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Abstract. In a Banach algebra, we introduce a new type of generalized inverse called grn-Hirano inverse.
Firstly, several existence criteria and the equivalent definition of this inverse are investigated. Then, we dis-
cuss the relationship between the gr-Hirano invertibility of 4, b and that of the sum a +b under some weaker
conditions. Finally, as applications to the previous additive results, some equivalent characterizations for
the gr-Hirano invertibility of the anti-triangular matrix over Banach algebras are obtained.

1. Introduction

Let A be a complex Banach algebra with unit 1. For a € A, denote the spectrum and the spectral radius
of a by a(a) and r(a), respectively. A" and A" stand for the sets of all quasinilpotent (i.e. for all element
a € A such that o(a) ={0}) and nilpotent elements in A, respectively. It is well known that a € A" if

and only if (a) = 0. The double commutant of an element a € A is defined by comm?(a)={b € A : bc =
cb, for any c € A satistying ca = ac}.

As is known to all, Drazin inverse [5] is a kind of classic generalized inverse and has many applications.

Until now, there have been many types of generalized inverses related to the Drazin inverse. Here we list
some of them as follows.

The generalized Drazin inverse (or g-Drazin inverse) of a € A [7] is the element x € A which satisfies
xax =x, ax = xa and a — a?x € AN,
Such x, if it exists, is unique and will be denoted by a®.

An element x € A is called the generalized strong Drazin inverse (or gs-Drazin inverse) of a € A [10] if
it satisfies

xax =x, ax =xa and a —ax € AN,
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Recently, the notion of m-Hirano inverse [6] was introduced in Banach algebras. Namely, the n-Hirano
inverse of a € A is the unique element x satisfying

xax =x, ax =xa and a—a"*2x e AY,

for some n € IN. Motivated by this notion, we give the definition of the generalized n-Hirano inverse as
follows.
An element x € Ais called the generalized r-Hirano inverse (or gn-Hirano inverse) of a € A if it satisfies

xax =x, ax =xa and a—a"*2x e A

for some n € IN.

All the time different types of generalized inverses were investigated in several directions (existences,
sums, block matrices, reverse order laws, applications etc.) and in different settings (operator algebras,
C'-algebras, Banach algebras, rings etc.). For example, Drazin [5] proved that a € R is Drazin invertible if
and only if it is strongly m-regular (i.e. a™ € a™*'R N Ra"™*!, for some m € IN) in a ring R. Meanwhile, the
Drazin invertibility of the sum a + b was studied under the condition ab = ba = 0. Later, in a Banach algebra
Koliha [7] claimed that a € A has the generalized Drazin inverse if and only if 0 is not an accumulation
point of o(a). For the ring case, Koliha and Patri¢io [8] showed that a € R is generalized Drazin invertible
if and only if a is quasipolar. In [6], the authors considered the m-Hirano invertibility of a 2X2 operator
matrix. More results on the generalized inverses related to this paper can be found in [12, 13, 16, 17].

All the results mentioned above served as motivation for further consideration of the gr-Hirano inverse
in Banach algebras. This paper is composed of four sections. In Section 2, we characterize the gr-Hirano
inverse by means of the quasinilpotent elements. Then, the equivalent definition of this inverse is given.
In Section 3, sufficient and necessary conditions for the gr-Hirano invertibility of the sum a+b are obtained
under some weaker conditions. In Section 4, we investigated the grn-Hirano invertibility of several kinds
of anti-triangular matrices over Banach algebras.

Next, we introduce some well-known lemmas, which are related to the quasinilpotency in a Banach
algebra.

Lemma 1.1. [3, Lemma 2.1] Let a,b € A be such that ab = ba. The following hold:
(1) Ifa e A™ (or b € AM), then ab € AM!;
@) Ifa,b € A™ thena + b € AM,
Lemma 1.2. [1, Lemma 2.4] Let a,b € AT Ifab = 0, then a + b € A,
Lemma 1.3. [11, Lemma 1.1] Let n € N. Then, a € A™! if and only if a" € A,

Lemma 1.4. [2, Lemma 2.2] Let a € A. Then, a is gs-Drazin invertible if and only if a — a> € AM!.

2. Characterizations for the gr-Hirano invertibility

In this section, we investigate the existence criterion for the gr-Hirano inverse in terms of quasinilpotent
elements in Banach algebras. Then, using this characterization, we obtain the equivalent definition for the
grn-Hirano inverse.

Firstly, we give the relationship between the gn-Hirano inverse and the g-Drazin inverse. Let AY and
ATH denote the sets of all g-Drazin and gr-Hirano invertible elements in A, respectively.

Proposition 2.1. Let a € A. If x is the gn-Hirano inverse of a, then a € A and a® = x.

Proof. Suppose that x is the gn-Hirano inverse of 2 € A, i.e.
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xax = x,ax = xa and a — a"t2x € AM
for some n € IN. Hence, by Lemma 1.1(1), we get
a—a’x = (a—a"?x)(1 - ax) € AT,
So,ae Alanda® =x. O

From Proposition 2.1, we see that the gn-Hirano inverse is a subclass of the g-Drazin inverse. According
to the uniqueness of the g-Drazin inverse, we obtain that the gr-Hirano inverse is unique if it exists. So,
we use 7™ to denote the gr-Hirano inverse of 4 in a Banach algebra.

