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Abstract. In a Banach algebra, we introduce a new type of generalized inverse called gπ-Hirano inverse.
Firstly, several existence criteria and the equivalent definition of this inverse are investigated. Then, we dis-
cuss the relationship between the gπ-Hirano invertibility of a, b and that of the sum a+b under some weaker
conditions. Finally, as applications to the previous additive results, some equivalent characterizations for
the gπ-Hirano invertibility of the anti-triangular matrix over Banach algebras are obtained.

1. Introduction

LetA be a complex Banach algebra with unit 1. For a ∈ A, denote the spectrum and the spectral radius
of a by σ(a) and r(a), respectively. Aqnil andAnil stand for the sets of all quasinilpotent (i.e. for all element
a ∈ A such that σ(a) ={0}) and nilpotent elements in A, respectively. It is well known that a ∈ Aqnil if
and only if r(a) = 0. The double commutant of an element a ∈ A is defined by comm2(a)={b ∈ A : bc =
cb, for any c ∈ A satisfying ca = ac}.

As is known to all, Drazin inverse [5] is a kind of classic generalized inverse and has many applications.
Until now, there have been many types of generalized inverses related to the Drazin inverse. Here we list
some of them as follows.

The generalized Drazin inverse (or g-Drazin inverse) of a ∈ A [7] is the element x ∈ Awhich satisfies

xax = x, ax = xa and a − a2x ∈ Aqnil.

Such x, if it exists, is unique and will be denoted by ad.
An element x ∈ A is called the generalized strong Drazin inverse (or gs-Drazin inverse) of a ∈ A [10] if

it satisfies

xax = x, ax = xa and a − ax ∈ Aqnil.
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Recently, the notion of π-Hirano inverse [6] was introduced in Banach algebras. Namely, the π-Hirano
inverse of a ∈ A is the unique element x satisfying

xax = x, ax = xa and a − an+2x ∈ Anil,

for some n ∈ N. Motivated by this notion, we give the definition of the generalized π-Hirano inverse as
follows.

An element x ∈ A is called the generalizedπ-Hirano inverse (or gπ-Hirano inverse) of a ∈ A if it satisfies

xax = x, ax = xa and a − an+2x ∈ Aqnil,

for some n ∈N.
All the time different types of generalized inverses were investigated in several directions (existences,

sums, block matrices, reverse order laws, applications etc.) and in different settings (operator algebras,
C∗-algebras, Banach algebras, rings etc.). For example, Drazin [5] proved that a ∈ R is Drazin invertible if
and only if it is strongly π-regular (i.e. am

∈ am+1R ∩ Ram+1, for some m ∈ N) in a ring R. Meanwhile, the
Drazin invertibility of the sum a+ b was studied under the condition ab = ba = 0. Later, in a Banach algebra
Koliha [7] claimed that a ∈ A has the generalized Drazin inverse if and only if 0 is not an accumulation
point of σ(a). For the ring case, Koliha and Patrićio [8] showed that a ∈ R is generalized Drazin invertible
if and only if a is quasipolar. In [6], the authors considered the π-Hirano invertibility of a 2×2 operator
matrix. More results on the generalized inverses related to this paper can be found in [12, 13, 16, 17].

All the results mentioned above served as motivation for further consideration of the gπ-Hirano inverse
in Banach algebras. This paper is composed of four sections. In Section 2, we characterize the gπ-Hirano
inverse by means of the quasinilpotent elements. Then, the equivalent definition of this inverse is given.
In Section 3, sufficient and necessary conditions for the gπ-Hirano invertibility of the sum a+b are obtained
under some weaker conditions. In Section 4, we investigated the gπ-Hirano invertibility of several kinds
of anti-triangular matrices over Banach algebras.

Next, we introduce some well-known lemmas, which are related to the quasinilpotency in a Banach
algebra.

