Filomat 39:24 (2025), 8329-8339

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL2524329H

University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

e/ A
) @

i &

gy as’

Do,

5
TIprpor®

Kato decomposition for left and right semi-B-Fredholm operators

A.Hamdan?, M. Berkani®*

?Department of Mathematics, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
YHonorary member of LIAB, Department of Mathematics, Science Faculty of Oujda, Mohammed I University, Morocco

Abstract. To complete the study of Fredholm type operators of [10] and [11], we define in this paper
the classes of left and right semi-B-Fredholm operators (Definition 3.1). Then we prove that an operator
T € L(X), X being a Banach space, is a left (resp. right) semi-B-Fredholm operator if and only if T is the
direct sum of a left (resp. right) semi-Fredholm operator and a nilpotent one. This result extend the earlier
characterization of B-Fredholm operators as the direct sum of a Fredholm operator and a nilpotent one

obtained in [4, Theorem 2.7] and extend the Kato decomposition [14, Theorem 4] for these new classes of
operators.

1. Introduction

Let X be a Banach space, let L(X) be the Banach algebra of bounded linear operators acting on the Banach
space X and let T € L(X). We will denote by N(T) the null space of T, by a(T) the nullity of T, by R(T) the
range of T and by B(T) its defect. If the range R(T) of T is closed and a(T) < oo (resp. (T) < o0 ), then T is
called an upper semi-Fredholm (resp. a lower semi-Fredholm) operator. A semi-Fredholm operator is an
upper or a lower semi-Fredholm operator. If both of a(T) and S(T) are finite, then T is called a Fredholm
operator and the index of T is defined by ind(T) = a(T) — B(T). The notations @, (X), P_(X) and P(X) will

designate respectively the set of upper semi-Fredholm, lower semi-Fredholm and Fredholm operators.
Define also the sets:

Dy(X) = {T € D,(X) | there exists a bounded projection of X onto R(T)}
and

D, (X) ={T € D_(X) | there exists a bounded projection of X onto N(T)}

Recall that the Calkin algebra over X is the Banach algebra, given by the quotient algebra C(X) = L(X)/K(X),
where K(X) is the closed ideal of compact operators on X. Let G, and G, be the right and left, respectively,
invertible elements of C(X). From [8, Theorem 4.3.2] and [8, Theorem 4.3.3], it follows that ®;(X) = IT"}(G))
and @,(X) = I[T"Y(G,), whereIT : L(X) — C(X) is the natural projection. We observe that ®(X) = @;(X)ND,(X).
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Definition 1.1. The elements of ©;(X) and ,(X) will be called respectively left semi-Fredholm operators and right
semi-Fredholm operators .

In 1958, in his paper [9], the author extended the concept of invertibility in rings and semigroups and
introduced a new kind of inverse, known now as the Drazin inverse.

Definition 1.2. An element a of a semigroup S is called Drazin invertible if there exists an element b € S written
b = a® and called the Drazin inverse of a, satisfying the following equations

ab = ba,b = ab?,d" = d*'b, (1)

for some nonnegative integer k. The least nonnegative integer k for which these equations holds is called the Drazin
index i(a) of a.

It follows from [9] that a Drazin invertible element in a semigroup has a unique Drazin inverse.
If A is a unital Banach algebra, it is easily seen that the conditions (1) for the Drazin invertibility of an
element a € A are equivalent to the existence of an idempotent p € A such that

ap = pa,ap is nilpotent and a + p is invertible.
In 1996, in [15, Definition 2.3], the author extended the notion of Drazin invertibility as follows.

Definition 1.3. An element a of a Banach algebra A will be said to be generalized Drazin invertible if there exists
b € A such that bab = b,ab = ba and aba — a is a quasinilpotent element in A.

In [15, Theorem 4.2], the author proved that a € A is generalized Drazin invertible if and only if there
exists € > 0, such that for all A € C such that 0 <| A |< ¢, the element a — Ae is invertible and he proved that
a generalized Drazin invertible element has a unique generalized Drazin inverse. He also proved that an
element a € A is generalized Drazin invertible if and only if there exists an idempotent p € A commuting
with g, such that a + p is invertible in A and ap is quasinilpotent.

Recall that in a ring A with a unit, fora € A, the commutant comm(a) = {x € A | xa = ax} and the bicommutant
comm?*(a) = {x € A | xy = yx for all y € comm(a)}.

Let A be a ring with a unit and let p be an idempotent element in A. In [3, Definition 2.2], the concepts
of left p—invertibility, right p—invertibility and p—invertibility where defined as follows.

Definition 1.4. Let a € A. We will say that

1. ais left p-invertible if ap = pa and a + p is left invertible in comm(p).
2. ais right p-invertible if ap = pa and a + p is right invertible in comm(p).
3. a is p-invertible if ap = pa and a + p is invertible.