In [6, Theorem 2.1], the authors investigated the existence of m-Hirano inverse by means of the nilpotent
element. Inspired by this theorem, we obtain the corresponding result for the gr-Hirano inverse with the
help of Lemma 1.4.

Theorem 2.2. Let a € A. Then the following are equivalent:
(1) a € ATH;
(2) a—a"! e A™M for somen € N;
(3) a™ —a" € A™, for some m,n € N such that m # n.
Proof. (1) = (2). Suppose that a € AT, Then, there exists x € A such that
xax = x,ax = xa and a — a"t2x € AM
for some n € IN. Therefore, we have
a—a™ = (@ —a"2x)(1 + @™y — ") € AN,
(2) = (3). Itis obvious.
(3) = (1). Suppose that n > m. Note that

(a _ an—m+1)m — (11(1 _ an—m))m — am(l _ an—m)(l _ an—m)m—l
— (am _ a”)(l _ an—m)m—l

anda™-a" € A™!. So, by Lemma 1.1(1) and Lemma 1.3, we geta—a"""*1 € A™! which gives a" ™" —(a""™")* =
a" " g — a1y € AT, Thus, in view of Lemma 1.4 we obtain 2" is gs-Drazin invertible. Let x be the
gs-Drazin inverse of 4", i.e.

xa" My = x, xa"" = a""x and a"" — a" "x € AN,

Define y = a" " !x. Next, we prove thata € A" and a9™ = y. Observe the fact that x € comm?(a"™™).
So, xa = ax. Then, we have ay = ya and yay = y. It is clear that

0 — a2y = (g — 2 (@22 an2me g

Since
4 — a2l = (g = gnemily(] 4 gnem) ¢ Al
and
2n-2m+l _ gan-dmly _ gn-msl(gnom _ gn-my) ¢ gpomil
from Lemma 1.1(2) it follows that a — a"="*2y € AT This completes the proof. [
Applying Theorem 2.2, we get the following results.

Corollary 2.3. Leta € Aand k € N. Then, a € A7 if and only if a* € AT,
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Proof. Suppose that a € A™. By Theorem 2.2(1)(2), we get a — a™*! € A™!, for some n € IN. Then, we
deduce that

aF — (ak)m-l =g - (an+1)k — (11 _ an+1> i M1 ¢ ﬂqnil/
i=0

which implies a* € ATH, 4 '
For the converse, we have a — (a*)™*1 € AT for some m € IN. So, a* —a"+k € AN, Evidently, k # km +k.
According to Theorem 2.2(1)(3), it follows thata € A™. ]

Corollary 2.4. Let A € C be the root of unity. Then, a € AT if and only if A\a € AT,

Proof. Let us suppose that a € A™ and A is the root of unity. Then, a — a"*! € AT and AF = 1, for some
n,k € N. Thus, we obtain

Aa — (M)l = A (,1 _ an+1) (an(k—l) I I 1) c Al
Thus, Aa € AT, O

Remark 2.5. In general, the condition a € A and A € C do not imply Aa € AT™. For example, let A= C,a =1
and A = 2. Obviously, a € AT™. But, 2a = 2 ¢ AH.

Now, we are in the position to give the equivalent definition for the gn-Hirano inverse in a Banach
algebra.

Theorem 2.6. Let a,x € A. Then the following are equivalent:
(1) a € AT and a9 = x;
(2) xax = x, xa = ax and a" — ax € A", for some n € IN;
(3) xax = x, xa = ax and a" — a™x € A™!, for some m,n € N such that m —n # 1.
Proof. (1) = (2). It is clear that
xax = x,xa = ax and a — a"*2x € AM

for some n € IN. According to the proof of the implication (1) = (2) of Theorem 2.2 and Proposition 2.1, we
see thata — a"! € AT and a — a®x € A™!. Thus, by Lemma 1.1 we obtain

a' —ax = a"Ya - a’x) — (a — a"*)x € AL,
(2) = (3). It is trivial.
(3) = (1). Using item (3), we get
(a—a*x)" = a"(1 - ax) = (a" — a"x)(1 — ax) € AM,
i.e. a—a*x € A™!. Since m — n # 1, then we can consider the following two cases.
Case 1: Assume that m —n > 2. Then,
a" —a"™ ! = (a" — a"x) — a"2(a — ax) € AN,
Thus, we deduce that
(@—a™ "y = (@ — a1 — gmr )yl e Al
ie a—a""e AM. So,
a—a™ D2y = (g — a2x) + (a — A" ")ax € AT,
Case 2: Assume that n — m > 0. By the hypotheses a" — a"x € AT and ax = xa, we conclude that

(un—m+1 _ ax)m — (an _ amx)(an—m _ x)m—l c ﬂqm’l.
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Hence, we get a" "1 — ax € A™!, which yields
x — a”""“x — _x(an—m+l _ ax) e j{q””.
Then,
4 — a2y (g = 2x) 4 (x — " p)a? € A,
Therefore, by these two cases we obtain a € A and a7 = x. [

Remark 2.7. (i) In [11], Mosi¢ introduced the definition of the generalized n-strong Drazin inverse (or gns-Drazin
inverse), where n is a fixed positive integer. By Theorem 2.6(1)(2), we can see that if a € A is gns-Drazin invertible
then a is gn-Hirano invertible. Conversely, the gri-Hirano inverse is a kind of the gns-Drazin inverse.

