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Abstract. Let M be an m-manifold. If m > 3, we find all Courant algebroids, all Leibniz algebroids, all Lie
algebroids and all dull algebroids on TM @ T*M canonically depending on closed 3-forms on M.

1. Introduction

The definition of Courant algebroids can be found e.g. in [1, 5]. It is the following.
A Courant algebroid (on E) is a system (E, a, < —, — >, [[—, —]]) consisting of a vector bundle E — M with
a base-preserving bundle map a : E — TM (called the anchor), a pseudo-euclidean metric < —,— > (i.e. a

fibre-wise non-degenerate symmetric bilinear form), and an R-bilinear bracket [[—, =]] : T(E) X I'(E) — I'(E)
such that, for all p!, p?, p* € T(E) and f € C*(M), the following hold:

(1) [[p", [Tp?, 1N = [Lllp", p*11, p°11 + [0, [lp", p*111]
(C2) a(llp", p1) = La(p"), a(p?)]

(C3) (", fp*11 = fllp", p*11 + (Lagpny )

(C4) [lp", PPN+ [[p% p' N = @ < p', p* >)

(C5)

Loy < p% 0> >=<Ilp", P11, p° > + < p% [lp", p°1] >
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where a* : T*"M — E*=E is the dual map to the anchor a, and the isomorphism E*=E is given by < —, — >.

The following is an important class of examples of Courant algebroids.

Example 1.1. ([8, 9]) (Exact Courant algebroid) Any closed 3-form Q) € (Q03(M) defines a Courant algebroid structure
on E=TM & T"M, with anchor map a = pr1 : TM ® T*M — TM, pseudo-euclidean metric

<X®aYop>=p(X)+aY)
and the Q-twisted Courant bracket
[X®a Yol =X Y]® (Lxp —ivda +iyixQ),

where X, Y are vector fields on M, a, p are 1-forms on M, Lx is the Lie derivative (with respect to X), ix is the inner
derivative (with respect to X) and d is the exterior derivative.
When Q = 0, we obtain the standard Courant algebroid on TM & T*M.

We can generalize the above example as follows.

Example 1.2. Let b, c and e be real numbers with ¢ # 0. Any closed 3-form Q € Q3(M) defines a Courant algebroid
structure on E = TM @ T*M, with anchor map a = b - pr1, pseudo-euclidean metric

<X®aYop>=ch(X)+ca(Y)

and bracket
[[X®a Yol = (0[X Y] b(Lxp —ivda) + eiyixQ) .

In what follows Mf,, is the category of m-dimensional manifolds and their local diffeomorphisms and
the usual coordinates on R” will be denoted by x!, ..., x™. The main result of the paper is the following

Theorem 1.3. Let M be an m-dimensional manifold. If m > 3, then any Courant algebroid (TM&T'M, a,< —,— >,
[[—, =11) depending Mf,,-naturally on a closed 3-form Q) € Q3(M) is described in Example 1.2.

This result will be formulated in detail in Theorem 3.2 and proved in Section 3. In Section 5, we present
the full description of Leibniz algebroids on TM & T*M canonically depending on closed 3-forms on M
(if dim(M) > 3). In Section 7, we present the full description of Lie algebroids on TM @ T*M canonically
depending on closed 3-forms on M (if dim(M) > 3). In Section 8, we present the full description of dull
algebroids on TM @ T*M canonically depending on closed 3-forms on M (if dim(M) > 3). We point out that
Courant algebroids have many applications in differential geometry and in mathematical physics.

2. Some preparations

Definition 2.1. An Mf,,-natural operator

3
AT (N T) o Lim(U(T @ T x I(T @ T, T(T & T"))

sending closed 3-forms Q € T9°(\> T*M) on Mf,,-objects M into R-bilinear operators Aq : T(TM@&T*M)xT(TM&
T*M) = I(TM & T*M) is an Mf,-invariant family of regular operators (functions)

3
A :T%( )\ T'M) — Liny(T(TM & T'M) X T(TM & T'M), [(TM & T*M))

for all Mf,,-objects M, where Liny(U X V, W) denotes the vector space of all bilinear (over R) functions UXV — W
for any real vector spaces U, V, W.
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Remark 2.2. The invariance of A means that if Q € T9S(A\> T*M) and Q € T9S(\? T*M) are ¢-related by an
Mfy-map ¢ : M — Mand (X' ® o', X> ® 0?) € [(TM & T"M) x TI(TM & T'M) and (X' ® @', X*> ® @?) €
[(TM & T*M) x T(TM & T*M) are also q-related, then so are Aq(X' ® ', X? ® w?) and Ax(X' ® &', X* ® @?).
The regularity of A means that it transforms smoothly parametrized families (Q;, X} ® w;, X? @ w?) into smoothly
parametrized ones Ag, (X! ® w}, X? & w?).