Moreover in [3, Definition 2.11], left and right Drazin invertibility where defined as follows.

Definition 1.5. We will say that an element a € A is left Drazin invertible (respectively right Drazin invertible) if
there exists an idempotent p € A such that a is left p-invertible (respectively right p-invertible) and ap is nilpotent.

For T € L(X), we will say that a subspace M of X is T-invariant if T(M) C M. We define Ty : M — M
as Tip(x) = T(x), x € M. If M and N are two closed T-invariant subspaces of X such that X = M@ N, we
say that T is completely reduced by the pair (M, N) and it is denoted by (M, N) € Red(T). In this case we write
T = Tin @ T\ and we say that T is a direct sum of Tjy and Ty

It is said that T € L(X) admits a Kato decomposition, if there exists (M, N) € Red(T) such that Tj is a
Kato operator and Ty is nilpotent. Recall that an operator T € L(X) is a Kato operator if R(T) is closed and
N(T) c R(T") for every n € IN.
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Remark 1.6. For T € L(X), to say that a pair (M, N) of closed subspaces of X is in Red(T), means simply that
there exists an idempotent P € L(X) commuting with T. Indeed if (M, N) € Red(T), let P be the projection
on M in parallel to N. Then since (M,N) € Red(T), we see that P commutes with T. Conversely, given
an idempotent P € L(X) commuting with T, if we set M = P(X) and N = (I — P)X, then it is clear that
(M, N) € Red(T).

For T € L(X) and a nonnegative integer 1, define 17, to be the restriction of T to R(T") viewed as a map
from R(T") into R(T") (in particular Tjo; = T). If for some integer n the range space R(T") is closed and 17, is
an upper (resp. a lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-B-Fredholm
operator. Moreover, if T}y, is a Fredholm operator, then T is called a B-Fredholm operator (see [4] for more
details). The following theorem gives a characterization of B-Fredholm operators

Theorem 1.7. [4, Theorem 2.7] Let T € L(X). Then T is a B-Fredholm operator if and only if there exists two closed
subspaces (M, N) in Red(T) such that:

1. T(N) c N and Ty is a nilpotent operator,
2. T(M) c M and Ty is a Fredholm operator.

Definition 1.8. [13, Definition 2] An element a of a ring A with a unit e is quasinilpotent if, for every x commuting
with a, e — xa is invertible in A.

For a seek of notations simplification we set Co(X) = L(X)/Fo(X), Fo(X) being the ideal of finite rank
operators.

Definition 1.9. [11, Definition 3.3] Let T € L(X).

1. Let m : L(X) — Co(X) be the natural projection. We will say that 7(T) is generalized Drazin invertible
(resp. left generalized Drazin invertible, resp. right generalized Drazin invertible) in Co(X), if there exists an
idempotent P € L(X) such that (P) € comm?(r(T)), n(P)r(T) is quasi-nilpotent and 7(T) + 1(P) is invertible
(resp. T(T) left i(P)—invertible, resp. 7(T) right 7(P)— invertible) in Co(X).

2. We will say that TI(T) is generalized Drazin invertible (resp. left generalized Drazin invertible, resp. right
generalized Drazin invertible) in C(X), if there exists an idempotent P € L(X) such that I1(P) € comm(IL(T)),
II(P)II(T) is quasi-nilpotent and TI(T) + I1(T) is invertible (vesp. I1(T) left I1(P)—invertible, resp. I1(T) right
I1(P)— invertible) in C(X).

As mentionned before, generalized Drazin invertibility in Banach algebras was introduced in [15], while
generalized Drazin invertibility in rings was introduced in [16].

First let us recall the following important result, which links the idempotents of the Calkin algebra C(X)
to idempotents of L(X).

Lemma 1.10. [1, Lemma 1] Let p be an idempotent element of the Calkin algebra C(X). Then there exists an idempotent
P e L(X) such that TI(P) = p.

In [11, Theorem 2.1], we extended Lemma 1.10 to the case of the algebra Co(X).

Lemma 1.11. [11, Theorem 2.1] Let po be an idempotent element of the algebra Co(X). Then there exists an idempotent
P e L(X) such that i(P) = py.

As this paper is a continuation of [10] and [11], we begin by giving a brief summary of the results of
[10] and [11]. So letting p = II(P) being an idempotent in the Calkin algebra and using the results on
p-invertibility obtained in [3], we introduced the class ®p(X) of P-Fredholm (respectively the class @;p(X)
of left semi-P-Fredholm and the class ®,p(X) of right semi-P-Fredholm) operators, in a similar way as
the corresponding classes of Fredholm, left semi-Fredholm and right semi-Fredholm operators. Then we
observed that ©p(X) = O;p(X) N Dp(X).
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Moreover, using left and right generalized Drazin invertibility in the Calkin algebra, we introduced
the classes @jpp(X) and ®ypp(X) of left and right pseudo semi-B-Fredholm operators, completing in this
way the study of the class ®pg(X) of pseudo B-Fredholm operators inaugurated in [2] and proving that
Dpp(X) = Pipp(X) N Prpp(X).

