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Abstract. To complete the study of Fredholm type operators of [10] and [11], we define in this paper
the classes of left and right semi-B-Fredholm operators (Definition 3.1). Then we prove that an operator
T ∈ L(X),X being a Banach space, is a left (resp. right) semi-B-Fredholm operator if and only if T is the
direct sum of a left (resp. right) semi-Fredholm operator and a nilpotent one. This result extend the earlier
characterization of B-Fredholm operators as the direct sum of a Fredholm operator and a nilpotent one
obtained in [4, Theorem 2.7] and extend the Kato decomposition [14, Theorem 4] for these new classes of
operators.

1. Introduction

Let X be a Banach space, let L(X) be the Banach algebra of bounded linear operators acting on the Banach
space X and let T ∈ L(X).We will denote by N(T) the null space of T, by α(T) the nullity of T, by R(T) the
range of T and by β(T) its defect. If the range R(T) of T is closed and α(T) < ∞ (resp. β(T) < ∞ ), then T is
called an upper semi-Fredholm (resp. a lower semi-Fredholm) operator. A semi-Fredholm operator is an
upper or a lower semi-Fredholm operator. If both of α(T) and β(T) are finite, then T is called a Fredholm
operator and the index of T is defined by ind(T) = α(T) − β(T). The notations Φ+(X),Φ−(X) and Φ(X) will
designate respectively the set of upper semi-Fredholm, lower semi-Fredholm and Fredholm operators.
Define also the sets:

Φl(X) = {T ∈ Φ+(X) | there exists a bounded projection of X onto R(T)}

and

Φr(X) = {T ∈ Φ−(X) | there exists a bounded projection of X onto N(T)}

.
Recall that the Calkin algebra over X is the Banach algebra, given by the quotient algebraC(X) = L(X)/K(X),
where K(X) is the closed ideal of compact operators on X. Let Gr and Gl be the right and left, respectively,
invertible elements of C(X). From [8, Theorem 4.3.2] and [8, Theorem 4.3.3], it follows that Φl(X) = Π−1(Gl)
andΦr(X) = Π−1(Gr),whereΠ : L(X)→ C(X) is the natural projection. We observe thatΦ(X) = Φl(X)∩Φr(X).
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Definition 1.1. The elements of Φl(X) and Φr(X) will be called respectively left semi-Fredholm operators and right
semi-Fredholm operators .

In 1958, in his paper [9], the author extended the concept of invertibility in rings and semigroups and
introduced a new kind of inverse, known now as the Drazin inverse.

Definition 1.2. An element a of a semigroup S is called Drazin invertible if there exists an element b ∈ S written
b = ad and called the Drazin inverse of a, satisfying the following equations

ab = ba, b = ab2, ak = ak+1b, (1)

for some nonnegative integer k. The least nonnegative integer k for which these equations holds is called the Drazin
index i(a) of a.

It follows from [9] that a Drazin invertible element in a semigroup has a unique Drazin inverse.
If A is a unital Banach algebra, it is easily seen that the conditions (1) for the Drazin invertibility of an
element a ∈ A are equivalent to the existence of an idempotent p ∈ A such that

ap = pa, ap is nilpotent and a + p is invertible.

In 1996, in [15, Definition 2.3], the author extended the notion of Drazin invertibility as follows.

Definition 1.3. An element a of a Banach algebra A will be said to be generalized Drazin invertible if there exists
b ∈ A such that bab = b, ab = ba and aba − a is a quasinilpotent element in A.

In [15, Theorem 4.2], the author proved that a ∈ A is generalized Drazin invertible if and only if there
exists ϵ > 0, such that for all λ ∈ C such that 0 <| λ |< ϵ, the element a − λe is invertible and he proved that
a generalized Drazin invertible element has a unique generalized Drazin inverse. He also proved that an
element a ∈ A is generalized Drazin invertible if and only if there exists an idempotent p ∈ A commuting
with a, such that a + p is invertible in A and ap is quasinilpotent.
Recall that in a ring A with a unit, for a ∈ A, the commutant comm(a) = {x ∈ A | xa = ax} and the bicommutant
comm2(a) = {x ∈ A | xy = yx for all y ∈ comm(a)}.

Let A be a ring with a unit and let p be an idempotent element in A. In [3, Definition 2.2], the concepts
of left p−invertibility, right p−invertibility and p−invertibility where defined as follows.

Definition 1.4. Let a ∈ A.We will say that

1. a is left p-invertible if ap = pa and a + p is left invertible in comm(p).
2. a is right p-invertible if ap = pa and a + p is right invertible in comm(p).
3. a is p-invertible if ap = pa and a + p is invertible.

Moreover in [3, Definition 2.11], left and right Drazin invertibility where defined as follows.

Definition 1.5. We will say that an element a ∈ A is left Drazin invertible (respectively right Drazin invertible) if
there exists an idempotent p ∈ A such that a is left p-invertible (respectively right p-invertible) and ap is nilpotent.

For T ∈ L(X), we will say that a subspace M of X is T-invariant if T(M) ⊂ M. We define T|M : M → M
as T|M(x) = T(x), x ∈ M. If M and N are two closed T-invariant subspaces of X such that X = M ⊕ N, we
say that T is completely reduced by the pair (M,N) and it is denoted by (M,N) ∈ Red(T). In this case we write
T = T|N ⊕ T|M and we say that T is a direct sum of T|N and T|M.