(ii) Analogously to item (3) of Theorem 2.6, for the case m —n =1, we have a € A with a® = x if and only if
xax = x,xa = ax and a" — a"*'x € A, for some n € IN.

By Proposition 2.1 and Theorem 2.6, we immediately obtain the equivalent definition of the g-Drazin
inverse in Banach algebras as follows.

Theorem 2.8. Let a,x € A. Then the following are equivalent:
(1) ac A anda’ = x;
(2) xax=x,ax =xaanda —a"x € ﬂq”il,for somen € IN;
(3) xax =x,ax =xaand a™ —a"x € ﬂq””,for some m,n € IN.

Note that Theorem 2.8 is not a characterization for the gn-Hirano invertible elements, which can be seen
from the next example. Take 7 € A, clearly, 7 is not gn-Hirano invertible by Theorem 2.2. But, 7 is indeed
invertible and hence it is g-Drazin invertible.

3. Additive results on the gr-Hirano invertibility

Leta,b € Aand k € IN. Then, the elements a, b are said to satisfy the “kx” condition if

k
abl]a; =0, forany aq,ay,---, ax € {a,b}.
1=1
Obviously, if a, b satisfy the “kx” condition, then a, b satisfy the “(k + 1)*” condition, but b,a do not satisfy
the “kx” condition in general. Note that if ab = 0 then 4, b satisfy the “kx” condition, for any k € IN. Also,
fork =1,2,3, the “kx” condition becomes the following special cases, respectively.
(1) aba = ab® = 0;
(2) abab = aba® = ab’a = ab® = 0;
(3) ababa = abab* = aba® = aba*b = ab’a® = ab*ab = ab®a = ab* = 0.

The “kx” condition was introduced by Cvetkovi¢-1li¢ [4]. For two Drazin invertible elements 4,b in
a ring, the author [4] studied the sufficient condition for the Drazin invertibility of the sum a + b under
the “kx” condition. Motivated by this, in this section we will consider the equivalence of the gr-Hirano
invertibility between the elements 4, b and the sum a + b under the “kx” condition in a Banach algebra.

We begin with the following crucial lemma.
Lemma 3.1. Let k,i,j € IN. Ifa, b € A satisfy the “kx” condition, then

(D abe A" & 2 a+be A — (3)a' + b € AN,
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Proof. (1) = (2). Suppose thata, b € A, Note that

(@+b)*2 = a(a+b)* + (ba(a+ b + b*(a + b))
= x1+ (XZ + X3) .

Since a,b € A satisfy the “kx” condition, we have x1(xp + x3) = 0, xox3 = 0 and x% = 0. Obviously, x; =

k-1 k-1 2 . k-1
a*? + Y a7 (ab)(a + b)". Observe that (Z a“"(ab)(a + b)r) =0, ad*? € AM! and (Z a*"(ab)(a + b)r) a*? = 0.
r=0 r=0 r=0

Thus, from Lemma 1.2 we obtain x; € A, Similarly, we can get x3 € A™!. So, we have (a + b)*2 € A,
ie a+be AmMl

(2) = (1). Let us suppose that a + b € A™!. Applying the “kx” condition, we have the following
equations:

a(a + b)"a* = a1 and b(a + b)"bF*! = "2, for any m € IN.
Therefore, we get
lla" Y| = Jla(a + by"a*|| < llalF*[lli@a + b)™|l,

which together with a + b € A" imply that
r(@) = lim ([la*7) ™ = lim o™ < Lim [la]) %I +b)"]I7 = 0.
M— 00 m—oo m—oo

Therefore, a € A Similarly, we can verify b € Al

(1) & (3). Observe that a,bl satisfy the “kx” condition. Then, according to the equivalence of item (1)
and item (2), we have a'+ b e AMilif and onlyifa’, b/ € A Tn view of Lemma 1.3, we getthata'+b/ € Al
if and only if a,b € A™!. O

Now, we give the relationship between the gr-Hirano invertibility of 4, b and that of the sum a + b under
the “kx” condition in a Banach algebra as follows.

Theorem 3.2. Let k,i,j € N. Ifa,b € A satisfy the “kx" condition, then
Dabe A™ e 2)a+be A™  (3)a' + b € AT,

Proof. (1) = (2.)' Suppose that a4,b € AIH Qo there exist my, my, € N such that a — a™*! € AM! and
b—b™+l € AMl Take m = kmym,. Then, we getm > k and

a-— am+1 — (ﬂ _ am1+l) (1 +a™ 4 a2ml 4ot a(kmz—l)ml) c ﬂqm‘l.

i m=1 m—1
Similarly, b — b"*1 € AM Let Ty = Y, (-a""')ab(a + b) and Tp = Y, (-b™"1")ba(a + b)". Note that
r=0 r=0
x = (@+b)—(@a+b""?

- (a—am 1)+ (b - b"1) + (1 + o)
= X1+ X2+ X3.

