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Abstract. Let M be an m-manifold. If m ≥ 3, we find all Courant algebroids, all Leibniz algebroids, all Lie
algebroids and all dull algebroids on TM ⊕ T∗M canonically depending on closed 3-forms on M.

1. Introduction

The definition of Courant algebroids can be found e.g. in [1, 5]. It is the following.
A Courant algebroid (on E) is a system (E, a, < −,− >, [[−,−]]) consisting of a vector bundle E→M with

a base-preserving bundle map a : E → TM (called the anchor), a pseudo-euclidean metric < −,− > (i.e. a
fibre-wise non-degenerate symmetric bilinear form), and an R-bilinear bracket [[−,−]] : Γ(E) × Γ(E)→ Γ(E)
such that, for all ρ1, ρ2, ρ3

∈ Γ(E) and f ∈ C∞(M), the following hold:

(C1) [[ρ1, [[ρ2, ρ3]]]] = [[[[ρ1, ρ2]], ρ3]] + [[ρ2, [[ρ1, ρ3]]]]

(C2) a([[ρ1, ρ2]]) = [a(ρ1), a(ρ2)]

(C3) [[ρ1, fρ2]] = f [[ρ1, ρ2]] + (La(ρ1) f )ρ2

(C4) [[ρ1, ρ2]] + [[ρ2, ρ1]] = a∗(d < ρ1, ρ2 >)

(C5) La(ρ1) < ρ
2, ρ3 >=< [[ρ1, ρ2]], ρ3 > + < ρ2, [[ρ1, ρ3]] >
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where a∗ : T∗M→ E∗=̃E is the dual map to the anchor a, and the isomorphism E∗=̃E is given by < −,− >.

The following is an important class of examples of Courant algebroids.

Example 1.1. ([8, 9]) (Exact Courant algebroid) Any closed 3-formΩ ∈ Ω3(M) defines a Courant algebroid structure
on E = TM ⊕ T∗M, with anchor map a = pr1 : TM ⊕ T∗M→ TM, pseudo-euclidean metric

< X ⊕ α,Y ⊕ β >= β(X) + α(Y)

and the Ω-twisted Courant bracket

[[X ⊕ α,Y ⊕ β]] = [X,Y] ⊕ (LXβ − iYdα + iYiXΩ) ,

where X,Y are vector fields on M, α, β are 1-forms on M, LX is the Lie derivative (with respect to X), iX is the inner
derivative (with respect to X) and d is the exterior derivative.

When Ω = 0, we obtain the standard Courant algebroid on TM ⊕ T∗M.

We can generalize the above example as follows.

Example 1.2. Let b, c and e be real numbers with c , 0. Any closed 3-form Ω ∈ Ω3(M) defines a Courant algebroid
structure on E = TM ⊕ T∗M, with anchor map a = b · pr1, pseudo-euclidean metric

< X ⊕ α,Y ⊕ β >= cβ(X) + cα(Y)

and bracket
[[X ⊕ α,Y ⊕ β]] = (b[X,Y]) ⊕ (b(LXβ − iYdα) + eiYiXΩ) .

In what followsM fm is the category of m-dimensional manifolds and their local diffeomorphisms and
the usual coordinates on Rm will be denoted by x1, ..., xm. The main result of the paper is the following

Theorem 1.3. Let M be an m-dimensional manifold. If m ≥ 3, then any Courant algebroid (TM⊕T∗M, a, < −,− >,
[[−,−]]) dependingM fm-naturally on a closed 3-form Ω ∈ Ω3(M) is described in Example 1.2.

This result will be formulated in detail in Theorem 3.2 and proved in Section 3. In Section 5, we present
the full description of Leibniz algebroids on TM ⊕ T∗M canonically depending on closed 3-forms on M
(if dim(M) ≥ 3). In Section 7, we present the full description of Lie algebroids on TM ⊕ T∗M canonically
depending on closed 3-forms on M (if dim(M) ≥ 3). In Section 8, we present the full description of dull
algebroids on TM ⊕ T∗M canonically depending on closed 3-forms on M (if dim(M) ≥ 3). We point out that
Courant algebroids have many applications in differential geometry and in mathematical physics.

2. Some preparations

Definition 2.1. AnM fm-natural operator

A : Γclos(
3∧

T∗)⇝ Lin2(Γ(T ⊕ T∗) × Γ(T ⊕ T∗),Γ(T ⊕ T∗))

sending closed 3-formsΩ ∈ Γclos(
∧3 T∗M) onM fm-objects M into R-bilinear operators AΩ : Γ(TM⊕T∗M)×Γ(TM⊕

T∗M)→ Γ(TM ⊕ T∗M) is anM fm-invariant family of regular operators (functions)

A : Γclos(
3∧

T∗M)→ Lin2(Γ(TM ⊕ T∗M) × Γ(TM ⊕ T∗M),Γ(TM ⊕ T∗M))

for allM fm-objects M, where Lin2(U ×V,W) denotes the vector space of all bilinear (over R) functions U ×V →W
for any real vector spaces U,V,W.
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Remark 2.2. The invariance of A means that if Ω ∈ Γclos(
∧3 T∗M) and Ω̃ ∈ Γclos(

∧3 T∗M̃) are φ-related by an
M fm-map φ : M → M̃ and (X1

⊕ ω1,X2
⊕ ω2) ∈ Γ(TM ⊕ T∗M) × Γ(TM ⊕ T∗M) and (X̃1

⊕ ω̃1, X̃2
⊕ ω̃2) ∈

Γ(TM̃ ⊕ T∗M̃) × Γ(TM̃ ⊕ T∗M̃) are also φ-related, then so are AΩ(X1
⊕ ω1,X2

⊕ ω2) and AΩ̃(X̃1
⊕ ω̃1, X̃2

⊕ ω̃2).
The regularity of A means that it transforms smoothly parametrized families (Ωt,X1

t ⊕ ω
1
t ,X

2
t ⊕ ω

2
t ) into smoothly

parametrized ones AΩt (X1
t ⊕ ω

1
t ,X

2
t ⊕ ω

2
t ).