Lemma 1.1. [3, Lemma 2.1] Let a, b ∈ A be such that ab = ba. The following hold:

(1) If a ∈ Aqnil (or b ∈ Aqnil), then ab ∈ Aqnil;

(2) If a, b ∈ Aqnil, then a + b ∈ Aqnil.

Lemma 1.2. [1, Lemma 2.4] Let a, b ∈ Aqnil. If ab = 0, then a + b ∈ Aqnil.

Lemma 1.3. [11, Lemma 1.1] Let n ∈N. Then, a ∈ Aqnil if and only if an
∈ A

qnil.

Lemma 1.4. [2, Lemma 2.2] Let a ∈ A. Then, a is gs-Drazin invertible if and only if a − a2
∈ A

qnil.

2. Characterizations for the gπ-Hirano invertibility

In this section, we investigate the existence criterion for the gπ-Hirano inverse in terms of quasinilpotent
elements in Banach algebras. Then, using this characterization, we obtain the equivalent definition for the
gπ-Hirano inverse.

Firstly, we give the relationship between the gπ-Hirano inverse and the g-Drazin inverse. Let Ad and
A
1πH denote the sets of all g-Drazin and gπ-Hirano invertible elements inA, respectively.

Proposition 2.1. Let a ∈ A. If x is the gπ-Hirano inverse of a, then a ∈ Ad and ad = x.

Proof. Suppose that x is the gπ-Hirano inverse of a ∈ A, i.e.
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xax = x, ax = xa and a − an+2x ∈ Aqnil,

for some n ∈N. Hence, by Lemma 1.1(1), we get

a − a2x = (a − an+2x)(1 − ax) ∈ Aqnil.

So, a ∈ Ad and ad = x.

From Proposition 2.1, we see that the gπ-Hirano inverse is a subclass of the g-Drazin inverse. According
to the uniqueness of the g-Drazin inverse, we obtain that the gπ-Hirano inverse is unique if it exists. So,
we use a1πH to denote the gπ-Hirano inverse of a in a Banach algebra.

In [6, Theorem 2.1], the authors investigated the existence of π-Hirano inverse by means of the nilpotent
element. Inspired by this theorem, we obtain the corresponding result for the gπ-Hirano inverse with the
help of Lemma 1.4.

Theorem 2.2. Let a ∈ A. Then the following are equivalent:

(1) a ∈ A1πH;

(2) a − an+1
∈ A

qnil, for some n ∈N;

(3) am
− an

∈ A
qnil, for some m,n ∈N such that m , n.

Proof. (1)⇒ (2). Suppose that a ∈ A1πH. Then, there exists x ∈ A such that

xax = x, ax = xa and a − an+2x ∈ Aqnil,

for some n ∈N. Therefore, we have

a − an+1 = (a − an+2x)(1 + an+1x − an) ∈ Aqnil.

(2)⇒ (3). It is obvious.
(3)⇒ (1). Suppose that n > m. Note that

(a − an−m+1)m = (a(1 − an−m))m = am(1 − an−m)(1 − an−m)m−1

= (am
− an)(1 − an−m)m−1

and am
−an
∈ A

qnil. So, by Lemma 1.1(1) and Lemma 1.3, we get a−an−m+1
∈ A

qnil, which gives an−m
−(an−m)2 =

an−m−1(a − an−m+1) ∈ Aqnil. Thus, in view of Lemma 1.4 we obtain an−m is gs-Drazin invertible. Let x be the
gs-Drazin inverse of an−m, i.e.

xan−mx = x, xan−m = an−mx and an−m
− an−mx ∈ Aqnil.

Define y = an−m−1x. Next, we prove that a ∈ A1πH and a1πH = y. Observe the fact that x ∈ comm2(an−m).
So, xa = ax. Then, we have ay = ya and yay = y. It is clear that

a − a(n−m)+2y = (a − a2n−2m+1) + (a2n−2m+1
− a2n−2m+1x).