Definition 2.3. Let A be an Mf,,-natural operator in the sense of Definition 2.1. We say that A satisfies the Jacobi
identity in Leibniz form if

Aa(p', Aa(p?, p) = Aa(Aalp', p7), p°) + Aalp®, Aalp', p%)) 1)
for all Q € T95(A\> T*M) and all sections p' = X' ® @' € T(TM & T*M) for i = 1,2,3 and all Mf,,-objects M.

Proposition 2.4. ([7]) (If Q = 0, see [2].) Let m > 3. Any Mf,-natural operator A in the sense of Definition 2.1
satisfying the Jacobi identity in Leibniz form is from the following collection

AZT (' p%) = @IX!, X*) @0,

A2 (o1, p?) = @[X, X2]) @ (@( Lo — Lyaw")),

AP (), p?) 1= (@[X!, X2]) @ (1L w?)

A (p!, p?) = @X!, X7]) @ (a( Ly 0 — ixade") + eixiia Q) ,

where p! = X' @ o', p? = X2 @ w?, Q is a closed 3-form on M and a, e are arbitrary real numbers. For any a,e € R,
each of operators A<17>, A<24>  A<348> A<44e> gatisfies the Jacobi identity in Leibniz form.

Definition 2.5. An Mf,,-natural operator

3
B : T¥los( /\ T*) ~»> Hom(T & T*, T)

sending closed 3-forms Q € T5(A\> T*M) on M f,,-objects M into base-preserving vector bundle maps Bg : TM &
T*M — TM is an Mf,-invariant family of regqular operators (functions)

3
B : T¥los( /\ T*M) — Hom(TM & T*M, TM)

for all Mf,,-objects M, where Hom(TM @ T*M, TM) denotes the vector space of all base-preserving vector bundle
maps TM @& T°M — TM.

Proposition 2.6. Any Mf,,-natural operator B in the sense of Definition 2.5 is one of the operators
B :=b-pn
for real numbers b, where pr1 : TM & T*M — TM is the canonical projection.
Proof. Clearly, B is determined by the collection of values
<Ba(p),n>€R

for all closed 3-forms QonMand p €e TIM®T,Mandn € TyMand x € M. (Here < —,— > T\MXT;M — R
is the usual pairing < v, 1 >= 1(v).)

Because of the Mf,,-invariance of M, we can assume M = R", x =0€ R", n = dox! and (p = %IO ®0e
ToR" & T;R™ or p = 0@ w € TyR” & T;R™).

Using invariance of B with respect to the homotheties a: : R™ — R™ we get

1
< B(alm(—i ®0), tdox' >=< B( i ®0),dox' >

tdxlpo dxto
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and
< Biy).0(0 ® tw), tdox! >=< Ba(0® w), dox* > .
Then )
<B — @0),dpx' >=< Bo(=— @0),dox' >
ap-0(53 0 ), do o(51 , ), do
and

< B(a,).0(0 ® tw), tdox' >=< Bo(0 ® w),dox’ > .

Putting t — 0 we get

d 0
< Bg(ﬁ‘o EBO),d()Xl >=< Bo(ﬁlo @0),doxl > and < BQ(OGBw),doxl >=0.

Then B is determined by the value
J 1
< Bo(— EBO),dox >e R.
dxlp

Then the vector space of all B in question is of dimension < 1 and the proposition is an immediate
consequence of the dimension argument. [

Definition 2.7. An Mf,,-natural operator

3
C : Telos( A T w Sy(T® T x (T® T*), R)
sending closed 3-forms Q € T9(\> T*M) on Mf,-objects M into symmetric fibre bilinear maps Cq : (TM &
T*M) Xy (TM @ T*M) — R is an Mf,-invariant family of regular operators (functions)
3
C: Fd"s(/\ T'M) = SS(TM & T'M) Xp (TM & T*M), R)

for all Mfy,-objects M, where So((TM® T*M) Xy (TM @ T*M), R) is the space of all maps s : (TM®T*M) xp (TM @
T*M) — R such that the restriction sy of s to the fibre over x is symmetric bilinear for any x € M.