Definition 2.3. Let A be anM fm-natural operator in the sense of Definition 2.1. We say that A satisfies the Jacobi
identity in Leibniz form if

AΩ(ρ1,AΩ(ρ2, ρ3)) = AΩ(AΩ(ρ1, ρ2), ρ3) + AΩ(ρ2,AΩ(ρ1, ρ3)) (1)

for all Ω ∈ Γclos(
∧3 T∗M) and all sections ρi = Xi

⊕ ωi
∈ Γ(TM ⊕ T∗M) for i = 1, 2, 3 and allM fm-objects M.

Proposition 2.4. ([7]) (If Ω = 0, see [2].) Let m ≥ 3. AnyM fm-natural operator A in the sense of Definition 2.1
satisfying the Jacobi identity in Leibniz form is from the following collection

A<1,a>
Ω

(ρ1, ρ2) := (a[X1,X2]) ⊕ 0 ,

A<2,a>
Ω

(ρ1, ρ2) := (a[X1,X2]) ⊕ (a(LX1ω2
− LX2ω1)) ,

A<3,a>
Ω

(ρ1, ρ2) := (a[X1,X2]) ⊕ (aLX1ω2) ,

A<4,a,e>
Ω

(ρ1, ρ2) := (a[X1,X2]) ⊕ (a(LX1ω2
− iX2 dω1) + eiX1 iX2Ω) ,

where ρ1 = X1
⊕ ω1, ρ2 = X2

⊕ ω2, Ω is a closed 3-form on M and a, e are arbitrary real numbers. For any a, e ∈ R,
each of operators A<1,a>,A<2,a>,A<3,a>,A<4,a,e> satisfies the Jacobi identity in Leibniz form.

Definition 2.5. AnM fm-natural operator

B : Γclos(
3∧

T∗)⇝ Hom(T ⊕ T∗,T)

sending closed 3-forms Ω ∈ Γclos(
∧3 T∗M) onM fm-objects M into base-preserving vector bundle maps BΩ : TM ⊕

T∗M→ TM is anM fm-invariant family of regular operators (functions)

B : Γclos(
3∧

T∗M)→ Hom(TM ⊕ T∗M,TM)

for all M fm-objects M, where Hom(TM ⊕ T∗M,TM) denotes the vector space of all base-preserving vector bundle
maps TM ⊕ T∗M→ TM.

Proposition 2.6. AnyM fm-natural operator B in the sense of Definition 2.5 is one of the operators

B<b>
Ω := b · pr1

for real numbers b, where pr1 : TM ⊕ T∗M→ TM is the canonical projection.

Proof. Clearly, B is determined by the collection of values

< BΩ(ρ), η >∈ R

for all closed 3-formsΩ on M and ρ ∈ TxM⊕T∗xM and η ∈ T∗xM and x ∈M. (Here < −,− >: TxM×T∗xM→ R
is the usual pairing < v, η >= η(v).)

Because of theM fm-invariance of M, we can assume M = Rm, x = 0 ∈ Rm, η = d0x1 and (ρ = ∂
∂x1 |0 ⊕ 0 ∈

T0Rm
⊕ T∗0Rm or ρ = 0 ⊕ ω ∈ T0Rm

⊕ T∗0Rm).
Using invariance of B with respect to the homotheties a 1

t
: Rm

→ Rm we get

< B(a 1
t

)∗Ω(
1
t
∂

∂x1
|0
⊕ 0), td0x1 >=< BΩ(

∂

∂x1
|0
⊕ 0), d0x1 >
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and
< B(a 1

t
)∗Ω(0 ⊕ tω), td0x1 >=< BΩ(0 ⊕ ω), d0x1 > .

Then

< B(a 1
t

)∗Ω(
∂

∂x1
|0
⊕ 0), d0x1 >=< BΩ(

∂

∂x1
|0
⊕ 0), d0x1 >

and
< B(a 1

t
)∗Ω(0 ⊕ tω), td0x1 >=< BΩ(0 ⊕ ω), d0x1 > .

Putting t→ 0 we get

< BΩ(
∂

∂x1
|0
⊕ 0), d0x1 >=< B0(

∂

∂x1
|0
⊕ 0), d0x1 > and < BΩ(0 ⊕ ω), d0x1 >= 0 .

Then B is determined by the value

< B0(
∂

∂x1
|0
⊕ 0), d0x1 >∈ R .

Then the vector space of all B in question is of dimension ≤ 1 and the proposition is an immediate
consequence of the dimension argument.

Definition 2.7. AnM fm-natural operator

C : Γclos(
3∧

T∗)⇝ S2((T ⊕ T∗) × (T ⊕ T∗),R)

sending closed 3-forms Ω ∈ Γclos(
∧3 T∗M) on M fm-objects M into symmetric fibre bilinear maps CΩ : (TM ⊕

T∗M) ×M (TM ⊕ T∗M)→ R is anM fm-invariant family of regular operators (functions)

C : Γclos(
3∧

T∗M)→ S2((TM ⊕ T∗M) ×M (TM ⊕ T∗M),R)

for allM fm-objects M, where S2((TM⊕T∗M)×M (TM⊕T∗M),R) is the space of all maps s : (TM⊕T∗M)×M (TM⊕
T∗M)→ R such that the restriction sx of s to the fibre over x is symmetric bilinear for any x ∈M.