Since

a − a2n−2m+1 = (a − an−m+1)(1 + an−m) ∈ Aqnil

and

a2n−2m+1
− a2n−2m+1x = an−m+1(an−m

− an−mx) ∈ Aqnil,

from Lemma 1.1(2) it follows that a − a(n−m)+2y ∈ Aqnil. This completes the proof.

Applying Theorem 2.2, we get the following results.

Corollary 2.3. Let a ∈ A and k ∈N. Then, a ∈ A1πH if and only if ak
∈ A

1πH.
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Proof. Suppose that a ∈ A1πH. By Theorem 2.2(1)(2), we get a − an+1
∈ A

qnil, for some n ∈ N. Then, we
deduce that

ak
− (ak)n+1 = ak

− (an+1)k =
(
a − an+1

) k−1∑
i=0

ani+k−1
∈ A

qnil,

which implies ak
∈ A

1πH.
For the converse, we have ak

− (ak)m+1
∈ A

qnil for some m ∈N. So, ak
−akm+k

∈ A
qnil. Evidently, k , km+k.

According to Theorem 2.2(1)(3), it follows that a ∈ A1πH.

Corollary 2.4. Let λ ∈ C be the root of unity. Then, a ∈ A1πH if and only if λa ∈ A1πH.

Proof. Let us suppose that a ∈ A1πH and λ is the root of unity. Then, a − an+1
∈ A

qnil and λk = 1, for some
n, k ∈N. Thus, we obtain

λa − (λa)kn+1 = λ
(
a − an+1

) (
an(k−1) + an(k−2) + · · · + 1

)
∈ A

qnil.

Thus, λa ∈ A1πH.

Remark 2.5. In general, the condition a ∈ A1πH and λ ∈ C do not imply λa ∈ A1πH. For example, letA = C, a = 1
and λ = 2. Obviously, a ∈ A1πH. But, 2a = 2 < A1πH.

Now, we are in the position to give the equivalent definition for the gπ-Hirano inverse in a Banach
algebra.

Theorem 2.6. Let a, x ∈ A. Then the following are equivalent:

(1) a ∈ A1πH and a1πH = x;

(2) xax = x, xa = ax and an
− ax ∈ Aqnil, for some n ∈N;

(3) xax = x, xa = ax and an
− amx ∈ Aqnil, for some m,n ∈N such that m − n , 1.

Proof. (1)⇒ (2). It is clear that

xax = x, xa = ax and a − an+2x ∈ Aqnil,

for some n ∈N. According to the proof of the implication (1)⇒ (2) of Theorem 2.2 and Proposition 2.1, we
see that a − an+1

∈ A
qnil and a − a2x ∈ Aqnil. Thus, by Lemma 1.1 we obtain

an
− ax = an−1(a − a2x) − (a − an+1)x ∈ Aqnil.

(2)⇒ (3). It is trivial.
(3)⇒ (1). Using item (3), we get

(a − a2x)n = an(1 − ax) = (an
− amx)(1 − ax) ∈ Aqnil,

i.e. a − a2x ∈ Aqnil. Since m − n , 1, then we can consider the following two cases.
Case 1: Assume that m − n ≥ 2. Then,

an
− am−1 = (an

− amx) − am−2(a − a2x) ∈ Aqnil.

Thus, we deduce that

(a − am−n)n = (an
− am−1)(1 − am−n−1)n−1

∈ A
qnil,

i.e. a − am−n
∈ A

qnil. So,

a − a(m−n−1)+2x = (a − a2x) + (a − am−n)ax ∈ Aqnil.

Case 2: Assume that n −m ≥ 0. By the hypotheses an
− amx ∈ Aqnil and ax = xa, we conclude that

(an−m+1
− ax)m = (an

− amx)(an−m
− x)m−1

∈ A
qnil.
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Hence, we get an−m+1
− ax ∈ Aqnil, which yields

x − an−m+1x = −x(an−m+1
− ax) ∈ Aqnil.

Then,

a − a(n−m+1)+2x = (a − a2x) + (x − an−m+1x)a2
∈ A

qnil.