It is said that T ∈ L(X) admits a Kato decomposition, if there exists (M,N) ∈ Red(T) such that T|M is a
Kato operator and T|N is nilpotent. Recall that an operator T ∈ L(X) is a Kato operator if R(T) is closed and
N(T) ⊂ R(Tn) for every n ∈N.
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Remark 1.6. For T ∈ L(X), to say that a pair (M,N) of closed subspaces of X is in Red(T),means simply that
there exists an idempotent P ∈ L(X) commuting with T. Indeed if (M,N) ∈ Red(T), let P be the projection
on M in parallel to N. Then since (M,N) ∈ Red(T), we see that P commutes with T. Conversely, given
an idempotent P ∈ L(X) commuting with T, if we set M = P(X) and N = (I − P)X, then it is clear that
(M,N) ∈ Red(T).

For T ∈ L(X) and a nonnegative integer n, define T[n] to be the restriction of T to R(Tn) viewed as a map
from R(Tn) into R(Tn) (in particular T[0] = T). If for some integer n the range space R(Tn) is closed and T[n] is
an upper (resp. a lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-B-Fredholm
operator. Moreover, if T[n] is a Fredholm operator, then T is called a B-Fredholm operator (see [4] for more
details). The following theorem gives a characterization of B-Fredholm operators

Theorem 1.7. [4, Theorem 2.7] Let T ∈ L(X). Then T is a B-Fredholm operator if and only if there exists two closed
subspaces (M,N) in Red(T) such that:

1. T(N) ⊂ N and T|N is a nilpotent operator,
2. T(M) ⊂M and T|M is a Fredholm operator.

Definition 1.8. [13, Definition 2] An element a of a ring A with a unit e is quasinilpotent if, for every x commuting
with a, e − xa is invertible in A.

For a seek of notations simplification we set C0(X) = L(X)/F0(X),F0(X) being the ideal of finite rank
operators.

Definition 1.9. [11, Definition 3.3] Let T ∈ L(X).

1. Let π : L(X) → C0(X) be the natural projection. We will say that π(T) is generalized Drazin invertible
(resp. left generalized Drazin invertible, resp. right generalized Drazin invertible) in C0(X), if there exists an
idempotent P ∈ L(X) such that π(P) ∈ comm2(π(T)), π(P)π(T) is quasi-nilpotent and π(T)+π(P) is invertible
(resp. π(T) left π(P)−invertible, resp. π(T) right π(P)− invertible) in C0(X).

2. We will say that Π(T) is generalized Drazin invertible (resp. left generalized Drazin invertible, resp. right
generalized Drazin invertible) in C(X), if there exists an idempotent P ∈ L(X) such that Π(P) ∈ comm(Π(T)),
Π(P)Π(T) is quasi-nilpotent and Π(T) +Π(T) is invertible (resp. Π(T) left Π(P)−invertible, resp. Π(T) right
Π(P)− invertible) in C(X).

As mentionned before, generalized Drazin invertibility in Banach algebras was introduced in [15], while
generalized Drazin invertibility in rings was introduced in [16].

First let us recall the following important result, which links the idempotents of the Calkin algebra C(X)
to idempotents of L(X).

Lemma 1.10. [1, Lemma 1] Let p be an idempotent element of the Calkin algebraC(X).Then there exists an idempotent
P ∈ L(X) such that Π(P) = p.

In [11, Theorem 2.1], we extended Lemma 1.10 to the case of the algebra C0(X).

Lemma 1.11. [11, Theorem 2.1] Let p0 be an idempotent element of the algebraC0(X).Then there exists an idempotent
P ∈ L(X) such that π(P) = p0.

As this paper is a continuation of [10] and [11], we begin by giving a brief summary of the results of
[10] and [11]. So letting p = Π(P) being an idempotent in the Calkin algebra and using the results on
p-invertibility obtained in [3], we introduced the class ΦP(X) of P-Fredholm (respectively the class ΦlP(X)
of left semi-P-Fredholm and the class ΦrP(X) of right semi-P-Fredholm) operators, in a similar way as
the corresponding classes of Fredholm, left semi-Fredholm and right semi-Fredholm operators. Then we
observed that ΦP(X) = ΦlP(X) ∩ΦrP(X).
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Moreover, using left and right generalized Drazin invertibility in the Calkin algebra, we introduced
the classes ΦlPB(X) and ΦrPB(X) of left and right pseudo semi-B-Fredholm operators, completing in this
way the study of the class ΦPB(X) of pseudo B-Fredholm operators inaugurated in [2] and proving that
ΦPB(X) = ΦlPB(X) ∩ΦrPB(X).

Based on left and right Drazin invertibility in the Calkin algebra, we introduced the classes ΦlWB(X),
ΦrWB(X) of left and right weak semi-B-Fredholm operators, completing in this way the study of the class
ΦWB(X) of weak B-Fredholm operators inaugurated in [2] and proving that ΦWB(X) = ΦlWB(X)∩ΦrWB(X).

