = 287 (f)g(U, V).

Hence the conclusion. [J

5. HRB solitons on Sequential warped product manifolds

Warped product maanifolds were defined by O’Neil and Bishop [4] to construct Riemannian manifolds
with negative sectional curvature. They have an important role in both differential geometry and physics
because they are used in general relativity to model the spacetime. Doubly and multiply warped product
manifolds are generalizations of warped product manifolds [14, 25, 26]. There are several works in which
Ricci solitons on some warped product manifolds [1, 15, 23] or Yamabe solitons on doubly and multiply
twisted warped product manifolds [8]. Motivated by the above studies, in this section, we consider Ricci-
Bourguignon solitons on sequentional warped product manifolds which is generalization of the warped
product manifolds.

The following proposition and lemmas on sequential warped manifolds are necessary to prove our
results.

We use the notation V, Vi; Ric, Ric’; Hess, Hess'; A, AL; £, £ for the Levi-Civita connections, Ricci tensors,
Hessians, Laplacians and the Lie derivatives of M and M, respectively. Hessian of M is denoted by Hess.

Let M = (M; Xy M) X; M3 be a sequential warped product manifold furnised with the metric g =
((91 ® f?g2) ® h*g3). Here the functions f,h are called the warping functions and let U;, V; € x(M) for any
i=1,2,3.

Proposition 5.1. The Levi-Civita connection V on (M, g) are specified by:
MVu, Vi =V, Vi,
@Vu Uz = Vi, Uy = Ur(Inf)Uy,
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BV, V2 = V%Iz Vo = fg2(U, Va)grad' f,
@HVu,Uy = Vi, Us = Uy (Inh)Us,
GV, Us = Vy, Uy = Up(Inh)Us,

(6)VU3 V3 = Vi[; V3 - hgg(u?,, V3)gradh.

Proposition 5.2. The non-zero components of the Riemannian curvature (M, g) are provided by:
(DRic(Uh, V1) = Ric'(Us, V1) = % HJ (Uy, V1) = H'(Uy, Vi),

(2)Ric(Us, V3) = Ric*(Uy, V) — f2g2(Us, Vo) f* = RHM Uy, V2),

(3)Ric(Us, V3) = Ric* (U, V3) = h*gs(Us, V3)h*,

(4)Ric(U, V) =0,i# ],

where f* = &L 4 (n, — 12240 Wdf' and h* = 8% + (ny + ny — 1)"’7mdh| )

Lemma 5.3. For a vector field 9 € x(M), the following equation holds:

EspL V) = (£}91!]1)(U1/ Vi) + f2(£‘292!72)(uz, Vo) + h2(£?%g3)(ll3, V3)
+  2f91(f)g2(Uz, V2) + 2h(S1 + 92)(h)g3(U3, V3). (24)

Lemma 5.4. For a vector field 9 = 91 + 9, + 93 € x(M), the following is true:
£5£59(U, V) (£5,£5,91)(Un, V1) + fH(E5 £5, 92)(Ua, Va) + 291 (f)(£5, 92)(Us, V2)
+ (1 (f)g2(Uz, Vo) + B (E £ g3)(Us, V)
+ 2(81 + 9)(P)(E3, 95)(Us, V3)
+ (91 + 92)((91 + 82)(H))g3(Us, V3) (25)
for all vector fields U = Uy + Up + Uz and V = V1 + V, + V.

Theorem 5.1.Let (M, g,9,A, 1, 0) be a HRB soliton with potential vector field 9 = 91 + 9, + 93, where (M =
(My X M) X4 M3, g = (91 @ f*92) ® h*g3) is a sequential warped product manifold. Then
(i) IfHf = cgand H" = g then (M1, g1, 91, M, i1, 01) becomes a HRB soliton, where py + 171 = i+ or + %g + 529

(ii) If 9, is a 2-killing vector field and Hf = g then (Ma, g2, 92, ha, A2, 02) is an hy almost Ricci Bourguignon soliton,
where hy = Af? + 91(f2), A2 + 0212 = puf* + fror + f2f* + 2 = 2Af9(f) - $91(91(F2).
(ii1) If 83 is conformal vector vield with factor ps then (Ms, g3) is an Einstein manifold.