Based on left and right Drazin invertibility in the Calkin algebra, we introduced the classes ®;yp(X),
D,qyp(X) of left and right weak semi-B-Fredholm operators, completing in this way the study of the class
Dqyp(X) of weak B-Fredholm operators inaugurated in [2] and proving that ®qyp(X) = Djqyp(X) N Dpqyp(X).

Though, the weak B-Fredholm operators and pseudo B-Fredholm operators, where not explicitly defined
in [7], they where characterized there by Drazin (generalized Drazin) invertible elements in the Calkin
algebra in [7, Theorem 6.1,ii] and [7, Theorem 6.1, i] respectively.

In summary, the study in [10] was based on different type of invertibility in the Calkin algebra. So the
classes of Fredholm type operators of [10] where defined modulo the Calkin algebra. As seen in [10], these
classes of operators obeys the following strict inclusions relations,

D(X) € Dp(X) & Dayp(X) S Ppp(X) € Pp(X)

where Op(X) = U DOp(X).
{PEL(X)|P2=P}

In a similar way, in [11], the classes of P-Fredholm operators and pseudo-B-Fredholm operators where
defined modulo the algebra Cy(X).

The aim of the present paper is to complete the study of Fredholm type operators done in [10] and
[11]. Here we define the classes of left and right semi-B-Fredholm operators (Definition 3.1) and we prove
that T is a left(resp. right) semi-B-Fredholm operator if and only if T is the direct sum of left (resp. right)
semi-Fredholm operator and a nilpotent one.

This result extend the earlier characterization of B-Fredholm operators as the direct sum of a Fredholm
operator and a nilpotent one obtained in [4, Theorem 2.7] and extend the Kato decomposition [14, Theorem
4] for these new classes of operators.

As a consequence, an operator T is a B-Fredholm operator if and only if 7(T) is left and right Drazin
invertible in the algebra Cy(X), where 7 : L(X) — Co(X) is the natural projection. As a corollary, it follows
immediately that left and right semi-B-Fredholm operators are stable under finite rank perturbation.

Remark 1.12. Unless mentioned otherwise, in all this paper, we will use the following notations. For
T € L(X) and P € L(X) an idempotent element of L(X), we will set X; = R(P),X> = N(P) = R(I - P),
Ty = (PTP),, and T> = (I - P)T(I - P),

e If P commutes with T, then we have T = T1 & T, here T; = T\xl and T, = T|X2. In this case (X1, X3) €
Red(T).

o If (P) commutes with 7(T) in Cy(X), then we have T = TP + T(I - P) = PTP+ (I - P)T(I — P) + F,
where F € L(X) is a finite rank operator. So T = T; @ T, + F. In this case (X, X;) € Red(PTP) and
(X1, X5) € Red((I - P)T(I — P)).

o] = P|X1/12 = (I - P)|X2.

e When we use the homomorphisms 7, we mean the natural projection from L(E) onto the algebra Cy(E),
E being a Banach subspace of X appearing in the context of the use of m.

2. Quasi-Fredholm Operators
Definition 2.1. [18] Let T € L(X) and let
AT)={nelN: Yme N m=>n= (R(T") N N(T)) c (R(T™) N N(T))}.

Then the degree of stable iteration dis(T) of T is defined as dis(T) = in fA(T) (with
dis(T) = oo if A(T) = 0).
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Definition 2.2. [18] Let T € L(X). Then T is called a quasi-Fredholm operator of degree d if there is an integer d € IN
such that:

(a) dis(T) = d,

(b) N(T) N R(T?) is a closed and complemented subspace of X.

(c) R(T) + N(T?) is a closed and complemented subspace of X.

In the sequel, the symbol QF(d) will denote the set of quasi-Fredholm operators of degree d.

Recall that an operator T € L(X) is called a regular operator if R(T) is closed, and both N(T) and R(T) are
complemented subspaces of X. See [19, C.12.1] and [19, Propositon 11.13.1] for more details.

Theorem 2.3. [18, Théoréme 3.2.2] Let T € L(X). Then T is a quasi-Fredholm operator of degree d,d > 1, if and only
if there exist two closed subspaces M, N of X and an integer d € IN such that X = M @ N and:

1. T(N) c N and T\y is a nilpotent operator of degree d,
2. T(M) ¢ M, N(Tjm) € NR((T)m)™) and Ty is a regular operator.

Remark 2.4. 1. Though Definition 2.2 and Theorem 2.3 had been considered in [18] in the case of Hilbert
spaces, it is mentioned in [18, Remarque, page 206] that it holds also in the case of Banach spaces,
with the same proof. In fact the same proof exactly holds in the case of Banach spaces, that’s why it
was not included in [4, Theorem 2.7] and nor included here. See also the comments in [19, C.22.5].