Proposition 2.8. Any Mf,,-natural operator C in the sense of Definition 2.7 is one of the operators
Cy =c<—~->
for real numbers c, where < —, — > is the usual pseudo-euclidean metric (as in Example 1.1).
The proof of Proposition 2.8 will occupy the rest of this section. We start from the following definitions

Definition 2.9. An Mf,,-natural operator

2
D:1( /\ T%) ~ So(T @ T7) X (T ® T7), R)

sending 2-forms ® € T(A\* T*M) on M f,-objects M into symmetric fibre bilinear maps De : (TM@® T*M) Xy (TM &
T*M) — R is an Mf,-invariant family of reqular operators (functions)

2
D:I( A T*M) — So(TM & T*M) X (TM & T°M), R)

for all Mf,,-objects M.
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Definition 2.10. An Mf,,-natural operator D in the sense of Definition 2.9 is admissible if
De+40 = De
for any 2-form © on M and any 1-form 6 on M.
Lemma 2.11. Any admissible Mf,,-natural operator D in the sense of Definition 2.9 and Definition 2.10 is one of

the operators
D§” =c<~-,->
for real numbers c.
Proof. Clearly, D is determined by the collection of values
De(p',p*) € R
for all 2-forms ©® on M and p', p? € T\M & T;M and x € M.

Because of the Mf,,-invariance of M, we can assume M = R"”,x =0 € R", (p1 = a%w ®0 € ToR" & TyR"
and p* = ;5 @0 € ToR" @ T;R™) or (p' = 3%, ®0 € ToR" ® T;R™ and p*> = 0 ® dox' € TyR" & TyR") or
(p' =0@dox' € T)R" ® TyR™ and p? = 0 @ dox' € ToR" & T;R™). Moreover, since D is admissible, we may
assume Q) = 0.

Using invariance of D with respect to the homotheties a 1:R" — R" we get

19 10 d d

D -=— 00,-=—= ©0)=De(== @©0,=—— @0).
('l%)@(t dxlo ® tadxlp ) ®(8x1 0 dxlo )
Then 5 P P 5
D — @0,-—— 80)=FDo(z= &0,-— &0).
(”%)*8(83& 0 Ixlp ) 8(8361 o axlp )
Next, using the non-linear Petree theorem and the homogeneous function theorem ([4]) we derive that

i @0 i
oxlp 7 dxlp

Similarly, using the invariance of D with respect to the homotheties a 1:R" — R" we get

Deg( ®0)=0.

19 d
D(a%)@(;—lo ®0,0® tdox!) = D@(—IO ®0,0®dox?).

Ix! oxl
Then
D) 9(i ®0,0@dpx") = D@(i ®©0,0®dox!) .
Foxd o oxlyo
Putting t — 0 we derive that
D@(%lo ®0,0®dox") = Do(%|0 ®0,0®dox?).

Similarly, using the invariance of D with respect to the homotheties 2, : R™ — R" we get
D(a,).0(0 & tdox", 0 @ tdpx') = De(0 @ dox', 0 ® dox') .
Putting t — 0 we derive that
De(0 @ dox',0 @ dox') = 0.
Then D is determined by the value
2
oxlo

Then the vector space of all D in question is of dimension < 1 and the lemma is an immediate consequence
of the dimension argument. [J

Do ®0,dpx!) eR.
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We are now in position to prove Proposition 2.8.
Proof. Using C we define an Mf,-natural operator D by
Dg := Cyo

for any 2-form © on M. Clearly, D is an admissible operator in question. By Lemma 2.11, there exists c € R
such that
Ca=c<—-,—>

for any exact 3-form Q. Using the Poincare lemma (i.e. the fact that any closed form is locally exact) and
the fact that C is a local operator, we get Cq = ¢- < —, — > for any closed 3-form (), too. This ends the proof
of Proposition 2.8. [

3. The Mf,,-natural Courant algebroids on T @ T* from closed 3-forms

Definition 3.1. An Mf,,-natural Courant algebroid on T ® T* from closed 3-forms is a triple (B, C, A) consisting of
Mf-natural operators

3
B : T¥los( A T*) ~» Hom(T & T*, T),

3
C : Telos( A T s S,(T® T) x (T T°), R)
and
3
A : Teos( A T*) w Liny(T(T® T) X T(T & T*), (T & T*))
in the sense of Definitions 2.5, 2.7 and 2.1 (respectively) such that
(TM @ T"M,Bq,Cq, AQ)

is a Courant algebroid on TM ® T*M (with anchor Bg and pseudo-euclidean metric Cq and bracket Ag) for any closed
3-form Q) on an m-manifold M.