Proposition 2.8. AnyM fm-natural operator C in the sense of Definition 2.7 is one of the operators

C<c>
Ω := c· < −,− >

for real numbers c, where < −,− > is the usual pseudo-euclidean metric (as in Example 1.1).

The proof of Proposition 2.8 will occupy the rest of this section. We start from the following definitions

Definition 2.9. AnM fm-natural operator

D : Γ(
2∧

T∗)⇝ S2((T ⊕ T∗) × (T ⊕ T∗),R)

sending 2-formsΘ ∈ Γ(
∧2 T∗M) onM fm-objects M into symmetric fibre bilinear maps DΘ : (TM⊕T∗M)×M (TM⊕

T∗M)→ R is anM fm-invariant family of regular operators (functions)

D : Γ(
2∧

T∗M)→ S2((TM ⊕ T∗M) ×M (TM ⊕ T∗M),R)

for allM fm-objects M.
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Definition 2.10. AnM fm-natural operator D in the sense of Definition 2.9 is admissible if

DΘ+dθ = DΘ

for any 2-form Θ on M and any 1-form θ on M.

Lemma 2.11. Any admissibleM fm-natural operator D in the sense of Definition 2.9 and Definition 2.10 is one of
the operators

D<c>
Θ := c· < −,− >

for real numbers c.

Proof. Clearly, D is determined by the collection of values

DΘ(ρ1, ρ2) ∈ R

for all 2-forms Θ on M and ρ1, ρ2
∈ TxM ⊕ T∗xM and x ∈M.

Because of theM fm-invariance of M, we can assume M = Rm, x = 0 ∈ Rm, (ρ1 = ∂
∂x1 |0 ⊕ 0 ∈ T0Rm

⊕ T∗0Rm

and ρ2 = ∂
∂x1 |0 ⊕ 0 ∈ T0Rm

⊕ T∗0Rm) or (ρ1 = ∂
∂x1 |0 ⊕ 0 ∈ T0Rm

⊕ T∗0Rm and ρ2 = 0 ⊕ d0x1
∈ T0Rm

⊕ T∗0Rm) or
(ρ1 = 0 ⊕ d0x1

∈ T0Rm
⊕ T∗0Rm and ρ2 = 0 ⊕ d0x1

∈ T0Rm
⊕ T∗0Rm). Moreover, since D is admissible, we may

assume Θ|0 = 0.
Using invariance of D with respect to the homotheties a 1

t
: Rm

→ Rm we get

D(a 1
t

)∗Θ(
1
t
∂

∂x1
|0
⊕ 0,

1
t
∂

∂x1
|0
⊕ 0) = DΘ(

∂

∂x1
|0
⊕ 0,

∂

∂x1
|0
⊕ 0) .

Then

D(a 1
t

)∗Θ(
∂

∂x1
|0
⊕ 0,

∂

∂x1
|0
⊕ 0) = t2DΘ(

∂

∂x1
|0
⊕ 0,

∂

∂x1
|0
⊕ 0) .

Next, using the non-linear Petree theorem and the homogeneous function theorem ([4]) we derive that

DΘ(
∂

∂x1
|0
⊕ 0,

∂

∂x1
|0
⊕ 0) = 0 .

Similarly, using the invariance of D with respect to the homotheties a 1
t

: Rm
→ Rm we get

D(a 1
t

)∗Θ(
1
t
∂

∂x1
|0
⊕ 0, 0 ⊕ td0x1) = DΘ(

∂

∂x1
|0
⊕ 0, 0 ⊕ d0x1) .

Then

D(a 1
t

)∗Θ(
∂

∂x1
|0
⊕ 0, 0 ⊕ d0x1) = DΘ(

∂

∂x1
|0
⊕ 0, 0 ⊕ d0x1) .

Putting t→ 0 we derive that

DΘ(
∂

∂x1
|0
⊕ 0, 0 ⊕ d0x1) = D0(

∂

∂x1
|0
⊕ 0, 0 ⊕ d0x1) .

Similarly, using the invariance of D with respect to the homotheties a 1
t

: Rm
→ Rm we get

D(a 1
t

)∗Θ(0 ⊕ td0x1, 0 ⊕ td0x1) = DΘ(0 ⊕ d0x1, 0 ⊕ d0x1) .

Putting t→ 0 we derive that
DΘ(0 ⊕ d0x1, 0 ⊕ d0x1) = 0.

Then D is determined by the value

D0(
∂

∂x1
|0
⊕ 0, d0x1) ∈ R .

Then the vector space of all D in question is of dimension ≤ 1 and the lemma is an immediate consequence
of the dimension argument.
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We are now in position to prove Proposition 2.8.

Proof. Using C we define anM fm-natural operator D by

DΘ := CdΘ

for any 2-form Θ on M. Clearly, D is an admissible operator in question. By Lemma 2.11, there exists c ∈ R
such that

CΩ = c· < −,− >

for any exact 3-form Ω. Using the Poincare lemma (i.e. the fact that any closed form is locally exact) and
the fact that C is a local operator, we get CΩ = c· < −,− > for any closed 3-form Ω, too. This ends the proof
of Proposition 2.8.