2. In [20], the authors gave an extensive study of the class of quasi-Fredholm operators under the
appellation of “Saphar type Operators”.

Definition 2.5. [19] Let T € L(X). Then T is called a weak quasi-Fredholm operator of degree d if there is an integer
d € N such that dis(T) = d and R(T%*1) is closed.

In the sequel, the symbol wQF(d) will denote the set of weak quasi-Fredholm operators of degree d.

Remark 2.6. 1. Every quasi-Fredholm operator is a weak quasi-Fredholm operator, but the converse
may not hold. If T is quasi-Freddholm operator of degree d, then following the same proof as in
[18, Proposition 3.3.2] (Proven in the case of Hilbert spaces, but the same proof holds also in Banach
spaces), we can prove that R(T%*1) is closed.

In the case of Hilbert spaces, the two classes coincides, that's QF(d) = wQF(d).

2. Weak quasi-Fredholm operators are called in [19] and [17] “Quasi-fredholm operators”. We call them
here weak quasi-Fredholm operators to avoid confusion with the class of quasi-Fredholm operators
of Definition 2.2. For the purpose of our paper, the definition given in Definition 2.5 is in fact an
equivalent definition to that used in [19] and [17].

3. It follows from [19, Lemma I11.22.18] that if T is weak quasi-Fredholm with dis(T) = d, then R(T") is
closed for every n > d.

4. If T € wQF(d), then from [19, Lemma I11.22.18], the subspaces N(T) N R(T%) and R(T) + N(T*) are closed
subspaces of X.

We will use the following notations from [19, p. 181]. For closed subspaces M, L of a Banach space X,
we write M C L (M is essentially contained in L) if there exists a finite-dimensional subspace F C X, such
that M C L + F. Equivalently dim(M/(M N L) = dim(M + L/M) < co. We will write M < Lif M C Land L C M.

Theorem 2.7. Let T € L(X) be a quasi-Fredholm operators and let F € L(X) be a finite rank operator, then T + F is a
quasi-Fredholm operator. Moreover, if d = dis(T) and d’ = dis(T + F), the following properties hold.

1. If N(T) N R(T?) is of finite dimension, then N(T + F) N R((T + F)*) is also of finite dimension.
2. If R(T) + N(T?) is of finite codimension, then R(T + F) + N((T + F)?) is also of finite codimension.
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Proof. As every quasi-Fredholm operator is a weak quasi-Fredholm, then from [19, C.22.4, Table 2], it
follows that T + F is also a weak quasi-Fredholm operator. For n large enough, using [17, Theorem] we have
N(T+F)NR((T+F)¥) = N(T+F)NR((T+F)") = N(T)NR(T") = N(T)NR(T?). As N(T)NR(T?) is a complemented
subspace of X, then from [19, Appendix 1, Theorem 25, iii)], it follows that N(T + F) N R((T + F)?) is also
complemented.

Now as T € wQF(d), then from [19, Corollary III.22], its adjoint T* € wQF(d) in X*. As F is finite
dimensional, then F* is also finite dimensional and from [19, C.22.4, Table 2], T* + F* is also a weak quasi-
Fredholm operator. We have d’ = dis(T* + F) and for n > d + d’, as R(T) + N(T*) is complemented, then
R(T)+N(T") is also complemented. So there exists a closed subspace E of X such that X = [R(T)+N(T")]®E.
From [19, Lemma II1.22.18], R(T") is closed and so

X* = (R(T) + N(T"))* ® E* = [N(T*) N R(T*)")] ® E* = [N(T*) N R(T*)*)] & E*.

From [17], we have N(T* + F*) N R((T* + F*)?) = N(T*) N R((T*)9). So there exists two finite dimensional
subspaces H1, H, of X* such that

N(T*) N R((T*)Y) € N(T* + F) nR((T* + F)") + H;
and
N(T* + F) N R((T* + F)*) ¢ N(T*) N R(T*)*) + H>.
Let P : X* — X" be the projection on N(T*) N R((T*)) in parallel to E*. Then

N(T* + F) N R((T* + F)*) ¢ N(T*) N R((T*)*) + (I - P)Hs.
and

X' =N(T)NR(TY)Y@E* c N(T* + FY)NR(T* + F)*)+ H; + E* c X"

Thus N(T* + F*) N R((T* + F')*) + E* is of finite codimension in X*. So (R(T + F) + N((T + F)*))* + E*
is closed. As R(T + F) + N((T + F)%) is closed (because T + F is a weak quasi-Fredholm operator) and E is
closed, then from [19, Appendix 1, Theorem 13] R(T + F) + N((T + F)*) + E is closed.