Theorem 3.2. Let m > 3. Any Mf,-natural Courant algebroid (B, C,A) on T & T* from closed 3-forms is of the
form
(B, C/ A) — (B<b>, C<C>,A<4,b,€>)

for some real numbers e and b and c with ¢ # 0.
Given real numbers e and b and c with ¢ # 0, the triple (B<">,C<, A<***>) is an Mf,,-natural Courant algebroid
on T ® T" from closed 3-forms.

Proof. This theorem follows directly from the lemmas presented in this section. [J

Lemma 3.3. Let m > 3. Let (B,C, A) be an Mf,,-natural Courant algebroid on T & T* from closed 3-forms. Then
there exist real numbers b; and ¢; # 0 and a; and e fori = 1, ..., 4 such that

(B,C A) = (B<h1>,C<C1>,A<1’a1>)

or

(B, C, A) = (B<h2>/ C<C2>,A<2'“2>)
or

(B,C A) = (B<b3>, C<>, A<3as>)
or

(B/ C,A) = (B<b4>’C<C4>’A<4,ﬂ4,e>) )
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Proof. It follows from Propositions 2.4 and 2.6 and 2.8. Since C<“> must be non-degenerate, thenc; # 0. [

Lemma 3.4. Let (B, C, A) be an Mf,,-natural Courant algebroid on T & T* from closed 3-forms and let b;, c;, a;, e for
i=1,...,4 beas in the previous lemma. Then a;b; = bizfor i=1,..,4 Consequently, if b; # 0, then a; = b;.

Proof. Let M = R™ and Q be a closed 3-form on R". Denote a = Bsbp, <—->=C5", - -11:= Ag'”’> if
i=1,230r[[--]]:= A54’”4’e> ifi =4 and E = TR" @ T'R™. Then our Lemma is a simple consequence of
the fact that the algebroid (E, a, < —, — >, [[—, —]]) satisfies the condition (C2). O

Lemma 3.5. Let i € {1,2,3}. Let b;,c; be real numbers with b; # 0 and ¢; # 0. Then (B<V>,C<%>, A<¥¥>) is not
Mfy-natural Courant algebroid on T @ T* from closed 3-forms.

Proof. Casel. Leti=1,2. Suppose (B<t>,C<c>, A<tb>) is an M fn,—natqral Courant algebroid on T @ T* from
closed 3-forms. Denote a := B>, < —, — >:= C<%> and [[-, —]] := A<*”. Let p! = 0® w' and p? = X*>® 0.
Then by (C4) (from Introduction) we get

060 = a*(dixaw).

Since a is surjective (as b; # 0), then a* is injective, and then dix-w! = 0. Putting X? = % and o' = x'dx!, we
get dx! = 0. Contradiction.

Case 2. Leti = 3. Suppose (B<%>,C<%>, A<3s>) is an Mf,,-natural Courant algebroid on T & T* from
closed 3-forms. Denote a := B<%>, < —, — >:= C<%> and [[-, -]] := A" Let p! = 0@ w' and p? = X* 0.
Then by (C4) we get

0 b3.£X20)1 = a*(dllxza)l) .

Putting X? = % and w! = x'dx?, we get bydx? = 0, i.e. dx* = 0 (as b # 0). Contradiction. [J

Lemma 3.6. Let i € {1,2,3). Let c;,a; be real numbers with a; # 0 and c; # 0. Then (B<°>,C<%>, A<"%>) is not
Mf-natural Courant algebroid on T @ T* from closed 3-forms.

Proof. Suppose (B<%>,C<¢>, A<i#>) is an M f,,-natural Courant algebroid on T & T* from closed 3-forms.
Denote a := B> =0, < —, — >:= C<%> and [[-, —]] := A<"*>.
Let p! = X' @0 and p? = X> @ 0. From (C3) we get [[p!, fp*1] = fllp', p?]], and then (considering the
X(M)-parts) we get
a[X', FX*] = a; f[X', X

IfX'=X%= % and f = x! we get ai% =0,1ie. % = (. Contradiction. O

Lemma 3.7. Let cy,a4,¢ be real numbers with ag # 0 and ¢y # 0. Then the triple (B<0>, C<%>, A<%44¢>) is not
Mf-natural Courant algebroid on T & T* from closed 3-forms.