3. TheM fm-natural Courant algebroids on T ⊕ T∗ from closed 3-forms

Definition 3.1. AnM fm-natural Courant algebroid on T ⊕ T∗ from closed 3-forms is a triple (B,C,A) consisting of
M fm-natural operators

B : Γclos(
3∧

T∗)⇝ Hom(T ⊕ T∗,T),

C : Γclos(
3∧

T∗)⇝ S2((T ⊕ T∗) × (T ⊕ T∗),R)

and

A : Γclos(
3∧

T∗)⇝ Lin2(Γ(T ⊕ T∗) × Γ(T ⊕ T∗),Γ(T ⊕ T∗))

in the sense of Definitions 2.5, 2.7 and 2.1 (respectively) such that

(TM ⊕ T∗M,BΩ,CΩ,AΩ)

is a Courant algebroid on TM⊕T∗M (with anchor BΩ and pseudo-euclidean metric CΩ and bracket AΩ) for any closed
3-form Ω on an m-manifold M.

Theorem 3.2. Let m ≥ 3. Any M fm-natural Courant algebroid (B,C,A) on T ⊕ T∗ from closed 3-forms is of the
form

(B,C,A) = (B<b>,C<c>,A<4,b,e>)

for some real numbers e and b and c with c , 0.
Given real numbers e and b and c with c , 0, the triple (B<b>,C<c>,A<4,b,e>) is anM fm-natural Courant algebroid

on T ⊕ T∗ from closed 3-forms.

Proof. This theorem follows directly from the lemmas presented in this section.

Lemma 3.3. Let m ≥ 3. Let (B,C,A) be anM fm-natural Courant algebroid on T ⊕ T∗ from closed 3-forms. Then
there exist real numbers bi and ci , 0 and ai and e for i = 1, ..., 4 such that

(B,C,A) = (B<b1>,C<c1>,A<1,a1>)

or
(B,C,A) = (B<b2>,C<c2>,A<2,a2>)

or
(B,C,A) = (B<b3>,C<c3>,A<3,a3>)

or
(B,C,A) = (B<b4>,C<c4>,A<4,a4,e>) .
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Proof. It follows from Propositions 2.4 and 2.6 and 2.8. Since C<ci> must be non-degenerate, then ci , 0.

Lemma 3.4. Let (B,C,A) be anM fm-natural Courant algebroid on T ⊕ T∗ from closed 3-forms and let bi, ci, ai, e for
i = 1, ..., 4 be as in the previous lemma. Then aibi = b2

i for i = 1, ..., 4. Consequently, if bi , 0, then ai = bi.

Proof. Let M = Rm and Ω be a closed 3-form on Rm. Denote a = B<bi>
Ω

, < −,− >:= C<ci>
Ω

, [[−,−]] := A<i,ai>
Ω

if
i = 1, 2, 3 or [[−,−]] := A<4,a4,e>

Ω
if i = 4 and E = TRm

⊕ T∗Rm. Then our Lemma is a simple consequence of
the fact that the algebroid (E, a, < −,− >, [[−,−]]) satisfies the condition (C2).

Lemma 3.5. Let i ∈ {1, 2, 3}. Let bi, ci be real numbers with bi , 0 and ci , 0. Then (B<bi>,C<ci>,A<i,bi>) is not
M fm-natural Courant algebroid on T ⊕ T∗ from closed 3-forms.

Proof. Case 1. Let i = 1, 2. Suppose (B<bi>,C<ci>,A<i,bi>) is anM fm-natural Courant algebroid on T ⊕ T∗ from
closed 3-forms. Denote a := B<bi>, < −,− >:= C<ci> and [[−,−]] := A<i,bi>. Let ρ1 = 0 ⊕ ω1 and ρ2 = X2

⊕ 0.
Then by (C4) (from Introduction) we get

0 ⊕ 0 = a∗(diX2ω1) .

Since a is surjective (as bi , 0), then a∗ is injective, and then diX2ω1 = 0. Putting X2 = ∂
∂x1 and ω1 = x1dx1, we

get dx1 = 0. Contradiction.
Case 2. Let i = 3. Suppose (B<b3>,C<c3>,A<3,b3>) is an M fm-natural Courant algebroid on T ⊕ T∗ from

closed 3-forms. Denote a := B<b3>, < −,− >:= C<c3> and [[−,−]] := A<3,b3>. Let ρ1 = 0 ⊕ ω1 and ρ2 = X2
⊕ 0.

Then by (C4) we get
0 ⊕ b3LX2ω1 = a∗(diX2ω1) .

Putting X2 = ∂
∂x1 and ω1 = x1dx2, we get b3dx2 = 0, i.e. dx2 = 0 (as b3 , 0). Contradiction.

Lemma 3.6. Let i ∈ {1, 2, 3}. Let ci, ai be real numbers with ai , 0 and ci , 0. Then (B<0>,C<ci>,A<i,ai>) is not
M fm-natural Courant algebroid on T ⊕ T∗ from closed 3-forms.

Proof. Suppose (B<0>,C<ci>,A<i,ai>) is anM fm-natural Courant algebroid on T ⊕ T∗ from closed 3-forms.
Denote a := B<0> = 0, < −,− >:= C<ci> and [[−,−]] := A<i,ai>.
Let ρ1 = X1

⊕ 0 and ρ2 = X2
⊕ 0. From (C3) we get [[ρ1, fρ2]] = f [[ρ1, ρ2]], and then (considering the

X(M)-parts) we get
ai[X1, f X2] = ai f [X1,X2] .

If X1 = X2 = ∂
∂x1 and f = x1 we get ai

∂
∂x1 = 0, i.e. ∂

∂x1 = 0. Contradiction.