Let K be a finite dimensional subspace of X* such that

X* = [[N(T* + F) nR((T* + F)*)] + E*]® K. )

m
Set m = dim(K), then there exists {1, 92, ..., gm} C X* such that K = vect{g1, 92, ..., gm} = ((Ker(gi))*, where
i=1
vect{g1, g2, ..., gm} is the vector subspace of X* generated by the set {g1, g2, ..., gu}. SO

X' = [IN(T + F) N R((T + FY")] + E*] @ ([ |Ker(g:)*.
i=1

We have
[N(T* + F) N R((T* + F)")] N E* ¢ [N(T") N R(T")?) + (I - P)(H,)] N E*

and so
[N(T* + F) N R((T* + F)")]NE* c (I - P)(H,).

Hence [N(T* + F*) N R((T* + F*)¥)] N E* is of finite dimension. Let 1 be its dimension, then there exists
{fi, fa, --s fu} € E* such that

[N(T* + F) N R((T* + F)Y")1 N E*X = vect{fi, fo, ., fu} = (éKer( . (3)
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n
Let {x1, x5, ...,x,} C X such that ('ﬂlKer(fi)) @ vect{x1, x>, ...,x,} = X. Then
i=

E* = vect{fi, fa, ..., fu} ® [E ® vect{x1, X2, ..., x,}]* = (iriKer(ﬁ))l &Gt
where G = E & vect{x1, X, ..., X,}. Now using 3, we obtain
[IN(T* + F)NR(T* + F)")ING* = [N(T* + F)NR(T* + F)")INE* NG+
= (NKer(f)* N G* = {0}
With the aid of 2, we obtain

X = [[N(T* + F)NR((T* + F)")]+ E*]@K = [N(T* + F) nR(T" + F)¥)] @ G* ® K.
Then m
X' = [N(T" + F) N R(T" + F)Y")] @ [(E + vect{x1, X2, ..., Xu}) N (QlKer(gi)})]L

=[R(T + F) + N(T + F)")]* & [(E + vect{x1, X2, ..., X)) N [(ﬁKer(g,‘)]l

AsR(T+F)+N(T+F)") and (E+vect{x1, x3, ..., X)) N( 'rmﬁlKer(gi) are closed and the sum of their annihilators
i=
is closed, then from [19, Theorem 13], we have

X = [R(T + F) + N((T + F)*)] @ [(E + vect{x1, X3, ..., Xu}) N ('r:%lKer(g,-)})]

and [R(T + F) + N((T + F)¥)] is complemented in X. Finally we see that T + F is a quasi-Fredholm operator.

Now if N(T) N R(T¥) is of finite dimension, then T is an upper semi-B-Fredholm operator. From [6,
Proposition 2.7], T + F is also an upper semi-B-Fredholm operator. Then N(T + F) N R((T + F)¥) is of finite
dimension.

Similarly if R(T)+N(T?) is of finite codimension, then RIE(T—T,Q)
0 m So T is a lower semi-B-Fredholm operator. From [6, Proposition 2.7], T + F is also a lower semi-
R(T+F)")

R((T+F)¥'+1)

is of finite dimension because it is isomorphic
t

B-Fredholm operator. Hence, is of finite dimension and so R(T + F) + N((T + F)¥) is also of finite

X R(T+E)")

R(T+F)+N((T+F)?") R((T+F)¥'+1)

Example 2.8. 1. Let T € L(X) be a left semi-Fredholm operator. Then T is a quasi-Fredholm operator.
Indeed as N(T) is of finite dimension, then the sequence (N(T) N R(T")), is a stationary sequence.
Hence d = dis(T) is finite and N(T) N R(T?) is of finite dimension and so it is a complemented subspace
of X. Moreover, as T is left semi-Fredholm operator, then T is also a left semi-Fredholm operator. So
R(T?) is complemented in X and it is also the case of N(T) + R(T%), because N(T) is of finite dimension.
Therefore T is a quasi-Fredholm operator.