Proof. We proceed quite similarly as for the previous lemma. O
Lemma 3.8. Let by, cy, e be real numbers with by # 0 and ¢y # 0. Then

(B<h4> C<ea> A<4,b4,e>)
is an Mf,,-natural Courant algebroid on T & T* from closed 3-forms.
Proof. Let (E,a,< —,— >,[[—, —]]) be a Courant algebroid and let k = by and g = c4. Multiplying both sides
of (C1) and (C2) for (E, a, < —,— >,[[-, —]]) by k?, we obtain (C1) and (C2) for (E,k - a,q- < —,— >,k [[—, —]]).
Multiplying both sides of (C3) and (C4) for (E,a,< —,— >,[[-,—]]) by k, we obtain (C3) and (C4) for

(E k-a,g- < —=,—>k-[[- =]]). Multiplying both sides of (C5) for (E, a,< —,— >,[[-, —]]) by kg, we obtain
(C5) for (E, k- a,g- < —,— >,k-[[-,-1]).
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So, (E, k-a,q- < —,— >,k-[[-, —]]) is a Courant algebroid, too. Consequently, if (B, C, A) is an Mf,,-natural
Courant algebroid on T ® T* from closed 3-forms, then so is (kB, gC, kA).

Further, (B<!>, C<1>, A<4’1'ﬁe>) is an Mf,,-natural Courant algebroid on T @ T* from closed 3-forms (see,
Example 1.1). Then (B<%>,C<%>, A<#+>) is an Mf,,-natural Courant algebroid on T & T* from closed
3-forms because of

(B<b4>, C<C4>’A<4,b4,e>) — (b4B<1>, C4C<1>, b4A<4,1riL’>) .

The proof of the lemma is complete.
O

Lemma 3.9. Let ¢4 and e be real numbers with ¢4 # 0. Then (B<%>,C~%>, A<#0¢>) is an Mf,,-natural Courant
algebroid on T & T* from closed 3-forms.

Proof. One can easily observe that (C1) — — — (C5) hold. We propose to use the previous lemma and then
putby — 0. O

Lemma 3.10. We have
(B<O>, C<C>,A<i’0>) — (B<O>, C<C>,A<4’O’O>)

forc#0andi=1,2,3.

Proof. The lemma is clear. [J

4. The canonical Courant algebroids on TM & T*M

Example 4.1. Let b and c be real numbers with ¢ # 0. We have a Courant algebroid on E = TM & T*M, with anchor
map a = b - pr1, pseudo-euclidean metric

<X®aYdp>=ch(X)+cay)

and bracket
[X®a Y&l =(b[X Y]) & (b(Lxp - ivda)) .

When ¢ = b = 1, we obtain the standard Courant algebroid on TM & T*M.

Corollary 4.2. Let M be an m-dimensional manifold, m > 3. Any Courant algebroid on TM ® T*M, which is
canonical (i.e. invariant under the morphism in the category Mf,,), is described in Example 4.1.

Proof. Clearly, the canonical Courant algebroids on TM & T*M are the Mf,,-natural Courant algebroids on
TM & T*M from closed 3-forms, which are independent of closed 3-forms. So, the result is a immediate
consequence of Theorem 3.2. [

Corollary 4.3. Let M be an m-dimensional manifold, m > 3. The standard Courant algebroid is the unique canonical
Courant algebroid on E = TM & T*M with anchor a = pry : TM & T*"M — TM and pseudo-euclidean metric

<X@®a,Y®OB>=pX) +a(Y).

5. The Mf,-natural Leibniz algebroids on T @ T* from closed 3-forms

A Leibniz algebroid (on E) is a system (E, a, [[—, —]]) consisting of a vector bundle E — M with a base-
preserving bundle map a : E — TM (called the anchor) and an R-bilinear bracket [[—, —]] : [(E)xI'(E) — T'(E)
such that, for all p!, p?, p® € T(E) and f € C®(M), the conditions (C1)—(C3) (from the definition of Courant
algebroid) hold, see e.g. [3].
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Definition 5.1. An Mf,,-natural Leibniz algebroid on T @ T* from closed 3-forms is a tuple (B, A) consisting of
Mf-natural operators

3
B : T¥los( /\ T*) ~»> Hom(T & T*, T)
and
3
A: FC’”“’(/\ T~ LipT(Te TY)XxI(Te T, T(T e T7))
in the sense of Definitions 2.5 and 2.1 (respectively) such that
(TM & T*M, Bg, Ag)
is a Leibniz algebroid on TM & T*M (with anchor Bq and bracket Aq) for any closed 3-form Q on an m-manifold M.

Theorem 5.2. Let m > 3. Any Mf,-natural Leibniz algebroid (B, A) on T & T* from closed 3-forms is from the
collection
(B<b> A<3,h>) (B<b> A<4,b,e>)

for all real numbers e and b.
Given real numbers e and b, the above tuples are M f,,-natural Leibniz algebroids on T & T* from closed 3-forms.