Therefore, by these two cases we obtain a ∈ A1πH and a1πH = x.

Remark 2.7. (i) In [11], Mosić introduced the definition of the generalized n-strong Drazin inverse (or gns-Drazin
inverse), where n is a fixed positive integer. By Theorem 2.6(1)(2), we can see that if a ∈ A is gns-Drazin invertible
then a is gπ-Hirano invertible. Conversely, the gπ-Hirano inverse is a kind of the gns-Drazin inverse.

(ii) Analogously to item (3) of Theorem 2.6, for the case m − n = 1, we have a ∈ Ad with ad = x if and only if
xax = x, xa = ax and an

− an+1x ∈ Aqnil, for some n ∈N.

By Proposition 2.1 and Theorem 2.6, we immediately obtain the equivalent definition of the g-Drazin
inverse in Banach algebras as follows.

Theorem 2.8. Let a, x ∈ A. Then the following are equivalent:

(1) a ∈ Ad and ad = x;

(2) xax = x, ax = xa and a − anx ∈ Aqnil, for some n ∈N;

(3) xax = x, ax = xa and am
− anx ∈ Aqnil, for some m,n ∈N.

Note that Theorem 2.8 is not a characterization for the gπ-Hirano invertible elements, which can be seen
from the next example. Take 7 ∈ A, clearly, 7 is not gπ-Hirano invertible by Theorem 2.2. But, 7 is indeed
invertible and hence it is g-Drazin invertible.

3. Additive results on the gπ-Hirano invertibility

Let a, b ∈ A and k ∈N. Then, the elements a, b are said to satisfy the “k⋆” condition if

ab
k∏

l=1
αl = 0, for any α1, α2, · · · , αk ∈ {a, b}.

Obviously, if a, b satisfy the “k⋆” condition, then a, b satisfy the “(k + 1)⋆” condition, but b, a do not satisfy
the “k⋆” condition in general. Note that if ab = 0 then a, b satisfy the “k⋆” condition, for any k ∈ N. Also,
for k = 1, 2, 3, the “k⋆” condition becomes the following special cases, respectively.

(1) aba = ab2 = 0;
(2) abab = aba2 = ab2a = ab3 = 0;
(3) ababa = abab2 = aba3 = aba2b = ab2a2 = ab2ab = ab3a = ab4 = 0.

The “k⋆” condition was introduced by Cvetković-Ilić [4]. For two Drazin invertible elements a, b in
a ring, the author [4] studied the sufficient condition for the Drazin invertibility of the sum a + b under
the “k⋆” condition. Motivated by this, in this section we will consider the equivalence of the gπ-Hirano
invertibility between the elements a, b and the sum a + b under the “k⋆” condition in a Banach algebra.

We begin with the following crucial lemma.

Lemma 3.1. Let k, i, j ∈N. If a, b ∈ A satisfy the “k⋆” condition, then

(1) a, b ∈ Aqnil
⇐⇒ (2) a + b ∈ Aqnil

⇐⇒ (3) ai + b j
∈ A

qnil.
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Proof. (1)⇒ (2). Suppose that a, b ∈ Aqnil. Note that

(a + b)k+2 = a2(a + b)k +
(
ba(a + b)k + b2(a + b)k

)
:= x1 + (x2 + x3) .

Since a, b ∈ A satisfy the “k⋆” condition, we have x1(x2 + x3) = 0, x2x3 = 0 and x2
2 = 0. Obviously, x1 =

ak+2 +
k−1∑
r=0

ak−r(ab)(a + b)r. Observe that
(

k−1∑
r=0

ak−r(ab)(a + b)r

)2

= 0, ak+2
∈ A

qnil and
(

k−1∑
r=0

ak−r(ab)(a + b)r

)
ak+2 = 0.

Thus, from Lemma 1.2 we obtain x1 ∈ A
qnil. Similarly, we can get x3 ∈ A

qnil. So, we have (a + b)k+2
∈ A

qnil,
i.e. a + b ∈ Aqnil.