Since a, b satisfy the “kx” condition, by computation we conclude that

(Zl)2 = O, (22)3 =0and 2122 =0.
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Hence, x3 € 'ﬂqm‘l' Clearly, x3 and x, satisfy the “kx” condition. Then, by Lemma 3.1 it follows that
Xz + X3 € AM In additiqn, note that x; and x, + x3 also satisfy the “kx” condition. Applying Lemma 3.1
again, we derive x € A7, which yields a + b € AT,

(2) = (1). Suppose thata+b € A™. Then, applying the above similar strategy, we can prove a, b € A
in terms of Lemma 3.1.

(1) & (3). By Corollary 2.3 and (1) & (2), we conclude that a,b € A™ if and only if a’ + b/ € AT, O

The following corollary can be directly obtained from Theorem 3.2.
Corollary 3.3. Leti,j€ Nanda,be A. Ifab =0, then
DabeA™ & 2)a+be A™  (3)a +b € ATH,

Following the same way as in the proof of Theorem 3.2, we have
k
Theorem 3.4. Let k,i,j € N. Ifa, b € A satisfy (H oq) ab =0 forany ay,ay,- -+ , o € {a, b}, then
=1

(1) a,be A™ s (2)a+be A™ > (3)a' + bl € ATH,

Remark 3.5. Let us compare the g-Drazin invertibility with gn-Hirano invertibility for the sum a + b under the
condition ab = 0. It is well known that the following holds: for a,b € A satisfying ab = 0, then

abeA' = a+be A

Until now, we do not know whether the converse of the above implication holds or not. However, the author [14]
recently proved that if ab = ba = 0, then

a+be A = a,b e A
Next, we continue to consider this problem about the g-Drazin invertibility.
Theorem 3.6. Let m,n,i,j € Nanda,b € A.

(i) Ifa™b = ba" = 0, then the following hold:

a+be Al = g e A

k+1
Furthermore, a = a* ((a + b)d) , where k = max{m, n}.

(i) If a™b = O, then the following hold:

a+be A and a(a +b)? = (a + b)'a = a € A"

Furthermore, a® = a™ ((a + b)d)m+1.
(iii) If ab = O, then the following hold:
a+be A and a(a+ b)* = (a +b)'a = a,b € A

Furthermore, a® = a ((a + b)‘i)2 and b = b ((a + b)d)z.
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Proof. (i). Assume that max{m,n} = k > 2 and let u = (a + b)*. Then, setting x; = a*uk1 and x, = a — akuk 1,
so we have a = x1 + x,. Next, we will show that x; € A? and x, € A™!. Let y= akyk+t, By the hypothesis
a"b = ba" = 0, we obtain a*(a + b) = (a + b)a*, which yields a*u = ua*. Thus, x;y = yx;. Also, we have

yx1y = akuk1 gk k=1 gk, k1
= 3k 3k+1
— ak(a + b)2ku3k+1

= gyl

=Yy

and

X -2y = akyk=1 — g8k 3k-1

— akuk—l _ ak(a + b)zku?ak—l
— akuk—l _ ukuk—l

=0.
Thus, x; € A? and x{ = y. Note the following equation:

x ((a +b)—(a+ b)zu) =(a- akuk’l)k ((a +b)—(a+ b)zu)

I
[Nem

—_

(
[ )
— k _ A= — k—l) k+1 _ k+
_(1:1;[1 (1 a1yt ) (u 1_ gk Zu)
_ 1 k=1 k| (kD _ ke k=2, k-
_(l:];[l(l a=lyk1g ))(u L —d*2(a + b)*"2u 1)
_ et ke D\ | (R 2k ke
—(l:];[l(l a1 ))(u 1 g%ky 1)
— (l:Hl (1 _ alluklakl)) ak (,1 akuk—l)
— xl;+1.

Similarly, ((a + b) — (a + b)*u) x5 = x§*1. Since (a + b) — (a + b)>u € A", we get x, € A" by Lemma 1.1(1)
and Lemma 1.3. In addition, we obtain

XXy = k=1 k+1 _ 4, 2k=2 2k
— uk—lakﬂ _ uzk—Z(a + b)k—lakﬂ
k—lak+1 _ uk—lak+1

u
=0.
Similarly, xpx1 = 0. Thus, in view of [7, Theorem 5.7] we deduce thata € A and a? = x‘f + xg =y.

For the case max{m, n} = 1, we have a®b = ba* = 0. Thus, this case turns into the previous case.

(ii). Let u = (a + b)? and z = a™u™*!. Next, using the definition of the g-Drazin inverse we prove that
a € A% and a’ = z. Since au = ua, we get az = za and

zaz = a2m+1u2m+2 — am(a + b)m+1u2m+2 — amum+1 =z,
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In addition, for any / € IN, we have

@ (@ +5) = (@ +b2u) =@ +b) (1 = (@ +b)u)
= gl _ gy,
= gl g (g 4 pymyme
_ g g gy
= g _ gl
= (a — az)"*!,
So, we get
r(a —a’z) = lim [[(a — a*2)"*|[w
= lim |2 - a*2)"*/|
< tim "]} lim | (2 + ) = (a + by2) |}
=0,
which means a — az € A, as required.
(iii). Let m = 1in item (ii), we obtaina € AYand a? = a ((a + b)d>2. Note that b(a+b)? = (a+b)b. Similarly,
by the definition of the g-Drazin inverse we can deduce that b € A% and ¥ = b ((a + b)d)z. O
By any item of Theorem 3.6 and [7, Theorem 5.7], we immedjiately infer
Corollary 3.7. [14, Corollary 3.7] Let i, j € Nand a,b € A. Ifab = ba = 0, then
() abe A — (ii)a+be A > (iii)a' + b € A

In order to continue considering the topic on the gn-Hirano invertibility of the sum a + b, we need to
prepare the following.