Though, the weak B-Fredholm operators and pseudo B-Fredholm operators, where not explicitly defined
in [7], they where characterized there by Drazin (generalized Drazin) invertible elements in the Calkin
algebra in [7, Theorem 6.1,ii] and [7, Theorem 6.1, i] respectively.

In summary, the study in [10] was based on different type of invertibility in the Calkin algebra. So the
classes of Fredholm type operators of [10] where defined modulo the Calkin algebra. As seen in [10], these
classes of operators obeys the following strict inclusions relations,

Φ(X) ⊊ ΦB(X) ⊊ ΦWB(X) ⊊ ΦPB(X) ⊊ ΦP(X)

where ΦP(X) =
⋃

{P∈L(X)|P2=P}
ΦP(X).

In a similar way, in [11], the classes of P-Fredholm operators and pseudo-B-Fredholm operators where
defined modulo the algebra C0(X).

The aim of the present paper is to complete the study of Fredholm type operators done in [10] and
[11]. Here we define the classes of left and right semi-B-Fredholm operators (Definition 3.1) and we prove
that T is a left(resp. right) semi-B-Fredholm operator if and only if T is the direct sum of left (resp. right)
semi-Fredholm operator and a nilpotent one.

This result extend the earlier characterization of B-Fredholm operators as the direct sum of a Fredholm
operator and a nilpotent one obtained in [4, Theorem 2.7] and extend the Kato decomposition [14, Theorem
4] for these new classes of operators.

As a consequence, an operator T is a B-Fredholm operator if and only if π(T) is left and right Drazin
invertible in the algebra C0(X), where π : L(X) → C0(X) is the natural projection. As a corollary, it follows
immediately that left and right semi-B-Fredholm operators are stable under finite rank perturbation.

Remark 1.12. Unless mentioned otherwise, in all this paper, we will use the following notations. For
T ∈ L(X) and P ∈ L(X) an idempotent element of L(X), we will set X1 = R(P),X2 = N(P) = R(I − P),
T1 = (PTP)|X1

and T2 = (I − P)T(I − P)|X2
.

• If P commutes with T, then we have T = T1 ⊕ T2, here T1 = T|X1
and T2 = T|X2

. In this case (X1,X2) ∈
Red(T).
• If π(P) commutes with π(T) in C0(X), then we have T = TP + T(I − P) = PTP + (I − P)T(I − P) + F,

where F ∈ L(X) is a finite rank operator. So T = T1 ⊕ T2 + F. In this case (X1,X2) ∈ Red(PTP) and
(X1,X2) ∈ Red((I − P)T(I − P)).
• I1 = P|X1 , I2 = (I − P)|X2 .
•When we use the homomorphisms π, we mean the natural projection from L(E) onto the algebraC0(E),

E being a Banach subspace of X appearing in the context of the use of π.

2. Quasi-Fredholm Operators

Definition 2.1. [18] Let T ∈ L(X) and let

∆(T) = {n ∈N : ∀m ∈N m ≥ n⇒ (R(Tn) ∩N(T)) ⊂ (R(Tm) ∩N(T))}.

Then the degree of stable iteration dis(T) of T is defined as dis(T) = in f∆(T) (with
dis(T) =∞ if ∆(T) = ∅).
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Definition 2.2. [18] Let T ∈ L(X). Then T is called a quasi-Fredholm operator of degree d if there is an integer d ∈N
such that:
(a) dis(T) = d,
(b) N(T) ∩ R(Td) is a closed and complemented subspace of X.
(c) R(T) +N(Td) is a closed and complemented subspace of X.
In the sequel, the symbol QF(d) will denote the set of quasi-Fredholm operators of degree d.

Recall that an operator T ∈ L(X) is called a regular operator if R(T) is closed, and both N(T) and R(T) are
complemented subspaces of X. See [19, C.12.1] and [19, Propositon II.13.1] for more details.

Theorem 2.3. [18, Théoréme 3.2.2] Let T ∈ L(X). Then T is a quasi-Fredholm operator of degree d, d ≥ 1, if and only
if there exist two closed subspaces M,N of X and an integer d ∈N such that X =M ⊕N and:

1. T(N) ⊂ N and T|N is a nilpotent operator of degree d,
2. T(M) ⊂M,N(T|M) ⊂ ∩

m
R((T|M)m) and T|M is a regular operator.

Remark 2.4. 1. Though Definition 2.2 and Theorem 2.3 had been considered in [18] in the case of Hilbert
spaces, it is mentioned in [18, Remarque, page 206] that it holds also in the case of Banach spaces,
with the same proof. In fact the same proof exactly holds in the case of Banach spaces, that’s why it
was not included in [4, Theorem 2.7] and nor included here. See also the comments in [19, C.22.5].

2. In [20], the authors gave an extensive study of the class of quasi-Fredholm operators under the
appellation of “Saphar type Operators”.

Definition 2.5. [19] Let T ∈ L(X). Then T is called a weak quasi-Fredholm operator of degree d if there is an integer
d ∈N such that dis(T) = d and R(Td+1) is closed.

In the sequel, the symbol wQF(d) will denote the set of weak quasi-Fredholm operators of degree d.