(2) ⇒ (1). Let us suppose that a + b ∈ Aqnil. Applying the “k⋆” condition, we have the following
equations:

a(a + b)mak = am+k+1 and b(a + b)mbk+1 = bm+k+2, for any m ∈N.

Therefore, we get

∥am+k+1
∥ = ∥a(a + b)mak

∥ ≤ ∥a∥k+1
∥∥(a + b)m

∥,

which together with a + b ∈ Aqnil imply that

r(a) = lim
m→∞

(
∥am+k+1

∥
1
m

) m
m+k+1
= lim

m→∞
∥am+k+1

∥
1
m ≤ lim

m→∞
∥a∥

k+1
m ∥(a + b)m

∥
1
m = 0.

Therefore, a ∈ Aqnil. Similarly, we can verify b ∈ Aqnil.

(1)⇔ (3). Observe that ai, b j satisfy the “k⋆” condition. Then, according to the equivalence of item (1)
and item (2), we have ai+b j

∈ A
qnil if and only if ai, b j

∈ A
qnil. In view of Lemma 1.3, we get that ai+b j

∈ A
qnil

if and only if a, b ∈ Aqnil.

Now, we give the relationship between the gπ-Hirano invertibility of a, b and that of the sum a+ b under
the “k⋆” condition in a Banach algebra as follows.

Theorem 3.2. Let k, i, j ∈N. If a, b ∈ A satisfy the “k⋆” condition, then

(1) a, b ∈ A1πH
⇐⇒ (2) a + b ∈ A1πH

⇐⇒ (3) ai + b j
∈ A

1πH.

Proof. (1) ⇒ (2). Suppose that a, b ∈ A1πH. So, there exist m1, m2 ∈ N such that a − am1+1
∈ A

qnil and
b − bm2+1

∈ A
qnil. Take m = km1m2. Then, we get m ≥ k and

a − am+1 =
(
a − am1+1

) (
1 + am1 + a2m1 + · · · + a(km2−1)m1

)
∈ A

qnil.

Similarly, b − bm+1
∈ A

qnil. Let Σ1 =
m−1∑
r=0

(−am−1−r)ab(a + b)r and Σ2 =
m−1∑
r=0

(−bm−1−r)ba(a + b)r. Note that

x := (a + b) − (a + b)m+1

=
(
a − am+1

)
+

(
b − bm+1

)
+ (Σ1 + Σ2)

:= x1 + x2 + x3.

Since a, b satisfy the “k⋆” condition, by computation we conclude that

(Σ1)2 = 0, (Σ2)3 = 0 and Σ1Σ2 = 0.
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Hence, x3 ∈ A
qnil. Clearly, x3 and x2 satisfy the “k⋆” condition. Then, by Lemma 3.1 it follows that

x2 + x3 ∈ A
qnil. In addition, note that x1 and x2 + x3 also satisfy the “k⋆” condition. Applying Lemma 3.1

again, we derive x ∈ Aqnil, which yields a + b ∈ A1πH.

(2)⇒ (1). Suppose that a+b ∈ A1πH. Then, applying the above similar strategy, we can prove a, b ∈ A1πH

in terms of Lemma 3.1.

(1)⇔ (3). By Corollary 2.3 and (1)⇔ (2), we conclude that a, b ∈ A1πH if and only if ai + b j
∈ A

1πH.

The following corollary can be directly obtained from Theorem 3.2.

Corollary 3.3. Let i, j ∈N and a, b ∈ A. If ab = 0, then

(1) a, b ∈ A1πH
⇐⇒ (2) a + b ∈ A1πH

⇐⇒ (3) ai + b j
∈ A

1πH.

Following the same way as in the proof of Theorem 3.2, we have

Theorem 3.4. Let k, i, j ∈N. If a, b ∈ A satisfy
(

k∏
l=1
αl

)
ab = 0 for any α1, α2, · · · , αk ∈ {a, b}, then

(1) a, b ∈ A1πH
⇐⇒ (2) a + b ∈ A1πH

⇐⇒ (3) ai + b j
∈ A

1πH.