At the first we present a new condition. Namely, for a,b € A and k € N, we say that a, b satisfy the “k+”
condition, i.e.

k k
(H oq) ab = (H oq) ba, for any aq, ap,- -+, ax € {a, b}.
I=1 =1

We can see that if g, b satisfy the “k+” condition then 4, b satisfy the “(k + 1)+” condition. In addition, the “k*"
condition contains the following specializations:

(1) ab = ba;

(2) a’b = aba and b*a = bab; (k = 1)

(3) a°b = a?ba, ba®b = (ba)?, ab*a = (ab)*> and b?ab = b%a. (k = 2)

Let p € A be an idempotent (p> = p). Then we can represent element a € A as

a a
o 1),
4 2
P

where a1 = pap, a; = (1 —p)a(l —p), a3 = pa(l —p) and a4 = (1 — p)ap.

In what follows, by A, A, we denote the algebra pAp, (1 — p)A(1 — p), where p?> = p € A, respectively.
The following lemmas play an important role in the sequel.

Lemma 3.8. Let x,y € Aand p> = p € A. If x and y have the representations
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_fa ¢ gy = b 0
=l »] "™ Y=\c 4 !
P 1-p

(1) ace ?ITM and b € ﬂgml & x € A (resp. y € A,

then the following hold:

2) a € AT and b e AT = x € ATH (resp. y € ATH),

Proof. (1). Assume thata € ﬂ’iml and b € ﬂgml. Since oa(x) C 0.4,(a) U 0.4,(b), then we get c.4(x) = {0}, i.e.
x € Aml,

On the converse, note that (1 — p)xp = 0, i.e. pxp = xp. Then, by induction we obtain that a™ = (pxp)" =
px™p for any m € IN. Using the condition x € A", we conclude

r(@) = lim [la™||% = lim [[px™pll# < Lim |jp|l= ™|l lIpll# = 0.
mM—00 mM—>00 mM—00

So,a € \?('iml. Also, by 0.4,(b) € 04,(a) U oa(x) it follows that 6.4,(b) = {0}, i.e. b e ﬂgml.
(2). For any n € N, we have

1[4 ¢ a o\ fa-a A
X =o op) Tloos) T\ o0 p-pf
p P P

Suppose thata € A" and b € AJ™". Then, there exists m € N such thata—a" € A and b—b"+1 € A"
So, x — x™*1 € A by item (1). Therefore, we get x € A™. The sufficiency can be proved similarly. [

Remark 3.9. Item (2) of Lemma 3.8 is somewhat different from the g-Drazin inverse case, namely, if a € A9, then
b e AL if and only if x € A ([1, Theorem 2.3]).

Lemma 3.10. Let k € N. If a, b € A satisfy the “k+" condition, then the following hold:
(1) Ifa e A™ (or b € A", then ab € A™;
() Ifa € AM, then b € A™! if and only ifa + b € AM,
(3) Ifa,b € ATH, then ab € AT,
(4) Ifa € A™ then b € A™ if and only ifa + b € A,

Proof. (1). Since a,b satisfy the “k+” condition, then we conclude that (ab)"** = (ab)*a"b" for any n € N.
Applying the hypothesis a € AT or b € A™!, we obtain

r(ab) = lim [|(ab)"*|[+ < lim [|(ab)!||* lim [la”||* lim [Ib"|* =0,

which implies ab € A
(2). Suppose that a, b € A™!. Note that (a + b)**! = (a + b)*a + (a + b)*b. Let ¢ = (a + b)*a and d = (a + b)*D.
From the “k+” condition, we get cd = dc and ¢ = (a + b)*a" for any n € N. So,

r(c) = lim ||c"||+ < |la + bIfF lim ||la"]|» =0,
n—eo n—o0

which means ¢ € A, Similarly, we haved € A™!. Applying Lemma 1.1(2), it follows that (a+b)**! € A,
ie. a+beAM.

To prove the converse, let us suppose that a,a + b € A™. Obviously, —a,a + b satisfy the “k+” condition.
Then, we deduce that b = —a + (a + b) € AT by the proof of the necessity of item (2).

(3). In view of the condition a,b € A, we obtain a — a”*! € A" and b - b"*! € A for some m € IN.
By the “k+” condition, we get
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(ab)kﬂ _ (ab)m+k+1 — (ab)k(a _ am+1)b + (ab)ka"’*l(b _ bm+1).

Setting s = (ab)*(a — a™*)b and t = (ab)ka™*'(b — b™*!). Applying the “k+” condition again, we obtain
s" = (ab)F"(a — a"*1)"b" for any n € N, which implies

. 1 . 1
r(s) = lim [Is"|1 < llabl[“||bll lim |I(a — a"**)"||" = 0.
n—oo n—oo

So, s € A™MI. Similarly, t € A™!. Note that st = ts. Therefore, s + t € A™!, which gives ab € A™ by
Theorem 2.2(1)(3).