2. Similarly if T € L(X) is a right semi-Fredholm operator, then R(T) is of finite codimension. Then
the sequence (R(T) + N(T")), is an increasing sequence of subspaces of finite codimension. So it is a
stationary sequence and from [12, Lemma 2.2 and Lemma 3.4 ] (see the proof of [12, Lemma 3.5 ]),
we have:

codimension, because is isomorphic to O

N(T)NR(T") N(T™1) + R(T)

N(T) N R(T"*1) ~ N(T") + R(T)
Where the symbol =~ stands for isomorphic. Hence the sequence (N(T) N R(T")), is a stationary
sequence, d = dis(T) is finite, R(T)+N(T") is of finite codimension and so it is a complemented subspace
of X. Now, as T is right semi-Fredholm, then T%*lisalsoa right semi-Fredholm. So there exists a closed
subspace E of X such that X = N(T“*') @ E. Then we can easily verify that (N(T) N R(T%)) N T%(E) = {0}
and R(T?) = N(T) N R(T?) ® T%(E). As the sum and the intersection of the subspaces N(T) N R(T%)
and T*(E) are closed, then from Neubauer Lemma [19, C.20.4], T?(E) is closed. Thus N(T) N R(T%) is
complemented in R(T%). As R(T") is of finite codimension in X, then N(T) N R(T%) is complemented in
X.
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3. Left and Right semi-B-Fredholm operators

In addition to the decomposition theorem 1.7, we know from [5, Theorem 3.4] that T € L(X) is a B-
Fredholm operator if and only if 7(T) is Drazin invertible in the algebra Cy(X). This result and Definition
1.1 motivate the following definition of left and right semi-B-Fredholm operators.

Definition 3.1. Let T € L(X). We will say that:

1. T is a left semi-B-Fredholm operator if i(T) is left Drazin invertible in Co(X).
2. T is a right semi-B-Fredholm operator if m(T) is right Drazin invertible in Co(X).
3. T is a strong semi-B-Fredholm operator if it is left or right semi-B-Fredholm operator.

The study of strong semi- B-Fredholm operators involves the following classes of operators.

Definition 3.2. 1. T € L(X) is called a power finite rank=left semi-Fredholm operator if there exists (M, N) €
Red(T) such that Ty is a power finite rank operator and Ty € Oi(N).
2. T € L(X) is called a power finite rank=right semi-Fredholm operator if there exists (M, N) € Red(T) such that
T is a power finite rank-right operator and Ty € ®,(N).

To characterize left and right semi-B-Fredholm operators, we will use the following classes of operators,
which are subclasses of the corresponding classes of Definition 3.2.

Definition 3.3. 1. T € L(X) is called a nilpotent=left semi-Fredholm operator if there exists (M, N) € Red(T)
such that Ty is a nilpotent operator and Ty € ®i(N).
2. T € L(X) is called a nilpotent=right semi-Fredholm operator if there exists (M, N) € Red(T) such that Ty is
nilpotent operator and T\ € ®,(N).
3. T € L(X) is called a nilpotent=Fredholm operator if there exists (M, N) € Red(T) such that Ty is nilpotent
operator and T\ is a Fredholm operator.

Remark 3.4. In [20], the authors gave an extensive study of the classes of “essentially left (resp. right)
Drazin invertible operators” corresponding to the classes of nilpotent=left (resp. right) semi-Fredholm
operators we are considering here.

In the next theorem, we prove the equivalence of Drazin invertibility with left and right Drazin invert-
ibility for elements of Cy(X).

Theorem 3.5. Let T € L(X), then the following properties are equivalent.

1. n(T) is Drazin invertible in Cy(X).
2. 1(T) is left and right Drazin invertible in Co(X).

Proof. Since the implication 1) = 2) is trivial, we only need to prove the implication 2) = 1).

So assume that 7(T) is left and right Drazin invertible in Cy(X). From Lemma 1.11, there exists two
idempotents P,Q € L(X) such that n(P) € comm(n(T)), n(Q) € comm(r(T)), n(T) is left n(P)—invertible in
Co(X), n(T)m(P) isnilpotent in Co(X), 72(T) is right (Q)—invertible in Cy(X) and 7(T)1(Q) is nilpotent in Cy(X).
As 1t(T) is left m(P)—invertible in Cy(X), it has a left inverse 7t(S), S € L(X) such that n(S)(P) = n(P)7(S).
Then by [3, Theorem 3.15], (I — P)r(T)nt(I — P) is left invertible in the algebra nt(I — P)Co(X)7t(I — P) whose
identity element is (I — P), having as left inverse n(I — P)rt(S)r(I — P) which commutes with 7(P). So

(I — P)n(S)rn(I — P)n(I — P)r(T)e(I — P) = (I — P).

Similarly, as 7i(T) is right n(Q)—invertible in Cy(X), it has a right inverse t(R), R € L(X) such that n(R)rt(Q) =
(Q)n(R). Then nt(I — Q)r(T)m(I — Q) is right invertible in the algebra n(I — Q)Co(X)m(I — Q) whose identity
element is (I — Q), having as right inverse (I — Q)n(R)w(I — Q) which commutes with 7(Q). So

(I = Qm(T)n(I = Q)r(l = Qr(R)r(I = Q) = ne(I = Q).
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Forn € N,wehave i(T)" = (n(P)r(T)nt(P)+7n(I-P)r(T)r(I-P))" = (m(Q)(T)m(Q)+n(I-Q)m(T)m(I-Q))".
Hence for n large enough, n(T)" = n(I — P)rn(T)"ne(I — P) = n(I — Q)r(T)"ne(I — Q), because n(P)r(T)m(P) and
(Q)r(T)(Q) are nilpotent.