Proof. For any two vector fields U, V such that U = U; + U, + U3, V = Vi + V, + V3 equation (1) can be
written as

%ESESg(U, V) + Afeg(U, V) + Ric = (u + or)g(U, V). (26)

Using Proposition 5.2, Lemma 5.3 and Lemma 5.4, we have

[(£1 £ g0)(Uy, Vi) + f2(£2 £ ,92)(Uz, V2) + 2\91(f2)(£?9292)(uz, V)
+ «91(\91(f Ng2(Uz, V3) + hZ(f3 £ ,93)(Us, V3) +2(91 + 92)(}12)(5‘39393)(113, V3)
+ (914 92)((81 + 92)(H))g3(Us, V)] + AL(Eg, 91)(Un, Vi) + fA(E5,92)(Ua, V)
+ HAEY g3)(Us, Vi) + 2f91(f)g2(Un, Va) + 21(91 + 92)g3(Us, V3)] + Ric' (Uy, V1)

n n . n
- 72H1f (Uy, Vy) — th(ul, V1) + Ric2(Us, V) = f2g2(Us, Vo) f* — th(uz, V)

+ Ric*(Us, V3) — g5(Us, V3)h*
= (u+ongi(Us, V) + f2(u + og2(Uz, Vo) + B (u + 0r)g3(Us, V). (27)
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Let U = Uy, V = V1 Then equation (27) gives

1 . n
S(£L £L g1)(Un, Vi) + AEL g1)(Uy, Vi) + Ric'(Uy, Vi) = = Hf (Uy, Vi)
2 17 V1 1 f

- %Hh(ul, Vi) = (u + or)g1(Uz, V1).

If Hf = cg and H" = ¢g, we have

1
2

= wmg(U, Vi) + [ +u+or+ %C + %Eb]gl(ull Vi)

= muyg1(Uy, V1) + oir1g1(Uy, Vo).

(£5,£5,90)(Un, V1) + A(£5 g1)(Un, V1) + Ric'(Uy, V1)

Hence (Mj, g1, 91, A1, 41, 01) is a HRB soliton.
Now put U = U, and V = V,. Then equation (27) reduces to

1
E[fz(fézﬁézgz)(uzr V2) + 281(fA)(E5, 92)(Uz, V2) + 81(91(f2))g2(Ua, V2)]

+ )\[f2(£%9292)(uz, V) + 2f91(f)g2(Ua, V)] + Ric* (U, V) — f2g2(Un, Vo) f*

- 2H'(U, V)

= fAu+onga(Uz, V).

Since 9, is 2-killing vector field, so £5 £5 g» = 0. Putting H = ¢g in the above equation one obtains

Ric*(Uy, Va) + (Af? + 91(f*)(E5,92)(Ua, V2)

= haga(Us, Va) +[=Aa + uf? + for+ 1* + 229 =20 £9(f)
1

= 3R G(P)IgaA(lz, V2).

Ric*(Uy, V) + hz(E‘zgz_l]z)(Uz, V2) = Aaga(Ua, V) + 021292(Uz, V2).
Let U = U3, V = V3, then from (5.2), we infer

SUP(E,£2 g3)(Us, V) + 281 + 92)(0P)(EL g3)(Us, V)

(91 + 8)((31 + 92)(I)ga(Us, Va)] + AUPEL g3)(Us, Va) + 2h(91 + 92)g5(Us, V)]
Ric*(Us, V3) — h*g3(Us, Va)i*

= 1P(u+ 0r)g3(Us, Va).

+
+

If 93 is a conformal vector field on M3 with factor p3 then we get £3g5 = p3gs and £3£393 = (93(p3) + p2)gs.
From the above equation we can easuly conclude that

. W2
Ric* (U3, V3) = [WPu+hor— 3(93(103) +p3) — (81 + 9)(H)ps
— (914 )91 + 92)(H?) — AP ps — 2hA(S1 + 82) + H*h*1gs.