(4). Suppose that b € A and let p = bb7™!. Then, we consider the matrix representations of a and b
relative to the idempotent p:
a= M a3 and b = by 0 .
ag dp " 0 bz .

Obviously, b; € ?{1_1 with (bl);ll1 = p9™H  Also, by item (3) we get b; = b(bbgnH) € ?{?WH. From Proposition
2.1, it follows that by = b — b2b™ = b — b € AL
Note that

(bkﬂl bl bkll3b2

bk+1{1 bk+la
— bkl — pk+1, — 1 3
b2ﬂ4b1 b2a2b2)p =blab=b""a= ( )

b§+1a4 szrlle ,

Thus, we have b’l‘agbz = b’l‘”a3, S0, a3 = bl‘lu3b2, which implies a3 = b;"asb; for any n € IN. Since b, € ﬂqml,
we have
. 1 _ . 1 .. 1
lim [las||" < [|b7"]| lim [las||* lim [|b3]]7 = 0.
n—oo n—o0 n—oo

Hence, a3 = 0. In addition, it is easy to see that a1b; = bia; and ay, b, satisfy the “k+” condition.
Now, we have

a=|" 0 and a+b = a+b 0 .
as Ilgp as 112+b2p

From the condition a € A™!, it follows that a; € ﬂ;’"ﬂ and a, € ﬂgnil by Lemma 3.8(1). Applying item
(2), we can obtain a, + b, € ﬂgml, which implies a; + b, € ﬂgnH. Note that (p + bl‘lal) -(p+ b;lal)z =
—a (b + mb}?) € ﬂznﬂ by Lemma 1.1(1). Hence, we conclude p + bj'a; € .‘ﬂfﬂH. Then in view of item (3),
we obtain a; + by = by(p + b;'a1) € ﬂf"H. Finally, by Lemma 3.8(2) we deduce a + b € ATH.

The sufficiency of item (4) can be proved by the equality b = —a + (a + b) and the necessity of item (4). O

Now, we present the equivalent characterization for the gn-Hirano invertibility of the sum Aa+ ub under
the “k+” condition.

Theorem 3.11. Letk,i,j € N, pu € C be the root of unity and A € C. Ifa,b € AT™ satisfy the “k+" condition, then
(1) Aa+ pb € AT™ = (2) ai(Aa + pb)al € AT — (3)al (A1 + pa’™b) ) € AT,

Proof. (1) = (2). Evidently, @', Aa + ub satisfy the “k+” condition and ' € A’™. Hence, by Lemma 3.10(3)
we get a'(Aa + ub) € AT Since a'(Aa + ub), a/ also satisfy the “k»” condition, then a'(Aa + ub)a/ € ATH.

(2) = (1). Let p = aa?™. Then, as in the proof of Lemma 3.10(4) we have

_(m 0 _ b1 0 _ /\111+yb1 0
a—(o az)p'b_(bz; bz)p and )\a+yb—( by Aaz + b, p,
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where a7 € ﬂl‘l N ﬂ‘;}nH, (111)5211l =a9H and g, € ﬂgnﬂ. In addition, we have a1b; = byay, also, ay, b, satisfy
the “k+” condition. Using b € A™, by Lemma 3.8(2) we get b; € ﬂ?nH and b, € &’lgnH. So, from Corollary
2.4 it follows that ub, € fﬂgnH. Note that Aa, € ﬂgnil and Aay, ub, satisfy the “k+” condition. In view of
Lemma 3.10(4), we get Aay + uby € fﬂgnH. From Lemma 3.8(2), we claim that Aa + pb € A if and only if
Aay + uby € ﬂf”H. So, we only need to prove Aa; + ub; € ﬂan.

Note that
ay(Aay + pby) 0

al(Aa + b)) = o ; il
paybaa) ay(Aax + pbo)a, )

Since a'(Aa + ub)al € AT, then a?j (Aay + uby) € AT™. In addition, according to the hypothesis a € A,
we have a —a™! € A™! for some m € N. Then we get

al_l _ al—m—l = g9mH _ (agnH)nH—l — _(agnH)m+2(a _ am+1) c ﬂqm’l’

which implies a;l € ﬂfﬂH. So, we get that Aa; + ub; = (a{l)iﬂ' (a’;rj(/\al + ybl)) € ﬂfﬂH by Lemma 3.10(3),
which is what we need.
(2) © (3). It is clear that

i+j 1
ﬂi (/\1 + ‘uagng)gj = (al (/1]74‘}1&1 bl) 0 )

i+j
0 Aa, ,

Note that )\a;” € ﬂgnﬂ and by Lemma 3.10(1) we have a(Aaz + ybz)aé € ﬂgml. On the other hand, it is clear to
seea,” (Aay + uby) € ﬂ?nH if and only if a|” (Ap + pa;y'by) € ﬂf”H. Thus, we conclude that a’(Aa + ub)al € AT
is equivalent to 4’ (Al + pad™ b) al € ATH,