Then 0 = (P)n(T)" = n(P)rn(I — Q)n(T)"ne(I — Q). Thus n(P)re(I — Q) = n(P)e(I — Q)(T)" (I — Q)7 (I —
Q)r(R)"nt(I — Q) = 0. Therefore 1(P) = n(PQ).

Similarly we have 0 = n(T)"n(Q) = (I — P)(T)"n(I — P)r(Q). Thus (I — P)rn(Q) = n(I — P)n(S)"n(I -
P)n(I — P)yn(T)"ne(I — P)1e(Q) = 0. Therefore 11(Q) = 1t(PQ). and 7t(T) is Drazin invertible in Cy(X). O

We give now, in the next two theorems, the main results of this paper by establishing a Kato decompo-
sition for left and right semi-B-Fredholm operators.

Theorem 3.6. Let T € L(X). Then the following properties are equivalent:

1. T is a left semi-B-Fredholm operator.
2. T is a nilpotent=left semi-Fredholm operator

Proof. 1) = 2) Assume that T is a left semi-B-Fredholm operator, so 7(T) is left Drazin invertible in Cy(X).
Then there exist an idempotent p € Cy(X) so that:

o pri(T) = (T )p.

e pri(T) is nilpotent in Cy(X).

o There exists U € L(X) such that pri(U) = n(U)p and n(U)(n(T) + p)) = n(I).

From Lemma 1.11, there exists an idempotent P € L(X) such that n(P) = p.

Since 1i(T) and 7(P) commutes, we have n(PTP) = n(TP) and it follows that PTP is a power finite rank
operator. Moreover from Remark 1.12, we have

T=T:®T,+F 4)

where F is a finite rank operator.

Let us show that T is a left semi-Fredholm operator. We have n(U)(r(T)+n(P))) = n(I) and n(T)m(I-P) =
(I — P)n(T), so I = P)U(I =PI = P)(T+P)I -P)=1-P+ (- P)F(I-P)and [(I - P)U( - P)]x,T2 =
I, +[(I-P)F'(I - P)]ix,, where F’ is a finite rank operator. Hence T is a left semi-Fredholm operator, because
11(T>) is left invertible in the algebra Cy(X>).

If n is large enough, then (T7)" is a finite rank operator. So the operator (T1)p, : R(T}) — R(T}) is a
Fredholm operator. Thus T; is a B-Fredholm operator and from [4, Proposition2.6], T is a quasi-Fredholm
operator. Then obviously, T; ® T is a quasi-Fredholm operator.

Let S = T1 ® T, and let d = dis(S). Then we have N(S) N R(SY) = [N(T1) N R(T?)] & [N(T2) N R(T4)] and
R(S) + N(8%) = [R(T1) + N(T))] & [R(T2) + N(T3)].

As S is a quasi-Fredholm operator, then from [18, Théoreme 3.2.2] there exists two closed subspaces
M, N of X such that X = M@ N and

1. S(N) € N and Sy is a nilpotent operator of degree d,
2. S(M) € M,N(Sjm) € NR((Spm)™) and Sju is a regular operator.
m

e It is easily seen that N(Sps) = N(S) N R(S) = (N(T1) N R(T9)) & (N(T2) N R(T4)). As Ty is a B-Fredholm
operator and T is a left semi-Fredholm operator, then N(Sj) is of finite dimension.

e As Sy is a regular operator, then R(Sy) is complemented in M.

e Thus S is a nilpotent - left semi-Fredholm operator.

Now as T = S + F, with F of finite rank, then from Theorem 2.7, T is a quasi-Fredholm operator. So
from [18, Théoréme 3.2.2] there exists two closed subspaces M’, N’ of X and an integer 4" = dis(T) such that
X=M ®©N’and

1. T(N’) ¢ N” and Ty is a nilpotent operator of degree d’,
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2. T(M) ¢ M, N(Tpwr) € NR((Tipr)™) and T is a regular operator
m

e Similarly to the case of S and using [17], we have N(Tjy) = N(T)NR(T%) = N(S)NR(S9). As N(S)NR(5%)
is of finite dimension, then from Theorem 2.7, N(Tyr) is of finite dimension.

e As T)yr is a regular operator, then R(T}yr ) is complemented in M'.

e Thus T is a nilpotent - left semi-Fredholm operator and T admits a Kato decomposition because Tjy
is a Kato operator.