Proof. This theorem is a consequence of the lemmas presented in this section. [J

Lemma 5.3. Let m > 3. Let (B, A) be an Mf,,-natural Leibniz algebroid on T @ T* from closed 3-forms. Then there
exist real numbers b; and a; and e for i = 1, ..., 4 such that

(B,A) — (B<b1>’A<1,a1>)

or

(B,A) — (B<b2>,A<2’ﬂ2>)
or

(B,A) — (B<b3>’A<3,a3>)
or

(B,A) — (B<b4>,A<4,a4,e>) )
Proof. It follows from Propositions 2.4 and 2.6. [

Lemma 5.4. Let (B, A) be an Mf,-natural Leibniz algebroid on T & T* from closed 3-forms and let b;,a;,e for
i=1,...,4 beas in the previous lemma. Then a;b; = bffor i=1,..,4 Consequently, if b; # 0, then a; = b;.

Proof. The proof of this lemma is quite similar to the one of Lemma 3.4. It is a simple consequence of the
fact that the Leibniz algebroid (TM @ T*M, B, Aq) satisfies the condition (C2). O

Lemma 5.5. Let by be a real number with by # 0. Then (B<t">, A<%>) is not M fm-natural Leibniz algebroid on
T & T" from closed 3-forms.

Proof. Suppose (B<">, A<I1>) is an Mf,,-natural Leibniz algebroid on T & T* from closed 3-forms. Let
M = R™ and Q be a closed 3-form on R™. Denote a = B5b1>, [[-, -1 := Asl’b1> and E = TR" @ T*'R™.
Consider p! = X! @ 0 and p?> = 0® w? and f. Then from (C3) (considering the Q!(M)-parts) we get
0 = b1 Lx(f)w?. Next, putting X! = 2 and o? = dx' and f = x!, we get bidx! = 0. Contradiction. []

Lemma 5.6. Let by be a real number with by # 0. Then (B<">>, A<**2>) is not Mf,,-natural Leibniz algebroid on
T & T" from closed 3-forms.
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Proof. Suppose (B>, A<*»2>) is an Mf,,-natural Leibniz algebroid on T & T* from closed 3-forms. Let
M = R" and Q be a closed 3-form on R”. Denote a = B5h1>, - -1 = Asz’bp and E = TR" @ T*R™.
Consider p! = 0® w! and p? = X?> @ 0. Then from (C3) we get [[p!, fp?1] = fllp', p*]] and then (considering
the Q(M)-parts) we get by Lpew! = bof Lyzw'. Then putting X* = % and w' = dx! and f = x!, we get
bodx! = 0. Contradiction. [

Lemma 5.7. Let i € {1,2,3}. Let a; be a real number with a; # 0. Then (B<®>, A<"%>) is not M f,,-natural Leibniz
algebroid on T & T* from closed 3-forms.

Proof. Suppose (B<0>, A<4>) is an Mf,,-natural Leibniz algebroid on T & T from closed 3-forms. Denote
a:= B =0and [[-,-]] := A%, Let p! = X! ®0 and p?> = X*>® 0. Then from (C3), considering the
X(M)-parts, we get

alX, FX?] = aif1XY, X?] .

If X! = X? = 2 and f = x! we geta; 5% = 0,i.e. 2% = 0. Contradiction. []

Lemma 5.8. Let ay and e be real numbers with ay # 0. Then (B<%>, A<*%+¢>) is not M fm-natural Leibniz algebroid
on T ® T* from closed 3-forms.

Proof. We proceed quite similarly as for the previous lemma. O

Lemma 5.9. Let by, e be real numbers. Then (B<0+>, A<*+¢>) is an M fm-natural Leibniz algebroid on T & T* from
closed 3-forms.

Proof. It is clear because (B<%+>,C<®, A<*/+¢>) is an M f,,-natural Courant algebroid on T & T* from closed
3-forms (Theorem 3.2). [

Lemma 5.10. Let b be a real number. Then (B<0>>, A<3>) is an M fu-natural Leibniz algebroid on T ® T from
closed 3-forms.

Proof. We verify it directly as follows. Let ) be a closed 3-form on M. Denote a = Bsb3>, [([--11:= ASS’I’3>
and E=TM & T*M.

ad(C1) It follows immediately from Proposition 2.4.
ad(C2) Let p' = X' @ ' fori = 1,2. Then
a([[p", p1) = B3IX*, X?] = [b:X", bsX?] = [a(p), a(p)] -
ad(C3) Let p’ = X' ® o' for i = 1,2. Then
[[p", fp71] = (b3[X", FXP]) @ (bs L (fw?))
= (b3 L f - X2+ bsf - [X', XD @ (bsf - Lxnaw® +b3.Lya f - 0”)
= (UL f- X2 @ (b3Ly f - ) + (baf - X', X°]) @ (b3 f - Lyaw?)