Remark 3.12. (i) One can see that (1) = (2) and (2) & (3) in Theorem 3.11 are valid even if b is not gm-
Hirano invertible. However, the following example shows that (2) = (1) does not hold in general if b is not
grn-Hirano invertible. Let A = Mp(C),i=j=2e N, A=p=1€C,a= (8 (l)) and b = (g g) Clearly,

a'(Aa+ ub)al =0 € AT, But, Aa + ub = (g ;) ¢ AIH,

(ii) By the proof of Theorem 3.11, it is clear that the condition i,j € IN can be replaced by i,j € IN U {0} and
i+ j# 0. For the case i = j = 0, the implication (3) = (2) also holds, that is to say, if u € C is the root of unity,
AeC,anda,be AT™H satisfy the “k+" condition, then we have

M+ pa?™p € AT = \a + ub € ATH,

But, in general the converse of the above implication is not true. For example, take A =C,a=0,b=1, A =2 and
p=1. Then, Aa+ ub =1 € A But, A1 + pa7™1b = 2 ¢ AT™!. If we assume that both A and p are the roots of
unity, then we have the following result: let A,y € C be the roots of unity and a,b € AT™ satisfy the “k+” condition,
then

AL+ pa9™p € AT — Aa + ub € AT,
Dual to Theorem 3.11, we have the following result.

k k
Theorem 3.13. Let k,i,j € IN, u € C be the root of unity and A € C. Ifa,b € A™ satisfy ab ] a; = ba [ a; for
1=1 1=1

any aq, @, -, ax € {a, b}, then

(1) Aa + ub € A™ > (2) ai(Aa + pb)a) € A™ — (3) a' (A1 + pa™b) ) € ATH,
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4. Anti-triangular matrices involving the gr-Hirano inverse

In this section, we mainly consider some sufficient and necessary conditions for anti-triangular matrices

(Z 8) over Banach algebras to be gn-Hirano invertible.

(1)) € M;(A) is Drazin invertible if and only if c € A
is Drazin invertible. But, for the gn-Hirano case, we do not have the corresponding result, which can be

seen from the following example. Let A = C and c = 1. Obviously, 1 € AIH But, G (1)) ¢ Mo (A)Y™, since

The authors [15] found the anti-triangular matrix (i

1

n+1
(1 1) - (1 1 ¢ My (A)™! for any n € IN. So, what is the equivalent conditions for (2 0

1 0/ {1 0
be gri-Hirano invertible?

) S Mz(ﬂ) to

At the beginning, we consider the equivalent conditions for the matrix (}: (1)) € M>(A) to be g-Hirano
invertible. The definition of the g-Hirano inverse was introduced by Chen and Sheibani [2], namely an
element a € A has g-Hirano inverse if there exists x € A such that

xax =x, ax = xa and a? —ax € AN,

Clearly, by Theorem 2.6 we see that the g-Hirano inverse is a subclass of the grn-Hirano inverse. Denote by
A the set of all g-Hirano invertible elements in A.

1

Theorem 4.1. Let M = (1
c 0

) € My(A). Then,

ce AT = M e My (A",

Proof. From [2, Theorem 2.4] it follows that M € My(A)?" if and only if N := M—M?® = — (?g ﬁ

) € Mp(A)Mi,
Therefore, we only need to prove that ¢ € AT is equivalent to N € M (AT

Suppose that c € A™!. Then, N = — ((C) (c)) (3 i) € My(A)™! by Lemma 1.1(1).

On the contrary, by N € Mp(A)7™ we get that (ZC CZ A ¢ /1) is invertible, for any A € C\{0}. Since
1 -1\{2c-A ¢\ _[-*+2c-A A
0 1 & c-AlT c? c—A)
—c2 —
we deduce that ( ¢ +C§C A c i\ )\) is invertible for any A € C\{0}. Hence, there exists ()ZC 5{] ) € Mp(A)
such that
-2+2c=A A \[x y\_(1 O
c? c-A)\z w/~l0 1
and

x y\[(-c*+2-A A ) (1 0
z w c? c—-Al"\0 1)
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So, we can obtain the following equations

(=c* +2c = )y + Aw = 0, 1
Fy+(c-Mw=1, 2)
x(—c* +2c—A)+yc* =1, (©)
Ax+ y(a—A) = 0. )

By the equation (1), we have w = 1 (c2 - 2c+ /\) y, which together with (2) imply
1 =c2y+%(c—/\)(02—2c+/\)y: %(63—202+3)\c—/\2)y.

So, y is left invertible. Similarly, using (3) and (4) we conclude that y is right invertible. Therefore, y is
invertibleand y' = 1 (03 —2¢% 4+ 3Ac - /\2). So, ¢ —2c%+3Ac—A?isinvertible. Hence, 0 ¢ o(c®—2c2+3Ac—A2)
for any A € C\{0}.

Now, assume that there exists t € C\{0} such that t € o(c). Then, we can find Ay € C\{0} satisfying
13 =282 + 3t — A3 = 0. So, 0 € o(c® — 2¢* + 3Aoc — A3), which contradicts with 0 ¢ o(c® — 2¢* + 3Ac — A?) for
any A € C\{0}. Hence, o(c) = {0},1e. c € Al 4

Remark 4.2. By Theorem 4.1, we get

11

c e AMl = M = (C 0) € Mp(A)T™H,

Howeuver, in general the converse of the above implication does not hold, which can be seen from the following example:

6
Example 4.3. Let A = C and ¢ = —1. Observe that ( ! 1) = (1 0). Therefore, we get that (—11 (1)) €

-1 0 01
gnH _ '
1 1) = ((1) 11). However, -1 ¢ A™!.

mH
My (A)Y™ and (_1 0

b) over Banach

Next, we will consider the gr-Hirano invertibility for the anti-triangular matrix (i 0

algebras. For future reference we state two lemmas as follows.