Remark 2.6. 1. Every quasi-Fredholm operator is a weak quasi-Fredholm operator, but the converse
may not hold. If T is quasi-Freddholm operator of degree d, then following the same proof as in
[18, Proposition 3.3.2] (Proven in the case of Hilbert spaces, but the same proof holds also in Banach
spaces), we can prove that R(Td+1) is closed.
In the case of Hilbert spaces, the two classes coincides, that’s QF(d) = wQF(d).

2. Weak quasi-Fredholm operators are called in [19] and [17] “Quasi-fredholm operators”. We call them
here weak quasi-Fredholm operators to avoid confusion with the class of quasi-Fredholm operators
of Definition 2.2. For the purpose of our paper, the definition given in Definition 2.5 is in fact an
equivalent definition to that used in [19] and [17].

3. It follows from [19, Lemma III.22.18] that if T is weak quasi-Fredholm with dis(T) = d, then R(Tn) is
closed for every n ≥ d.

4. If T ∈ wQF(d), then from [19, Lemma III.22.18], the subspaces N(T)∩R(Td) and R(T)+N(Td) are closed
subspaces of X.

We will use the following notations from [19, p. 181]. For closed subspaces M, L of a Banach space X,

we write M
e
⊂ L (M is essentially contained in L) if there exists a finite-dimensional subspace F ⊂ X, such

that M ⊂ L+ F. Equivalently dim(M/(M∩ L) = dim(M+ L/M) < ∞.We will write M e
= L if M

e
⊂ L and L

e
⊂M.

Theorem 2.7. Let T ∈ L(X) be a quasi-Fredholm operators and let F ∈ L(X) be a finite rank operator, then T + F is a
quasi-Fredholm operator. Moreover, if d = dis(T) and d′ = dis(T + F), the following properties hold.

1. If N(T) ∩ R(Td) is of finite dimension, then N(T + F) ∩ R((T + F)d′ ) is also of finite dimension.
2. If R(T) +N(Td) is of finite codimension, then R(T + F) +N((T + F)d′ ) is also of finite codimension.
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Proof. As every quasi-Fredholm operator is a weak quasi-Fredholm, then from [19, C.22.4, Table 2], it
follows that T+F is also a weak quasi-Fredholm operator. For n large enough, using [17, Theorem] we have
N(T+F)∩R((T+F)d′ ) = N(T+F)∩R((T+F)n) e

= N(T)∩R(Tn) = N(T)∩R(Td).As N(T)∩R(Td) is a complemented
subspace of X, then from [19, Appendix 1, Theorem 25, iii)], it follows that N(T + F) ∩ R((T + F)d′ ) is also
complemented.

Now as T ∈ wQF(d), then from [19, Corollary III.22], its adjoint T∗ ∈ wQF(d) in X∗. As F is finite
dimensional, then F∗ is also finite dimensional and from [19, C.22.4, Table 2], T∗ + F∗ is also a weak quasi-
Fredholm operator. We have d′ = dis(T∗ + F∗) and for n > d + d′, as R(T) + N(Td) is complemented, then
R(T)+N(Tn) is also complemented. So there exists a closed subspace E of X such that X = [R(T)+N(Tn)]⊕E.
From [19, Lemma III.22.18], R(Tn) is closed and so

X∗ = (R(T) +N(Tn))⊥ ⊕ E⊥ = [N(T∗) ∩ R((T∗)n)] ⊕ E⊥ = [N(T∗) ∩ R((T∗)d′ )] ⊕ E⊥.

From [17], we have N(T∗ + F∗) ∩ R((T∗ + F∗)d′ ) e
= N(T∗) ∩ R((T∗)d). So there exists two finite dimensional

subspaces H1,H2 of X∗ such that

N(T∗) ∩ R((T∗)d) ⊂ N(T∗ + F∗) ∩ R((T∗ + F∗)d′ ) +H1

and
N(T∗ + F∗) ∩ R((T∗ + F∗)d′ ) ⊂ N(T∗) ∩ R((T∗)d) +H2.

Let P : X∗ → X∗ be the projection on N(T∗) ∩ R((T∗)d) in parallel to E⊥. Then

N(T∗ + F∗) ∩ R((T∗ + F∗)d′ ) ⊂ N(T∗) ∩ R((T∗)d) + (I − P)H2.

and

X∗ = N(T∗) ∩ R((T∗)d) ⊕ E⊥ ⊂ N(T∗ + F∗) ∩ R((T∗ + F∗)d′ ) +H1 + E⊥ ⊂ X∗.

Thus N(T∗ + F∗) ∩ R((T∗ + F∗)d′ ) + E⊥ is of finite codimension in X∗. So (R(T + F) + N((T + F)d′ ))⊥ + E⊥

is closed. As R(T + F) + N((T + F)d′ ) is closed (because T + F is a weak quasi-Fredholm operator) and E is
closed, then from [19, Appendix 1, Theorem 13] R(T + F) +N((T + F)d′ ) + E is closed.

Let K be a finite dimensional subspace of X∗ such that

X∗ = [[N(T∗ + F∗) ∩ R((T∗ + F∗)d′ )] + E⊥] ⊕ K. (2)

Set m = dim(K), then there exists {11, 12, ..., 1m} ⊂ X∗ such that K = vect{11, 12, ..., 1m} = (
m⋂

i=1
Ker(1i))⊥,where

vect{11, 12, ..., 1m} is the vector subspace of X∗ generated by the set {11, 12, ..., 1m}. So

X∗ = [[N(T∗ + F∗) ∩ R((T∗ + F∗)d′ )] + E⊥] ⊕ (
m⋂

i=1

Ker(1i))⊥.