Remark 3.5. Let us compare the g-Drazin invertibility with gπ-Hirano invertibility for the sum a + b under the
condition ab = 0. It is well known that the following holds: for a, b ∈ A satisfying ab = 0, then

a, b ∈ Ad =⇒ a + b ∈ Ad.

Until now, we do not know whether the converse of the above implication holds or not. However, the author [14]
recently proved that if ab = ba = 0, then

a + b ∈ Ad =⇒ a, b ∈ Ad.

Next, we continue to consider this problem about the g-Drazin invertibility.

Theorem 3.6. Let m,n, i, j ∈N and a, b ∈ A.

(i) If amb = ban = 0, then the following hold:

a + b ∈ Ad =⇒ a ∈ Ad.

Furthermore, ad = ak
(
(a + b)d

)k+1
, where k = max{m,n}.

(ii) If amb = 0, then the following hold:

a + b ∈ Ad and a(a + b)d = (a + b)da =⇒ a ∈ Ad.

Furthermore, ad = am
(
(a + b)d

)m+1
.

(iii) If ab = 0, then the following hold:

a + b ∈ Ad and a(a + b)d = (a + b)da =⇒ a, b ∈ Ad.

Furthermore, ad = a
(
(a + b)d

)2
and bd = b

(
(a + b)d

)2
.
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Proof. (i). Assume that max{m,n} = k ≥ 2 and let u = (a + b)d. Then, setting x1 = akuk−1 and x2 = a − akuk−1,
so we have a = x1 + x2. Next, we will show that x1 ∈ A

d and x2 ∈ A
qnil. Let y = akuk+1. By the hypothesis

amb = ban = 0, we obtain ak(a + b) = (a + b)ak, which yields aku = uak. Thus, x1y = yx1. Also, we have

yx1y = akuk+1akuk−1akuk+1

= a3ku3k+1

= ak(a + b)2ku3k+1

= akuk+1

= y

and

x1 − x2
1y = akuk−1

− a3ku3k−1

= akuk−1
− ak(a + b)2ku3k−1

= akuk−1
− akuk−1

= 0.

Thus, x1 ∈ A
d and xd

1 = y. Note the following equation:

xk
2

(
(a + b) − (a + b)2u

)
=

(
a − akuk−1

)k (
(a + b) − (a + b)2u

)
=

(
k∏

l=1

(
1 − al−1uk−1ak−l

))
ak

(
(a + b) − (a + b)2u

)
=

(
k∏

l=1

(
1 − al−1uk−1ak−l

)) (
ak+1
− ak+2u

)
=

(
k∏

l=1

(
1 − al−1uk−1ak−l

)) (
ak+1
− ak+2(a + b)k−2uk−1

)
=

(
k∏

l=1

(
1 − al−1uk−1ak−l

)) (
ak+1
− a2kuk−1

)
=

(
k∏

l=1

(
1 − al−1uk−1ak−l

))
ak

(
a − akuk−1

)
= xk+1

2 .

Similarly,
(
(a + b) − (a + b)2u

)
xk

2 = xk+1
2 . Since (a + b) − (a + b)2u ∈ Aqnil, we get x2 ∈ A

qnil by Lemma 1.1(1)
and Lemma 1.3. In addition, we obtain

x1x2 = uk−1ak+1
− u2k−2a2k

= uk−1ak+1
− u2k−2(a + b)k−1ak+1

= uk−1ak+1
− uk−1ak+1

= 0.

Similarly, x2x1 = 0. Thus, in view of [7, Theorem 5.7] we deduce that a ∈ Ad and ad = xd
1 + xd

2 = y.

For the case max{m,n} = 1, we have a2b = ba2 = 0. Thus, this case turns into the previous case.