= Lo f - p* + fllp', 1.

The proof is completed. [



M. Doupovec et al. / Filomat 39:24 (2025), 8315-8327 8325

6. The canonical Leibniz algebroids on TM & T"M

Example 6.1. Let b be a real number. We have the Leibniz algebroid on E = TM @ T*M, with anchor map a = b - pry
and bracket

[X®a, Yopll =X Y]) & b(Lxp - ivda)) .

Example 6.2. Let b be a real number. We have the Leibniz algebroid on E = TM @ T*M, with anchor map a = b - pry
and bracket

[X®a,Yopl]l=0X Y]) e bLxp) -

Corollary 6.3. Let M be an m-dimensional manifold, m > 3. Any Leibniz algebroid on TM®T"*M, which is canonical
(i.e. invariant under the morphism in the category Mf,,), is described in Examples 6.1 and 6.2.

Proof. Clearly, the canonical Leibniz algebroids on TM @ T*M are the Mf,,-natural Leibniz algebroids on
TM & T*M from closed 3-forms, which are independent of closed 3-forms. So, the result is a immediate
consequence of Theorem 5.2. [

7. The Mf,-natural Lie algebroids on T @ T* from closed 3-forms

By [6], a Lie algebroid (on E) is a system (E, a, [[-, —]]) consisting of a vector bundle E — M with a
base-preserving bundle map a : E — TM (called the anchor) and a skew-symmetric R-bilinear bracket
[[-, 11 : T(E) x [(E) — T(E) such that, for all p!, p?,p? € T(E) and f € C*(M), the conditions (C1)—(C3)
(from the definition of Courant algebroid) hold.

Definition 7.1. An Mf,,-natural Lie algebroid on T @ T* from closed 3-forms is a tuple (B, A) consisting of M f,-
natural operators

3
B : Telos( A T*) ~» Hom(T & T*, T)
and
3
A: l"d"s(/\ T~ Limp(I(TeT)xI(Te T, I(TeT))
in the sense of Definitions 2.5 and 2.1 (respectively) such that
(TMe&T'M,Bg,Ag)

is a Lie algebroid on TM & T*M (with anchor Bq and bracket Aq) for any closed 3-form € on an m-manifold M.

Theorem 7.2. Let m > 3. Any Mf,-natural Lie algebroid (B, A) on T & T* from closed 3-forms is (B<0>, A<40¢>)
for a (arbitrary) real number e.

Proof. This theorem is a immediate consequence of Theorem 5.2. Indeed, the Lie algebroids are the Leibniz
ones with skew-symmetric brackets. [

Corollary 7.3. ([7]) Let M be an m-dimensional manifold, m > 3. Any Lie algebroid on TM ® T*M, which is
canonical (i.e. invariant under the morphism in the category Mf,), is (TM & T*M,0,0) (i.e. with anchor 0 and
bracket 0).
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8. The Mf,,-natural dull algebroids on T @ T* from closed 3-forms

By [3], a dull algebroid (on E) is a system (E, a, [[—, —]]) consisting of a vector bundle E — M with a base-
preserving bundle map a : E — TM (called the anchor) and an R-bilinear bracket [[—, —]] : T(E)xXI'(E) — T'(E)
such that, for all p!, p? € T(E) and fi, f» € C*(M), the following hold:

(€2) a([lp", p*1) = [a(p"), a(p®)]

(D1) [LApY 20711 = Aifallp’, 021 + filaon(f)P” = Lo (f)P" -

Definition 8.1. An Mf,,-natural dull algebroid on T ® T* from closed 3-forms is a tuple (B, A) consisting of
M fm-natuml operators

3
B : T¥los( /\ T*) ~> Hom(T & T*, T)
and
3
A: FC"""(/\ T~ LipT(Te TY)XxI(Te T, T(Te T))
in the sense of Definitions 2.5 and 2.1 (respectively) such that
(TMeo T°M, Bo, Aq)
is a dull algebroid on TM & T*M (with anchor Bg and bracket Ag) for any closed 3-form € on an m-manifold M.

Theorem 8.2. Let m > 3. Any Mf,,-natural dull algebroid (B, A) on T & T* from closed 3-forms is (B<0>, A<40¢>)
for a real number e.