Lemma 3.7. Let c4, a4, e be real numbers with a4 , 0 and c4 , 0. Then the triple (B<0>,C<c4>,A<4,a4,e>) is not
M fm-natural Courant algebroid on T ⊕ T∗ from closed 3-forms.

Proof. We proceed quite similarly as for the previous lemma.

Lemma 3.8. Let b4, c4, e be real numbers with b4 , 0 and c4 , 0. Then

(B<b4>,C<c4>,A<4,b4,e>)

is anM fm-natural Courant algebroid on T ⊕ T∗ from closed 3-forms.

Proof. Let (E, a, < −,− >, [[−,−]]) be a Courant algebroid and let k = b4 and q = c4. Multiplying both sides
of (C1) and (C2) for (E, a, < −,− >, [[−,−]]) by k2, we obtain (C1) and (C2) for (E, k · a, q· < −,− >, k · [[−,−]]).
Multiplying both sides of (C3) and (C4) for (E, a, < −,− >, [[−,−]]) by k, we obtain (C3) and (C4) for
(E, k · a, q· < −,− >, k · [[−,−]]). Multiplying both sides of (C5) for (E, a, < −,− >, [[−,−]]) by kq, we obtain
(C5) for (E, k · a, q· < −,− >, k · [[−,−]]).
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So, (E, k ·a, q· < −,− >, k · [[−,−]]) is a Courant algebroid, too. Consequently, if (B,C,A) is anM fm-natural
Courant algebroid on T ⊕ T∗ from closed 3-forms, then so is (kB, qC, kA).

Further, (B<1>,C<1>,A<4,1, 1
b4

e>) is anM fm-natural Courant algebroid on T ⊕ T∗ from closed 3-forms (see,
Example 1.1). Then (B<b4>,C<c4>,A<4,b4,e>) is an M fm-natural Courant algebroid on T ⊕ T∗ from closed
3-forms because of

(B<b4>,C<c4>,A<4,b4,e>) = (b4B<1>, c4C<1>, b4A<4,1, 1
b4

e>) .

The proof of the lemma is complete.

Lemma 3.9. Let c4 and e be real numbers with c4 , 0. Then (B<0>,C<c4>,A<4,0,e>) is an M fm-natural Courant
algebroid on T ⊕ T∗ from closed 3-forms.

Proof. One can easily observe that (C1) − − − (C5) hold. We propose to use the previous lemma and then
put b4 → 0.

Lemma 3.10. We have
(B<0>,C<c>,A<i,0>) = (B<0>,C<c>,A<4,0,0>)

for c , 0 and i = 1, 2, 3.

Proof. The lemma is clear.

4. The canonical Courant algebroids on TM ⊕ T∗M

Example 4.1. Let b and c be real numbers with c , 0. We have a Courant algebroid on E = TM⊕ T∗M, with anchor
map a = b · pr1, pseudo-euclidean metric

< X ⊕ α,Y ⊕ β >= cβ(X) + cα(Y)

and bracket
[[X ⊕ α,Y ⊕ β]] = (b[X,Y]) ⊕ (b(LXβ − iYdα)) .

When c = b = 1, we obtain the standard Courant algebroid on TM ⊕ T∗M.

Corollary 4.2. Let M be an m-dimensional manifold, m ≥ 3. Any Courant algebroid on TM ⊕ T∗M, which is
canonical (i.e. invariant under the morphism in the categoryM fm), is described in Example 4.1.

Proof. Clearly, the canonical Courant algebroids on TM ⊕ T∗M are theM fm-natural Courant algebroids on
TM ⊕ T∗M from closed 3-forms, which are independent of closed 3-forms. So, the result is a immediate
consequence of Theorem 3.2.

Corollary 4.3. Let M be an m-dimensional manifold, m ≥ 3. The standard Courant algebroid is the unique canonical
Courant algebroid on E = TM ⊕ T∗M with anchor a = pr1 : TM ⊕ T∗M→ TM and pseudo-euclidean metric

< X ⊕ α,Y ⊕ β >= β(X) + α(Y) .

5. TheM fm-natural Leibniz algebroids on T ⊕ T∗ from closed 3-forms

A Leibniz algebroid (on E) is a system (E, a, [[−,−]]) consisting of a vector bundle E → M with a base-
preserving bundle map a : E→ TM (called the anchor) and an R-bilinear bracket [[−,−]] : Γ(E)×Γ(E)→ Γ(E)
such that, for all ρ1, ρ2, ρ3

∈ Γ(E) and f ∈ C∞(M), the conditions (C1)—(C3) (from the definition of Courant
algebroid) hold, see e.g. [3].
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Definition 5.1. An M fm-natural Leibniz algebroid on T ⊕ T∗ from closed 3-forms is a tuple (B,A) consisting of
M fm-natural operators

B : Γclos(
3∧

T∗)⇝ Hom(T ⊕ T∗,T)

and

A : Γclos(
3∧

T∗)⇝ Lin2(Γ(T ⊕ T∗) × Γ(T ⊕ T∗),Γ(T ⊕ T∗))

in the sense of Definitions 2.5 and 2.1 (respectively) such that

(TM ⊕ T∗M,BΩ,AΩ)

is a Leibniz algebroid on TM ⊕ T∗M (with anchor BΩ and bracket AΩ) for any closed 3-formΩ on an m-manifold M.

Theorem 5.2. Let m ≥ 3. Any M fm-natural Leibniz algebroid (B,A) on T ⊕ T∗ from closed 3-forms is from the
collection

(B<b>,A<3,b>) , (B<b>,A<4,b,e>)

for all real numbers e and b.
Given real numbers e and b, the above tuples areM fm-natural Leibniz algebroids on T ⊕ T∗ from closed 3-forms.