(ii). Let u = (a + b)d and z = amum+1. Next, using the definition of the g-Drazin inverse we prove that
a ∈ Ad and ad = z. Since au = ua, we get az = za and

zaz = a2m+1u2m+2 = am(a + b)m+1u2m+2 = amum+1 = z.
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In addition, for any l ∈N, we have

am
(
(a + b) − (a + b)2u

)l
= am(a + b)l (1 − (a + b)u)

= am+l
− am+l+1u

= am+l
− am+l+1(a + b)mum+1

= am+l
− am+l+1amum+1

= am+l
− am+l+1z

= (a − a2z)m+l.

So, we get
r(a − a2z) = lim

l→∞
∥(a − a2z)m+l

∥
1

m+l

= lim
l→∞
∥(a − a2z)m+l

∥
1
l

≤ lim
l→∞
∥am
∥

1
l lim

l→∞
∥

(
(a + b) − (a + b)2u

)l
∥

1
l

= 0,

which means a − a2z ∈ Aqnil, as required.

(iii). Let m = 1 in item (ii), we obtain a ∈ Ad and ad = a
(
(a + b)d

)2
. Note that b(a+b)d = (a+b)db. Similarly,

by the definition of the g-Drazin inverse we can deduce that b ∈ Ad and bd = b
(
(a + b)d

)2
.

By any item of Theorem 3.6 and [7, Theorem 5.7], we immediately infer

Corollary 3.7. [14, Corollary 3.7] Let i, j ∈N and a, b ∈ A. If ab = ba = 0, then

(i) a, b ∈ Ad
⇐⇒ (ii) a + b ∈ Ad

⇐⇒ (iii) ai + b j
∈ A

d.

In order to continue considering the topic on the gπ-Hirano invertibility of the sum a + b, we need to
prepare the following.

At the first we present a new condition. Namely, for a, b ∈ A and k ∈N, we say that a, b satisfy the “k∗”
condition, i.e. (

k∏
l=1
αl

)
ab =

(
k∏

l=1
αl

)
ba, for any α1, α2, · · · , αk ∈ {a, b}.

We can see that if a, b satisfy the “k∗” condition then a, b satisfy the “(k+ 1)∗” condition. In addition, the “k∗”
condition contains the following specializations:

(1) ab = ba;
(2) a2b = aba and b2a = bab; (k = 1)
(3) a3b = a2ba, ba2b = (ba)2, ab2a = (ab)2 and b2ab = b3a. (k = 2)

Let p ∈ A be an idempotent (p2 = p). Then we can represent element a ∈ A as

a =
(
a1 a3
a4 a2

)
p
,

where a1 = pap, a2 = (1 − p)a(1 − p), a3 = pa(1 − p) and a4 = (1 − p)ap.

In what follows, byA1,A2 we denote the algebra pAp, (1 − p)A(1 − p), where p2 = p ∈ A, respectively.
The following lemmas play an important role in the sequel.

Lemma 3.8. Let x, y ∈ A and p2 = p ∈ A. If x and y have the representations
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x =
(
a c
0 b

)
p

and y =
(
b 0
c a

)
1−p
,

then the following hold:

(1) a ∈ Aqnil
1 and b ∈ Aqnil

2 ⇐⇒ x ∈ Aqnil (resp. y ∈ Aqnil);

(2) a ∈ A1πH
1 and b ∈ A1πH

2 ⇐⇒ x ∈ A1πH (resp. y ∈ A1πH).

Proof. (1). Assume that a ∈ Aqnil
1 and b ∈ Aqnil

2 . Since σA(x) ⊆ σA1 (a) ∪ σA2 (b), then we get σA(x) = {0}, i.e.
x ∈ Aqnil.

On the converse, note that (1 − p)xp = 0, i.e. pxp = xp. Then, by induction we obtain that am = (pxp)m =
pxmp for any m ∈N. Using the condition x ∈ Aqnil, we conclude

r(a) = lim
m→∞

∥am
∥

1
m = lim

m→∞
∥pxmp∥

1
m ≤ lim

m→∞
∥p∥

1
m ∥xm

∥
1
m ∥p∥

1
m = 0.