For any real number e, the tuple (B<0>, A<*0¢>) is an M f,,-natural dull algebroid on T & T* from closed 3-forms
because (as we know (Theorem 7.2)) this tuple is an Mf,,-natural Lie algebroid on T ® T* from closed 3-forms.

Proof. Let (B, A) be an Mf,,-natural dull algebroid on T ® T* from closed 3-forms. Because of the Mf,-
invariance, it is sufficient to verify that Bg = B<®> and Aqg = AS4’O’E> for all closed 3-forms Q on M = R™.

Consider an arbitrary Q) in question. Denote [[—, —]] := Aq and a := Bq. By Proposition 2.6, a = a - prq
for some (determined by B) real number a. By the respective result of [7], we can write

[[pY, P21 = (B[XY, X2]) @ (1L @? + 2 Lo + csixadaw? + caixedaw® + csixiiaQ)

where b, ¢y, ..., ¢s are the real numbers (determined by A), where p! = X! @ w! and p? = X? ® w? are arbitrary
sections on TM & T*M. We will study the numbers 4, b, cy, ..., c5.
First we put p! = 0@ w' and p? = X? ® 0. Then (because of (D1)) we have [[p!, fp?]] = fl[p', p*]]. Then

0® (Cz.[:fxza)l + C4ifxzda)1) =0 (sz.EXza)l + C4fixzda)1) ,
and then o, Liew' = ¢of Lyew'. Putting f = x!, o' =dx!, X2 = %, we get

cz£xlidx1 =cox' Lo dxt,
oxl ox1

ie. cpdx! =0. Thenc, = 0.
Next, we put p! = X! @ 0 and p? = 0® w?. Using (D1), we get

0@ (aLx (o) + 08 (for Lyiw* + c3 fixidaw?®) = 0@ (1. Lxi (fw?) + czixid(fw?)) .

Then
aLyi(f)o® = 1L ()’ + csixi((df) A @?) .
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Next, putting f = x' and @? = dx! and X' = 2% we get adx! = c1dx!, i.e. a = c'. Then csixi((df) A w?) = 0.
Then for f = x! and w? = dx* and X! = % we get c3dx? = 0,i.e. c3 = 0.
Consequently, a = a - pry for some a € R, and we can write

[[p*, P21 = (B[X", X?)) & (aLx1” + caixeda’ + csixrin2Q)

where b, ¢4, ¢5 are the real numbers (determined by A), where p! = X! ® w! and p? = X? ® w? are arbitrary
sections on TM @© T"M.
Next, we put p! = X! @ 0 and p? = 0® w?. Then (using (D1)) we get [[gp', p*1] = gllp', p*]]. Then

08 (@Lxw®) =08 (galnw?),

i.e.
2 _ 2
a.Eng) =galyw”.

Then for X! = 2 and o? = dx' and g = x' we getadx! = 0,ie. a =0.
Consequently, a = 0, and we can write

[[p", p*1] = (BIX", X?]) @ (caixeda’ + c5ixiix2 Q)

where b, ¢4, ¢5 are the real numbers (determined by A), where p! = X! ® w! and p? = X? ® w? are arbitrary
sections on TM © T"M.
Next, we put p! = 06 w! and p? = X2 @ 0. Then (using (D1)) we get [[gp', p*1] = gllp", p*]]. Then

0@ (caixed(ga’)) = 0@ (cagixedaw?) .

Then c4ix2((dg9) A ') = 0. Then for ! = dx! and X* = # and g* = x* we get —c4dx? = 0,i.e. ¢y = 0.
Consequently, a = 0, and we can write

[, P11 = (BIX', X*]) ® (csixiixe Q) ,

where b, c5 are the real numbers (determined by A), where p! = X! ® w! and p? = X? @ w? are arbitrary
sections on TM & T"M.
Next, we put p! = X! ® 0 and p*> = X? ® 0. Then (using (D1)) we get [[gp!, p*1] = gllp", p*1]. Then

0lgX", X2]) @ (csiyxixe Q) = (bg[X', X?]) @ (c5gixiixe Q) -

Then b[gX!, X?] = bg[X", X?]. Then for X! = % and g = x*> and X = 5% we get —b=%; = 0,i.e. b =0.
Consequently, a = 0, and we can write

o', p*11 = 0@ (eixiixe ),

where ¢ is the real number (determined by A), where p! = X' ® w' and p* = X? ® @ are arbitrary sections
on TM @& T*M. In other words Bg = B<?> and Aq = A54’0’6> for all closed 3-forms QQ on M = R™. The proof
of the theorem is completed. [
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