Proof. This theorem is a consequence of the lemmas presented in this section.

Lemma 5.3. Let m ≥ 3. Let (B,A) be anM fm-natural Leibniz algebroid on T ⊕ T∗ from closed 3-forms. Then there
exist real numbers bi and ai and e for i = 1, ..., 4 such that

(B,A) = (B<b1>,A<1,a1>)

or
(B,A) = (B<b2>,A<2,a2>)

or
(B,A) = (B<b3>,A<3,a3>)

or
(B,A) = (B<b4>,A<4,a4,e>) .

Proof. It follows from Propositions 2.4 and 2.6.

Lemma 5.4. Let (B,A) be an M fm-natural Leibniz algebroid on T ⊕ T∗ from closed 3-forms and let bi, ai, e for
i = 1, ..., 4 be as in the previous lemma. Then aibi = b2

i for i = 1, ..., 4. Consequently, if bi , 0, then ai = bi.

Proof. The proof of this lemma is quite similar to the one of Lemma 3.4. It is a simple consequence of the
fact that the Leibniz algebroid (TM ⊕ T∗M,BΩ,AΩ) satisfies the condition (C2).

Lemma 5.5. Let b1 be a real number with b1 , 0. Then (B<b1>,A<1,b1>) is not M fm-natural Leibniz algebroid on
T ⊕ T∗ from closed 3-forms.

Proof. Suppose (B<b1>,A<1,b1>) is an M fm-natural Leibniz algebroid on T ⊕ T∗ from closed 3-forms. Let
M = Rm and Ω be a closed 3-form on Rm. Denote a = B<b1>

Ω
, [[−,−]] := A<1,b1>

Ω
and E = TRm

⊕ T∗Rm.
Consider ρ1 = X1

⊕ 0 and ρ2 = 0 ⊕ ω2 and f . Then from (C3) (considering the Ω1(M)-parts) we get
0 = b1LX1 ( f )ω2. Next, putting X1 = ∂

∂x1 and ω2 = dx1 and f = x1, we get b1dx1 = 0. Contradiction.

Lemma 5.6. Let b2 be a real number with b2 , 0. Then (B<b2>,A<2,b2>) is not M fm-natural Leibniz algebroid on
T ⊕ T∗ from closed 3-forms.
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Proof. Suppose (B<b2>,A<2,b2>) is an M fm-natural Leibniz algebroid on T ⊕ T∗ from closed 3-forms. Let
M = Rm and Ω be a closed 3-form on Rm. Denote a = B<b1>

Ω
, [[−,−]] := A<2,b2>

Ω
and E = TRm

⊕ T∗Rm.
Consider ρ1 = 0 ⊕ ω1 and ρ2 = X2

⊕ 0. Then from (C3) we get [[ρ1, fρ2]] = f [[ρ1, ρ2]] and then (considering
the Ω1(M)-parts) we get b2L f X2ω1 = b2 fLX2ω1. Then putting X2 = ∂

∂x1 and ω1 = dx1 and f = x1, we get
b2dx1 = 0. Contradiction.

Lemma 5.7. Let i ∈ {1, 2, 3}. Let ai be a real number with ai , 0. Then (B<0>,A<i,ai>) is notM fm-natural Leibniz
algebroid on T ⊕ T∗ from closed 3-forms.

Proof. Suppose (B<0>,A<i,ai>) is anM fm-natural Leibniz algebroid on T ⊕ T∗ from closed 3-forms. Denote
a := B<0> = 0 and [[−,−]] := A<i,ai>. Let ρ1 = X1

⊕ 0 and ρ2 = X2
⊕ 0. Then from (C3), considering the

X(M)-parts, we get

ai[X1, f X2] = ai f [X1,X2] .

If X1 = X2 = ∂
∂x1 and f = x1 we get ai

∂
∂x1 = 0, i.e. ∂

∂x1 = 0. Contradiction.

Lemma 5.8. Let a4 and e be real numbers with a4 , 0. Then (B<0>,A<4,a4,e>) is notM fm-natural Leibniz algebroid
on T ⊕ T∗ from closed 3-forms.

Proof. We proceed quite similarly as for the previous lemma.

Lemma 5.9. Let b4, e be real numbers. Then (B<b4>,A<4,b4,e>) is anM fm-natural Leibniz algebroid on T ⊕ T∗ from
closed 3-forms.

Proof. It is clear because (B<b4>,C<c>,A<4,b4,e>) is anM fm-natural Courant algebroid on T ⊕ T∗ from closed
3-forms (Theorem 3.2).

Lemma 5.10. Let b3 be a real number. Then (B<b3>,A<3,b3>) is anM fm-natural Leibniz algebroid on T ⊕ T∗ from
closed 3-forms.

Proof. We verify it directly as follows. Let Ω be a closed 3-form on M. Denote a = B<b3>
Ω

, [[−,−]] := A<3,b3>
Ω

and E = TM ⊕ T∗M.
ad(C1) It follows immediately from Proposition 2.4.
ad(C2) Let ρi = Xi

⊕ ωi for i = 1, 2. Then

a([[ρ1, ρ2]]) = b2
3[X1,X2] = [b3X1, b3X2] = [a(ρ1), a(ρ2)] .

ad(C3) Let ρi = Xi
⊕ ωi for i = 1, 2. Then

[[ρ1, fρ2]] = (b3[X1, f X2]) ⊕ (b3LX1 ( fω2))

= (b3LX1 f · X2 + b3 f · [X1,X2]) ⊕ (b3 f · LX1ω2 + b3LX1 f · ω2)

= (b3LX1 f · X2
⊕ (b3LX1 f · ω2) + (b3 f · [X1,X2]) ⊕ (b3 f · LX1ω2)

= La(ρ1) f · ρ2 + f [[ρ1, ρ2]] .