Hence (M3, g3) is an Einstein manifold. 0O
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Theorem 5.2. Let M = (M1 X M) x;, M3 be a sequential warped product manifold with metric g = (g1 f2g2)®h*gs).
Then (M, g,9, A, u, o) will be a HRB soliton with potential vector field § = 91 + 9, + 93, if
(i) (Ma, 91,91, A1, p1, 1) is a HRB soliton,
(ii) S; is concircular vector field on M; for i = 2,3 satisfying Vi, 9; = m;U; where m; are smooth function on M;.
(iii) My, M3 are Einstein manifold i.e. Ric*> = uag, and Rics = pizgs.
(iv) If Hf = cgand H" = yg.
(V) uy = p1— %C -2y, ooy = fA(295(mp) +4m3) +291(f2)2ma + 91 (91(fD)) + A f22my + 2 91 () — f21* — 2,
O3t3 = h2(2\92(1ﬂ3) + 471’1%) +2(9 + \92)(]/12)271/13 + (\91 + 9)((91 + \92)(h2)) + )U’ZZZTT’ZQ, + 2/\h(\91 +9) — h2h*.
(i) f2[u} + o1r1] = [p2 + oara] and K[ + g1r1] = [z + ga13].

Proof. If (M, 91,91, A1, p1, 01) is a HRB soliton we have

%(591 £5,91) U1, V1) + AEs, g1)(U1, V1) + Ric'(Uy, v1) = (w1 + o1r1)g1(Ux, V). (28)
Since 9, is concircular vector field fori =2,3
£5.02=2magy, 4 £5 9o = (292(my) + 4m3) g, (29)
and
£3.93 = 2mags, £ £ g3 = (292(m3) + 4m3)gs. (30)
We have from Lemma 5.3 and Lemma 5.4,

£sg(LLV) = (E‘lglgl)(ulr Vi) + fz(fézgz)(uzl Vo) + h2(£‘39393)(u3, V3)

+  2f91(f)g2(Uz, V2) + 2h(S1 + 92)g3(U3, V3). (31)
and
£ofsg(ULV) = (5391 Eélf]l)(ulz Vi) + f2(£§2£§292)(uz, Vo) + 291(f2)(£§2!]2)(uz, V)
+ S1(S1(A))g2(Us, Va) + HA(E] £5, 93)(Us, V3)
+ 2(91 + 9)(H)(E], g3)(Us, V3)
+ (81 + ) (91 + ) g5 (Us, Va). (32)
Now

%ESESg(LL V) + A£sg(U, V) + Ric

= %[(félféﬂl)(ulf Vi) + fA(ES, £5,92)(Ua, Va) + 291 (F*)(£5,92) (Uz, V2)
+ 9101 (f))g2(Us, Vo) + B (E] £, 93)(Us, Va) +2(91 + 92) (W) (E] g3)(Us, V3)
+ (814 92)((31 + 92)(H))g3(Us, V)l + ALEg g1)(Un, Vi) + fA(E5,92)(Ua, V)

+ W(E g3)(Us, Va) + 2f91(f)g2(Us, Va) + 21(91 + 92)g3(Us, V3)] + Ric' (Uy, V1)
np

f
+ RiC3(U3, V3) — h293(U3, V3)h*.

n . n
H{ (U, V1) = S2H' (U, V1) + Ric*(Uz, V2) = fga(Un, V) f* = T H'(Uz, V2)
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Using (28), (29), (30), (31), (32), we obtain

[t + o1 — %C - %IP]gl(ULVﬂ

+ [f2(292(my) + 4m3d) + 281(f*)2my + 91(91(f2)
+Af2m 4 260 (f) + 2 = = TZ2Ylga(Us, Vo)
[H2(282(1m3) + 4m2) + 2(81 + 92)(H?)2m;
(81 + 92)((81 + 92)(h?)) + Ah*2m
+ 2AK(81 + ) + sz — WPh*]gs(Us, V). (33)

%ESESg(U, V) + A£sg(U, V) + Ric

1 .
EESESQ(Ur V) + ALyg(U, V) + Ric [uy + o] (Us, Vi)
+  [p2 + o2r2]g2(Up, V2)
+  [uz + g3r3]g93(Us, V3). (34)

Using condition (v), the equation (33) yields (M, g, 9, A, u, o) is a HRB soliton. [
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