We have
[N(T∗ + F∗) ∩ R((T∗ + F∗)d′ )] ∩ E⊥ ⊂ [N(T∗) ∩ R((T∗)d) + (I − P)(H2)] ∩ E⊥

and so
[N(T∗ + F∗) ∩ R((T∗ + F∗)d′ )] ∩ E⊥ ⊂ (I − P)(H2).

Hence [N(T∗ + F∗) ∩ R((T∗ + F∗)d′ )] ∩ E⊥ is of finite dimension. Let n be its dimension, then there exists
{ f1, f2, ..., fn} ⊂ E⊥ such that

[N(T∗ + F∗) ∩ R((T∗ + F∗)d′ )] ∩ E⊥ = vect{ f1, f2, ..., fn} = (
n
∩
i=1

Ker( fi))⊥. (3)
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Let {x1, x2, ..., xn} ⊂ X such that (
n
∩
i=1

Ker( fi)) ⊕ vect{x1, x2, ..., xn} = X. Then

E⊥ = vect{ f1, f2, ..., fn} ⊕ [E ⊕ vect{x1, x2, ..., xn}]⊥ = (
n
∩
i=1

Ker( fi))⊥ ⊕ G⊥

where G = E ⊕ vect{x1, x2, ..., xn}. Now using 3, we obtain

[N(T∗ + F∗) ∩ R((T∗ + F∗)d′ )] ∩ G⊥ = [N(T∗ + F∗) ∩ R((T∗ + F∗)d′ )] ∩ E⊥ ∩ G⊥

= (
n
∩
i=1

Ker( fi))⊥ ∩ G⊥ = {0}.

With the aid of 2, we obtain

X∗ = [[N(T∗ + F∗) ∩ R((T∗ + F∗)d′ )] + E⊥] ⊕ K = [N(T∗ + F∗) ∩ R((T∗ + F∗)d′ )] ⊕ G⊥ ⊕ K.
Then

X∗ = [N(T∗ + F∗) ∩ R((T∗ + F∗)d′ )] ⊕ [(E + vect{x1, x2, ..., xn}) ∩ (
m
∩
i=1

Ker(1i)})]⊥

= [R(T + F) +N((T + F)d′ )]⊥ ⊕ [(E + vect{x1, x2, ..., xn)) ∩ [(
m
∩
i=1

Ker(1i)]⊥

As R(T+F)+N((T+F)d′ ) and (E+vect{x1, x2, ..., xn))∩(
m
∩
i=1

Ker(1i) are closed and the sum of their annihilators

is closed, then from [19, Theorem 13], we have

X = [R(T + F) +N((T + F)d′ )] ⊕ [(E + vect{x1, x2, ..., xn}) ∩ (
m
∩
i=1

Ker(1i)})]

and [R(T + F) +N((T + F)d′ )] is complemented in X. Finally we see that T + F is a quasi-Fredholm operator.
Now if N(T) ∩ R(Td) is of finite dimension, then T is an upper semi-B-Fredholm operator. From [6,

Proposition 2.7], T + F is also an upper semi-B-Fredholm operator. Then N(T + F) ∩ R((T + F)d′ ) is of finite
dimension.

Similarly if R(T)+N(Td) is of finite codimension, then R(Td)
R(Td+1) is of finite dimension because it is isomorphic

to X
R(T)+N(Td) . So T is a lower semi-B-Fredholm operator. From [6, Proposition 2.7], T+F is also a lower semi-

B-Fredholm operator. Hence, R((T+F)d′ )
R((T+F)d′+1) is of finite dimension and so R(T + F) +N((T + F)d′ ) is also of finite

codimension, because X
R(T+F)+N((T+F)d′ ) is isomorphic to R((T+F)d′ )

R((T+F)d′+1)

Example 2.8. 1. Let T ∈ L(X) be a left semi-Fredholm operator. Then T is a quasi-Fredholm operator.
Indeed as N(T) is of finite dimension, then the sequence (N(T) ∩ R(Tn))n is a stationary sequence.
Hence d = dis(T) is finite and N(T)∩R(Td) is of finite dimension and so it is a complemented subspace
of X.Moreover, as T is left semi-Fredholm operator, then Td is also a left semi-Fredholm operator. So
R(Td) is complemented in X and it is also the case of N(T)+R(Td), because N(T) is of finite dimension.
Therefore T is a quasi-Fredholm operator.