The proof is completed.
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6. The canonical Leibniz algebroids on TM ⊕ T∗M

Example 6.1. Let b be a real number. We have the Leibniz algebroid on E = TM⊕T∗M, with anchor map a = b · pr1
and bracket

[[X ⊕ α,Y ⊕ β]] = (b[X,Y]) ⊕ (b(LXβ − iYdα)) .

Example 6.2. Let b be a real number. We have the Leibniz algebroid on E = TM⊕T∗M, with anchor map a = b · pr1
and bracket

[[X ⊕ α,Y ⊕ β]] = (b[X,Y]) ⊕ (bLXβ) .

Corollary 6.3. Let M be an m-dimensional manifold, m ≥ 3. Any Leibniz algebroid on TM⊕T∗M, which is canonical
(i.e. invariant under the morphism in the categoryM fm), is described in Examples 6.1 and 6.2.

Proof. Clearly, the canonical Leibniz algebroids on TM ⊕ T∗M are theM fm-natural Leibniz algebroids on
TM ⊕ T∗M from closed 3-forms, which are independent of closed 3-forms. So, the result is a immediate
consequence of Theorem 5.2.

7. TheM fm-natural Lie algebroids on T ⊕ T∗ from closed 3-forms

By [6], a Lie algebroid (on E) is a system (E, a, [[−,−]]) consisting of a vector bundle E → M with a
base-preserving bundle map a : E → TM (called the anchor) and a skew-symmetric R-bilinear bracket
[[−,−]] : Γ(E) × Γ(E) → Γ(E) such that, for all ρ1, ρ2, ρ3

∈ Γ(E) and f ∈ C∞(M), the conditions (C1)—(C3)
(from the definition of Courant algebroid) hold.

Definition 7.1. AnM fm-natural Lie algebroid on T ⊕ T∗ from closed 3-forms is a tuple (B,A) consisting ofM fm-
natural operators

B : Γclos(
3∧

T∗)⇝ Hom(T ⊕ T∗,T)

and

A : Γclos(
3∧

T∗)⇝ Lin2(Γ(T ⊕ T∗) × Γ(T ⊕ T∗),Γ(T ⊕ T∗))

in the sense of Definitions 2.5 and 2.1 (respectively) such that

(TM ⊕ T∗M,BΩ,AΩ)

is a Lie algebroid on TM ⊕ T∗M (with anchor BΩ and bracket AΩ) for any closed 3-form Ω on an m-manifold M.

Theorem 7.2. Let m ≥ 3. AnyM fm-natural Lie algebroid (B,A) on T ⊕ T∗ from closed 3-forms is (B<0>,A<4,0,e>)
for a (arbitrary) real number e.

Proof. This theorem is a immediate consequence of Theorem 5.2. Indeed, the Lie algebroids are the Leibniz
ones with skew-symmetric brackets.

Corollary 7.3. ([7]) Let M be an m-dimensional manifold, m ≥ 3. Any Lie algebroid on TM ⊕ T∗M, which is
canonical (i.e. invariant under the morphism in the category M fm), is (TM ⊕ T∗M, 0, 0) (i.e. with anchor 0 and
bracket 0).
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8. TheM fm-natural dull algebroids on T ⊕ T∗ from closed 3-forms

By [3], a dull algebroid (on E) is a system (E, a, [[−,−]]) consisting of a vector bundle E→M with a base-
preserving bundle map a : E→ TM (called the anchor) and an R-bilinear bracket [[−,−]] : Γ(E)×Γ(E)→ Γ(E)
such that, for all ρ1, ρ2

∈ Γ(E) and f1, f2 ∈ C∞(M), the following hold:

(C2) a([[ρ1, ρ2]]) = [a(ρ1), a(ρ2)]

(D1) [[ f1ρ1, f2ρ2]] = f1 f2[[ρ1, ρ2]] + f1La(ρ1)( f2)ρ2
− f2La(ρ2)( f1)ρ1 .

Definition 8.1. An M fm-natural dull algebroid on T ⊕ T∗ from closed 3-forms is a tuple (B,A) consisting of
M fm-natural operators

B : Γclos(
3∧

T∗)⇝ Hom(T ⊕ T∗,T)

and

A : Γclos(
3∧

T∗)⇝ Lin2(Γ(T ⊕ T∗) × Γ(T ⊕ T∗),Γ(T ⊕ T∗))

in the sense of Definitions 2.5 and 2.1 (respectively) such that

(TM ⊕ T∗M,BΩ,AΩ)

is a dull algebroid on TM ⊕ T∗M (with anchor BΩ and bracket AΩ) for any closed 3-form Ω on an m-manifold M.

Theorem 8.2. Let m ≥ 3. AnyM fm-natural dull algebroid (B,A) on T ⊕ T∗ from closed 3-forms is (B<0>,A<4,0,e>)
for a real number e.

For any real number e, the tuple (B<0>,A<4,0,e>) is anM fm-natural dull algebroid on T ⊕ T∗ from closed 3-forms
because (as we know (Theorem 7.2)) this tuple is anM fm-natural Lie algebroid on T ⊕ T∗ from closed 3-forms.

Proof. Let (B,A) be an M fm-natural dull algebroid on T ⊕ T∗ from closed 3-forms. Because of the M fm-
invariance, it is sufficient to verify that BΩ = B<0> and AΩ = A<4,0,e>

Ω
for all closed 3-forms Ω on M = Rm.