2) = 1) Conversely assume that there exists an idempotent P € L(X) such that PT = TP, T; is a nilpotent
operator and 75 is a left semi-Fredholm one. We have T = T; & T».

SoT1@T, +P=(T190)+P+ (08T =P[(T1®0)+D]P + (I - P)I; ® T2)(I — P). As T is a nilpotent
operator, then T7 ® 0 is also a nilpotent operator and 7((T; ®0) +I)) = n((T1 ®0)) + 1(I) is invertible in Cy(X).
Let 71(S1) be its inverse, where S; € L(X).

As T) is a left semi-Fredholm operator in L(X>), then from [11, Corollary 2.4], there exists S, € L(X3) such
that ST, I is a finite rank operator. Moreover I; ®S; commutes with P because (1 ®S,)P = P(I1®5;) = [;®0.
We observe that (1 @ T») is left invertible in Cy(X) having n(l; ® S,) as a left inverse. Then:

(PSP + (I = P)(I1 ® S2)(I — P)))r(T + P)

= n((PSLP + (I - P)(I, ® So)(I - P)))n(T1 ® T + P)
= n([PS1P + (I = P)(I; ® S2)(I — P)))(P[(T1 ® 0) + DIP + (I — P)(I; ® To)(I - P)) = n(l).

It is easily seen that n((PS1P + (I — P)(I; @ S2)(I — P))) commutes with 7(P).
Moreover we have n(P)n(T) = ni(T1 ® 0) is nilpotent in Cy(X) because T & 0 is a nilpotent operator. Thus T
is a left Drazin invertible in Co(X). O

As the proof of the next result is very similar to the proof of Theorem 3.6, we include it under a lightened
version.

Theorem 3.7. Let T € L(X). Then the following properties are equivalent:

1. T is a right semi-B-Fredholm operator.
2. T is a nilpotent - right semi-Fredholm operator.

Proof. 1) = 2) Assume that T is a right semi-B-Fredholm operator. As in the proof of Theorem 3.6 there
exists an idempotent P € L(X), such that X = P(X)®(I-P)(X) = X; ®X; and relatively to this decomposition,
we have

T=T\®T,+FL (5)

where T, is a B-Fredholm operator, T is a right semi-Fredholm operator and F is a finite rank operator.

Let S = T1 @ T, and let d = dis(S), then we have N(S) N R(5?) = N(T1) N R(T") ® N(T2) N R(T4) and
R(S) + N(8%) = (R(T1) + N(TY)) & (R(T2) + N(T3)).

As S is a quasi-Fredholm operator, then from [18, Théoreme 3.2.2] there exists two closed subspaces
M, N of X such that X = M@ N and:

1. S(N) € N and Sy is a nilpotent operator of degree d,
2. S(M) € M, N(Sm) € NR((Spm)™) and Sy is a regular operator

e As S is a regular operator, then N(S) is complemented in M.

e Similarly R(Sp) ® N = R(S) + N(S%) = (R(T) + N(Ti’)) ® (R(T>) + N(Tg)) is of finite codimension in X,
because T is a B-Fredholm operator and T5 is a left semi-Fredholm operator. Indeed (R(T7) + N (T‘li)) is of
finite codimension in X; = P(X) and (R(T) + N (Tg)) is of finite codimension in X, = (I — P)(X3). So there
exists a finite dimensional subspace E of X such that X = X; & X, = R(S5m) ®N® E = R(Sjm) © (N ® E). Then



A. Hamdan, M. Berkani / Filomat 39:24 (2025), 8329-8339 8339

M = R(Spm) ® [(N & E) N M] = R(Spm) + P’ (E), where P’ : X — X is the projection on M in parallel to N. Then
R(Spm) is of finite codimension in M, because E is of finite dimension.

e Thus S is a nilpotent=left semi-Fredholm operator.

Now as T = S + F, with F of finite rank, then from Theorem 2.7, T is a quasi-Fredholm operator. So from
[18, Théoreme 3.2.2] there exists two closed subspaces M’, N’ of X and an integer such that X = M’ @ N’
and:

1. T(N’) ¢ N” and T} is a nilpotent operator of degree d’,
2. TM') c M',N(Tr) € NR((T)mr)™) and Ty is a regular operator
m

e As T)yy is a regular operator, then N(Tr) is complemented in M’.

e Moreover R(Tjy) ® N’ = R(T) + N(T?) = R(S) + N(5%). As R(S) + N(5%) is of finite codimension in X,
then R(T)pr) ® N’ is also of finite codimension in X. Then with the same method as in the case of S, we can
see that R(T)yr) is of finite codimension in M’.

e Thus T is a nilpotent - right semi-Fredholm operator and T admits a Kato decomposition because Ty
is a Kato operator.

2) = 1) We follow the same method as in 2) = 1) in Theorem 3.6 [
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