2. Similarly if T ∈ L(X) is a right semi-Fredholm operator, then R(T) is of finite codimension. Then
the sequence (R(T) + N(Tn))n is an increasing sequence of subspaces of finite codimension. So it is a
stationary sequence and from [12, Lemma 2.2 and Lemma 3.4 ] (see the proof of [12, Lemma 3.5 ]) ,
we have:

N(T) ∩ R(Tn)
N(T) ∩ R(Tn+1)

≃
N(Tn+1) + R(T)
N(Tn) + R(T)

Where the symbol ≃ stands for isomorphic. Hence the sequence (N(T) ∩ R(Tn))n is a stationary
sequence, d = dis(T) is finite, R(T)+N(Td) is of finite codimension and so it is a complemented subspace
of X.Now, as T is right semi-Fredholm, then Td+1 is also a right semi-Fredholm. So there exists a closed
subspace E of X such that X = N(Td+1)⊕ E. Then we can easily verify that (N(T)∩R(Td))∩ Td(E) = {0}
and R(Td) = N(T) ∩ R(Td) ⊕ Td(E). As the sum and the intersection of the subspaces N(T) ∩ R(Td)
and Td(E) are closed, then from Neubauer Lemma [19, C.20.4], Td(E) is closed. Thus N(T) ∩ R(Td) is
complemented in R(Td). As R(Td) is of finite codimension in X, then N(T)∩R(Td) is complemented in
X.
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3. Left and Right semi-B-Fredholm operators

In addition to the decomposition theorem 1.7, we know from [5, Theorem 3.4] that T ∈ L(X) is a B-
Fredholm operator if and only if π(T) is Drazin invertible in the algebra C0(X). This result and Definition
1.1 motivate the following definition of left and right semi-B-Fredholm operators.

Definition 3.1. Let T ∈ L(X).We will say that:

1. T is a left semi-B-Fredholm operator if π(T) is left Drazin invertible in C0(X).
2. T is a right semi-B-Fredholm operator if π(T) is right Drazin invertible in C0(X).
3. T is a strong semi-B-Fredholm operator if it is left or right semi-B-Fredholm operator.

The study of strong semi- B-Fredholm operators involves the following classes of operators.

Definition 3.2. 1. T ∈ L(X) is called a power finite rank-left semi-Fredholm operator if there exists (M,N) ∈
Red(T) such that T|M is a power finite rank operator and T|N ∈ Φl(N).

2. T ∈ L(X) is called a power finite rank-right semi-Fredholm operator if there exists (M,N) ∈ Red(T) such that
T|M is a power finite rank-right operator and T|N ∈ Φr(N).

To characterize left and right semi-B-Fredholm operators, we will use the following classes of operators,
which are subclasses of the corresponding classes of Definition 3.2.

Definition 3.3. 1. T ∈ L(X) is called a nilpotent-left semi-Fredholm operator if there exists (M,N) ∈ Red(T)
such that T|M is a nilpotent operator and T|N ∈ Φl(N).

2. T ∈ L(X) is called a nilpotent-right semi-Fredholm operator if there exists (M,N) ∈ Red(T) such that T|M is
nilpotent operator and T|N ∈ Φr(N).

3. T ∈ L(X) is called a nilpotent-Fredholm operator if there exists (M,N) ∈ Red(T) such that T|M is nilpotent
operator and T|N is a Fredholm operator.

Remark 3.4. In [20], the authors gave an extensive study of the classes of “essentially left (resp. right)
Drazin invertible operators” corresponding to the classes of nilpotent-left (resp. right) semi-Fredholm
operators we are considering here.

In the next theorem, we prove the equivalence of Drazin invertibility with left and right Drazin invert-
ibility for elements of C0(X).

Theorem 3.5. Let T ∈ L(X), then the following properties are equivalent.

1. π(T) is Drazin invertible in C0(X).
2. π(T) is left and right Drazin invertible in C0(X).

Proof. Since the implication 1)⇒ 2) is trivial, we only need to prove the implication 2)⇒ 1).
So assume that π(T) is left and right Drazin invertible in C0(X). From Lemma 1.11, there exists two

idempotents P,Q ∈ L(X) such that π(P) ∈ comm(π(T)), π(Q) ∈ comm(π(T)), π(T) is left π(P)−invertible in
C0(X), π(T)π(P) is nilpotent inC0(X), π(T) is rightπ(Q)−invertible inC0(X) andπ(T)π(Q) is nilpotent inC0(X).
As π(T) is left π(P)−invertible in C0(X), it has a left inverse π(S),S ∈ L(X) such that π(S)π(P) = π(P)π(S).
Then by [3, Theorem 3.15], π(I − P)π(T)π(I − P) is left invertible in the algebra π(I − P)C0(X)π(I − P) whose
identity element is π(I − P), having as left inverse π(I − P)π(S)π(I − P) which commutes with π(P). So

π(I − P)π(S)π(I − P)π(I − P)π(T)π(I − P) = π(I − P).

Similarly, as π(T) is right π(Q)−invertible in C0(X), it has a right inverse π(R),R ∈ L(X) such that π(R)π(Q) =
π(Q)π(R). Then π(I −Q)π(T)π(I −Q) is right invertible in the algebra π(I −Q)C0(X)π(I −Q) whose identity
element is π(I −Q), having as right inverse π(I −Q)π(R)π(I −Q) which commutes with π(Q). So

π(I −Q)π(T)π(I −Q)π(I −Q)π(R)π(I −Q) = π(I −Q).
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For n ∈N,we haveπ(T)n = (π(P)π(T)π(P)+π(I−P)π(T)π(I−P))n = (π(Q)π(T)π(Q)+π(I−Q)π(T)π(I−Q))n.
Hence for n large enough, π(T)n = π(I −P)π(T)nπ(I −P) = π(I −Q)π(T)nπ(I −Q), because π(P)π(T)π(P) and
π(Q)π(T)π(Q) are nilpotent.