Consider an arbitrary Ω in question. Denote [[−,−]] := AΩ and a := BΩ. By Proposition 2.6, a = a · pr1
for some (determined by B) real number a. By the respective result of [7], we can write

[[ρ1, ρ2]] = (b[X1,X2]) ⊕ (c1LX1ω2 + c2LX2ω1 + c3iX1 dω2 + c4iX2 dω1 + c5iX1 iX2Ω) ,

where b, c1, ..., c5 are the real numbers (determined by A), where ρ1 = X1
⊕ω1 and ρ2 = X2

⊕ω2 are arbitrary
sections on TM ⊕ T∗M. We will study the numbers a, b, c1, ..., c5.

First we put ρ1 = 0 ⊕ ω1 and ρ2 = X2
⊕ 0. Then (because of (D1)) we have [[ρ1, fρ2]] = f [[ρ1, ρ2]]. Then

0 ⊕ (c2L f X2ω1 + c4i f X2 dω1) = 0 ⊕ (c2 fLX2ω1 + c4 f iX2 dω1) ,

and then c2L f X2ω1 = c2 fLX2ω1. Putting f = x1, ω1 = dx1, X2 = ∂
∂x1 , we get

c2Lx1 ∂
∂x1

dx1 = c2x1
L ∂
∂x1

dx1 ,

i.e. c2dx1 = 0. Then c2 = 0.
Next, we put ρ1 = X1

⊕ 0 and ρ2 = 0 ⊕ ω2. Using (D1), we get

0 ⊕ (aLX1 ( f )ω2) + 0 ⊕ ( f c1LX1ω2 + c3 f iX1 dω2) = 0 ⊕ (c1LX1 ( fω2) + c3iX1 d( fω2)) .

Then
aLX1 ( f )ω2 = c1LX1 ( f )ω2 + c3iX1 ((d f ) ∧ ω2) .
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Next, putting f = x1 and ω2 = dx1 and X1 = ∂
∂x1 we get adx1 = c1dx1, i.e. a = c1. Then c3iX1 ((d f ) ∧ ω2) = 0.

Then for f = x1 and ω2 = dx2 and X1 = ∂
∂x1 we get c3dx2 = 0, i.e. c3 = 0.

Consequently, a = a · pr1 for some a ∈ R, and we can write

[[ρ1, ρ2]] = (b[X1,X2]) ⊕ (aLX1ω2 + c4iX2 dω1 + c5iX1 iX2Ω) ,

where b, c4, c5 are the real numbers (determined by A), where ρ1 = X1
⊕ ω1 and ρ2 = X2

⊕ ω2 are arbitrary
sections on TM ⊕ T∗M.

Next, we put ρ1 = X1
⊕ 0 and ρ2 = 0 ⊕ ω2. Then (using (D1)) we get [[1ρ1, ρ2]] = 1[[ρ1, ρ2]]. Then

0 ⊕ (aL1X1ω2) = 0 ⊕ (1aLX1ω2) ,

i.e.
aL1X1ω2 = 1aLX1ω2 .

Then for X1 = ∂
∂x1 and ω2 = dx1 and 1 = x1 we get adx1 = 0, i.e. a = 0.

Consequently, a = 0, and we can write

[[ρ1, ρ2]] = (b[X1,X2]) ⊕ (c4iX2 dω1 + c5iX1 iX2Ω) ,

where b, c4, c5 are the real numbers (determined by A), where ρ1 = X1
⊕ ω1 and ρ2 = X2

⊕ ω2 are arbitrary
sections on TM ⊕ T∗M.

Next, we put ρ1 = 0 ⊕ ω1 and ρ2 = X2
⊕ 0. Then (using (D1)) we get [[1ρ1, ρ2]] = 1[[ρ1, ρ2]]. Then

0 ⊕ (c4iX2 d(1ω1)) = 0 ⊕ (c41iX2 dω1) .

Then c4iX2 ((d1) ∧ ω1) = 0. Then for ω1 = dx1 and X2 = ∂
∂x1 and 12 = x2 we get −c4dx2 = 0, i.e. c4 = 0.

Consequently, a = 0, and we can write

[[ρ1, ρ2]] = (b[X1,X2]) ⊕ (c5iX1 iX2Ω) ,

where b, c5 are the real numbers (determined by A), where ρ1 = X1
⊕ ω1 and ρ2 = X2

⊕ ω2 are arbitrary
sections on TM ⊕ T∗M.

Next, we put ρ1 = X1
⊕ 0 and ρ2 = X2

⊕ 0. Then (using (D1)) we get [[1ρ1, ρ2]] = 1[[ρ1, ρ2]]. Then

(b[1X1,X2]) ⊕ (c5i1X1 iX2Ω) = (b1[X1,X2]) ⊕ (c51iX1 iX2Ω) .

Then b[1X1,X2] = b1[X1,X2]. Then for X1 = ∂
∂x1 and 1 = x2 and X2 = ∂

∂x2 we get −b ∂∂x1 = 0, i.e. b = 0.
Consequently, a = 0, and we can write

[[ρ1, ρ2]] = 0 ⊕ (eiX1 iX2Ω) ,

where e is the real number (determined by A), where ρ1 = X1
⊕ ω1 and ρ2 = X2

⊕ ω2 are arbitrary sections
on TM ⊕ T∗M. In other words BΩ = B<0> and AΩ = A<4,0,e>

Ω
for all closed 3-forms Ω on M = Rm. The proof

of the theorem is completed.
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