Lemma 4.4. Leta,b € A. Then, ab € A™ if and only if ba € AT,

n

Proof. 1f ab € AT™, then ab — (ab)"*! € A, for some m € N. By induction, we have ((ba)2 - (ba)m+2)

n
b(ab - (aby"*!)" (ab)'~'a, for any n € N. Thus,
lim | ((0a)” = (60)"*?)"II¥ < Il lim @b — (ab)" Y"1 = o0
So, (ba)? — (ba)"™*? € A™!, which means ba € AT, O
a c a 0
Lemma 4.5. Let M = (0 b) (or ( J b)) € My(A). Then,

(1) a € A™ and b € A™ — M € M, (A",
(2) a € A™ and b € ATH & M € My(A)TH.

10
00

a c
0 b
matrix representation of M relative to the idempotent P:

Proof. (1). Suppose that M = ( ) € My(A)™!. Let P = ( ) € My(A). Then we have the following
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A C a 0 00 0 ¢
M—(O B)P,whereA—(O 0),3—(0 b) andC—(O 0).

By Lemma 3.8(1), we obtain A € (PMa(A)P)™" and B € ((I - P)Ma(A)(I — P))™, i.e. opuap(A) = {0} and
o1-P)My(A)I-P)(B) = {0}. Note that opa,a)p(A) U{0} = oum,a)(A). So, om,a)(A) = {0}, which implies that AI- A
is invertible, for any A # 0. Hence, A1 —a is invertible, so 0.4(a) = {0}. Therefore, a € Al Similarly, we can
getb € AL On the contrary, applying o, (M) € 0a(a) U 0.4(b) we deduce M € M (A,

(2). By item (1) and Theorem 2.2, item (2) holds directly. O
Now, we are ready to present an existence criterion for the gn-Hirano inverse of the anti-triangular

matrix under the “kx” condition as follows.

b

Theorem 4.6. Let M = (Z 0

) € My(A) and k € IN. If a, be satisfy the “kx" condition, then

a,bc € AT —= M € My(A)™H.

= 6 6)

M € My(AY™H e N = (;1 g) ((1) S) - (‘{ %C) € My(AYH,

Proof. Note that
By Lemma 4.4, we have

Consider the following decomposition:

2
(Ol e,

Since a, bc satisfy the “kx” condition, so do Nj and N,. Therefore, by using Corollary 2.3, Theorem 3.2 and
Lemma 4.5(2) we deduce that

N € M(AYT™H e N? € My(A)T™ < N;,N, € Mp(A)Y™ — a,bc € AT,
as required. [

It is easy to see that if the hypothesis g, bc satisfy the “kx” condition in Theorem 4.6 is replaced by the
hypothesis bc,a satisfy the “kx” condition then this theorem still holds. So, we immediately obtain the
following corollary.

a b

Corollary 4.7. Let M = (c 0

) € My (A). If abc = 0 (or bea = 0), then
a,bc € ATH = M € My(A)TH.

Let us remark that in Corollary 4.7 the condition abc = 0 or bca = 0 in general can not be substituted by
acb = 0 or cab = 0, which can be seen from the following examples.
Example 4.8. Let H be an infinite-dimensional Hilbert space and A = B(H) be the algebra of all bounded linear
operators. Take M = (é ]3) € My(A), where A, Band C are defined as follows. Let A € B(H)\ {0} be a quasinilpotent
operator. Since A # 0, then A — 31 # —=31. So, there exists x # 0 such that (A —3I)x # —3x. Let t = (A —3[)x. Then,
t # —3x. Let us prove that t ¢ Span{x}. If we suppose that t = Ax, then (A —3)x = Ax,ie. (A-B+A))x =0,
which is possible only when A = =3, since A is quasinilpotent. Hence, t = —=3x, which is a contradiction. Now, take
y # 0 and define B € B(H) satisfying By = —t and B = 0 on Span{y}*. Next, let C € B(H) be such that Cx = 3y,
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Ct = 0and C = 0 on Span{x, t}*. Now, since R(B) = Span{t}, we get CB = 0. So, ACB = 0 and using the fact that
o(BC) U {0} = 6(CB) U {0}, we get o(BC) = {0}, i.e. BC is quasinilpotent. Clearly, we have A, BC € AT, Now, by

A=-31 B \(x\_((A-3Dx+By\_ [ t—-t \_ x A-31 B
( ¢ -31)(y)_( Cx ~3y )_(Sy—By)"O’Wge”h“t”(y)el\’( c —31)- Then, 3 € o(M).

Thus, 3 — 3" € 6(M — M™1), for any n € IN. Note that 3 — 3"*! # 0, for any n € N. Thus, M — M"*! ¢ A" for
any n € N, so, M ¢ My(A)7™H.

Example 4.9. Let A = M(C) and M = (Z (Z;) € My(A). If we take a = ((1) (1)) and b = ¢ = ((1) 8), then

a,bc € ATH gand cab = 0. But, M ¢ My(A)I™H,
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