Then 0 = π(P)π(T)n = π(P)π(I − Q)π(T)nπ(I − Q). Thus π(P)π(I − Q) = π(P)π(I − Q)π(T)nπ(I − Q)π(I −
Q)π(R)nπ(I −Q) = 0. Therefore π(P) = π(PQ).

Similarly we have 0 = π(T)nπ(Q) = π(I − P)π(T)nπ(I − P)π(Q). Thus π(I − P)π(Q) = π(I − P)π(S)nπ(I −
P)π(I − P)π(T)nπ(I − P)π(Q) = 0. Therefore π(Q) = π(PQ). and π(T) is Drazin invertible in C0(X).

We give now, in the next two theorems, the main results of this paper by establishing a Kato decompo-
sition for left and right semi-B-Fredholm operators.

Theorem 3.6. Let T ∈ L(X). Then the following properties are equivalent:

1. T is a left semi-B-Fredholm operator.
2. T is a nilpotent-left semi-Fredholm operator

Proof. 1) ⇒ 2) Assume that T is a left semi-B-Fredholm operator, so π(T) is left Drazin invertible in C0(X).
Then there exist an idempotent p ∈ C0(X) so that:
• pπ(T) = π(T)p.
• pπ(T) is nilpotent in C0(X).
• There exists U ∈ L(X) such that pπ(U) = π(U)p and π(U)(π(T) + p)) = π(I).
From Lemma 1.11, there exists an idempotent P ∈ L(X) such that π(P) = p.
Since π(T) and π(P) commutes, we have π(PTP) = π(TP) and it follows that PTP is a power finite rank

operator. Moreover from Remark 1.12, we have

T = T1 ⊕ T2 + F, (4)

where F is a finite rank operator.
Let us show that T2 is a left semi-Fredholm operator. We haveπ(U)(π(T)+π(P))) = π(I) andπ(T)π(I−P) =

π(I − P)π(T), so (I − P)U(I − P)(I − P)(T + P)(I − P) = I − P + (I − P)F′(I − P) and [(I − P)U(I − P)]|X2 T2 =
I2+ [(I−P)F′(I−P)]|X2 ,where F′ is a finite rank operator. Hence T2 is a left semi-Fredholm operator, because
π(T2) is left invertible in the algebra C0(X2).

If n is large enough, then (T1)n is a finite rank operator. So the operator (T1)[n] : R(Tn
1 ) → R(Tn

1 ) is a
Fredholm operator. Thus T1 is a B-Fredholm operator and from [4, Proposition2.6], T1 is a quasi-Fredholm
operator. Then obviously, T1 ⊕ T2 is a quasi-Fredholm operator.

Let S = T1 ⊕ T2 and let d = dis(S). Then we have N(S) ∩ R(Sd) = [N(T1) ∩ R(Tn
1 )] ⊕ [N(T2) ∩ R(Td

2)] and
R(S) +N(Sd) = [R(T1) +N(Td

1)] ⊕ [R(T2) +N(Td
2)].

As S is a quasi-Fredholm operator, then from [18, Théorème 3.2.2] there exists two closed subspaces
M,N of X such that X =M ⊕N and

1. S(N) ⊂ N and S|N is a nilpotent operator of degree d,
2. S(M) ⊂M,N(S|M) ⊂ ∩

m
R((S|M)m) and S|M is a regular operator.

• It is easily seen that N(S|M) = N(S) ∩ R(Sd) = (N(T1) ∩ R(Td
1)) ⊕ (N(T2) ∩ R(Td

2)). As T1 is a B-Fredholm
operator and T2 is a left semi-Fredholm operator, then N(S|M) is of finite dimension.
• As S|M is a regular operator, then R(S|M) is complemented in M.
• Thus S is a nilpotent - left semi-Fredholm operator.
Now as T = S + F, with F of finite rank, then from Theorem 2.7, T is a quasi-Fredholm operator. So

from [18, Théoréme 3.2.2] there exists two closed subspaces M′,N′ of X and an integer d′ = dis(T) such that
X =M′

⊕N′ and

1. T(N′) ⊂ N′ and T|N′ is a nilpotent operator of degree d′,
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2. T(M) ⊂M,N(T|M′ ) ⊂ ∩
m

R((T|M′ )m) and T|M′ is a regular operator

• Similarly to the case of S and using [17], we have N(T|M′ ) = N(T)∩R(Td′ ) e
= N(S)∩R(Sd).As N(S)∩R(Sd)

is of finite dimension, then from Theorem 2.7, N(T|M′ ) is of finite dimension.
• As T|M′ is a regular operator, then R(T|M′ ) is complemented in M′.
• Thus T is a nilpotent - left semi-Fredholm operator and T admits a Kato decomposition because T|M′

is a Kato operator.
2)⇒ 1) Conversely assume that there exists an idempotent P ∈ L(X) such that PT = TP, T1 is a nilpotent

operator and T2 is a left semi-Fredholm one. We have T = T1 ⊕ T2.
So T1 ⊕ T2 + P = (T1 ⊕ 0) + P + (0 ⊕ T2) = P[(T1 ⊕ 0) + I)]P + (I − P)(I1 ⊕ T2)(I − P). As T1 is a nilpotent

operator, then T1 ⊕ 0 is also a nilpotent operator and π((T1 ⊕ 0)+ I)) = π((T1 ⊕ 0))+π(I) is invertible in C0(X).
Let π(S1) be its inverse, where S1 ∈ L(X).

As T2 is a left semi-Fredholm operator in L(X2), then from [11, Corollary 2.4], there exists S2 ∈ L(X2) such
that S2T2−I2 is a finite rank operator. Moreover I1⊕S2 commutes with P because (I1⊕S2)P = P(I1⊕S2) = I1⊕0.
We observe that π(I1 ⊕ T2) is left invertible in C0(X) having π(I1 ⊕ S2) as a left inverse. Then:

π((PS1P + (I − P)(I1 ⊕ S2)(I − P)))π(T + P)

= π((PS1P + (I − P)(I1 ⊕ S2)(I − P)))π(T1 ⊕ T2 + P)

= π([PS1P + (I − P)(I1 ⊕ S2)(I − P)])π(P[(T1 ⊕ 0) + I)]P + (I − P)(I1 ⊕ T2)(I − P)) = π(I).

It is easily seen that π((PS1P + (I − P)(I1 ⊕ S2)(I − P))) commutes with π(P).
Moreover we have π(P)π(T) = π(T1 ⊕ 0) is nilpotent in C0(X) because T1 ⊕ 0 is a nilpotent operator. Thus T
is a left Drazin invertible in C0(X).

As the proof of the next result is very similar to the proof of Theorem 3.6, we include it under a lightened
version.

Theorem 3.7. Let T ∈ L(X). Then the following properties are equivalent:

1. T is a right semi-B-Fredholm operator.
2. T is a nilpotent - right semi-Fredholm operator.

Proof. 1) ⇒ 2) Assume that T is a right semi-B-Fredholm operator. As in the proof of Theorem 3.6 there
exists an idempotent P ∈ L(X), such that X = P(X)⊕ (I−P)(X) = X1⊕X2 and relatively to this decomposition,
we have

T = T1 ⊕ T2 + F, (5)

where T1 is a B-Fredholm operator, T2 is a right semi-Fredholm operator and F is a finite rank operator.
Let S = T1 ⊕ T2 and let d = dis(S), then we have N(S) ∩ R(Sd) = N(T1) ∩ R(Tn

1 ) ⊕ N(T2) ∩ R(Td
2) and

R(S) +N(Sd) = (R(T1) +N(Td
1)) ⊕ (R(T2) +N(Td

2)).
As S is a quasi-Fredholm operator, then from [18, Théorème 3.2.2] there exists two closed subspaces

M,N of X such that X =M ⊕N and:

1. S(N) ⊂ N and S|N is a nilpotent operator of degree d,
2. S(M) ⊂M,N(S|M) ⊂ ∩

m
R((S|M)m) and S|M is a regular operator

• As S|M is a regular operator, then N(S|M) is complemented in M.
• Similarly R(S|M) ⊕ N = R(S) + N(Sd) = (R(T1) + N(Td

1)) ⊕ (R(T2) + N(Td
2)) is of finite codimension in X,

because T1 is a B-Fredholm operator and T2 is a left semi-Fredholm operator. Indeed (R(T1) + N(Td
1)) is of

finite codimension in X1 = P(X) and (R(T2) + N(Td
2)) is of finite codimension in X2 = (I − P)(X2). So there

exists a finite dimensional subspace E of X such that X = X1 ⊕X2 = R(S|M)⊕N ⊕ E = R(S|M)⊕ (N ⊕ E). Then
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M = R(S|M) ⊕ [(N ⊕ E) ∩M] = R(S|M) + P′(E),where P′ : X→ X is the projection on M in parallel to N. Then
R(S|M) is of finite codimension in M, because E is of finite dimension.
• Thus S is a nilpotent-left semi-Fredholm operator.
Now as T = S+ F,with F of finite rank, then from Theorem 2.7, T is a quasi-Fredholm operator. So from

[18, Théorème 3.2.2] there exists two closed subspaces M′,N′ of X and an integer such that X = M′
⊕ N′

and:

1. T(N′) ⊂ N′ and T|N′ is a nilpotent operator of degree d′,
2. T(M′) ⊂M′,N(T|M′ ) ⊂ ∩

m
R((T|M′ )m) and T|M′ is a regular operator

• As T|M′ is a regular operator, then N(T|M′ ) is complemented in M′.

• Moreover R(T|M′ ) ⊕ N′ = R(T) + N(Td′ ) e
= R(S) + N(Sd). As R(S) + N(Sd) is of finite codimension in X,

then R(T|M′ ) ⊕N′ is also of finite codimension in X. Then with the same method as in the case of S, we can
see that R(T|M′ ) is of finite codimension in M′.
• Thus T is a nilpotent - right semi-Fredholm operator and T admits a Kato decomposition because T|M′

is a Kato operator.
2)⇒ 1) We follow the same method as in 2)⇒ 1) in Theorem 3.6
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