So, a ∈ Aqnil
1 . Also, by σA2 (b) ⊆ σA1 (a) ∪ σA(x) it follows that σA2 (b) = {0}, i.e. b ∈ Aqnil

2 .
(2). For any n ∈N, we have

x − xn+1 =

(
a c
0 b

)
p
−

(
a c
0 b

)n+1

p
=

(
a − an+1

△

0 b − bn+1

)
p
.

Suppose that a ∈ A1πH
1 and b ∈ A1πH

2 . Then, there exists m ∈N such that a−am+1
∈ A

qnil
1 and b−bm+1

∈ A
qnil
2 .

So, x − xm+1
∈ A

qnil by item (1). Therefore, we get x ∈ A1πH. The sufficiency can be proved similarly.

Remark 3.9. Item (2) of Lemma 3.8 is somewhat different from the g-Drazin inverse case, namely, if a ∈ Ad
1, then

b ∈ Ad
2 if and only if x ∈ Ad ([1, Theorem 2.3]).

Lemma 3.10. Let k ∈N. If a, b ∈ A satisfy the “k∗” condition, then the following hold:

(1) If a ∈ Aqnil (or b ∈ Aqnil), then ab ∈ Aqnil;

(2) If a ∈ Aqnil, then b ∈ Aqnil if and only if a + b ∈ Aqnil;

(3) If a, b ∈ A1πH, then ab ∈ A1πH;

(4) If a ∈ Aqnil, then b ∈ A1πH if and only if a + b ∈ A1πH.

Proof. (1). Since a, b satisfy the “k∗” condition, then we conclude that (ab)n+k = (ab)kanbn for any n ∈ N.
Applying the hypothesis a ∈ Aqnil or b ∈ Aqnil, we obtain

r(ab) = lim
n→∞
∥(ab)n+k

∥
1
n ≤ lim

n→∞
∥(ab)k

∥
1
n lim

n→∞
∥an
∥

1
n lim

n→∞
∥bn
∥

1
n = 0,

which implies ab ∈ Aqnil.
(2). Suppose that a, b ∈ Aqnil. Note that (a + b)k+1 = (a + b)ka + (a + b)kb. Let c = (a + b)ka and d = (a + b)kb.

From the “k∗” condition, we get cd = dc and cn = (a + b)knan for any n ∈N. So,

r(c) = lim
n→∞
∥cn
∥

1
n ≤ ∥a + b∥k lim

n→∞
∥an
∥

1
n = 0,

which means c ∈ Aqnil. Similarly, we have d ∈ Aqnil. Applying Lemma 1.1(2), it follows that (a+b)k+1
∈ A

qnil,
i.e. a + b ∈ Aqnil.

To prove the converse, let us suppose that a, a + b ∈ Aqnil. Obviously, −a, a + b satisfy the “k∗” condition.
Then, we deduce that b = −a + (a + b) ∈ Aqnil by the proof of the necessity of item (2).

(3). In view of the condition a, b ∈ A1πH, we obtain a − am+1
∈ A

qnil and b − bm+1
∈ A

qnil for some m ∈N.
By the “k∗” condition, we get
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(ab)k+1
− (ab)m+k+1 = (ab)k(a − am+1)b + (ab)kam+1(b − bm+1).

Setting s = (ab)k(a − am+1)b and t = (ab)kam+1(b − bm+1). Applying the “k∗” condition again, we obtain
sn = (ab)kn(a − am+1)nbn for any n ∈N, which implies

r(s) = lim
n→∞
∥sn
∥

1
n ≤ ∥ab∥k∥b∥ lim

n→∞
∥(a − am+1)n

∥
1
n = 0.

So, s ∈ Aqnil. Similarly, t ∈ Aqnil. Note that st = ts. Therefore, s + t ∈ Aqnil, which gives ab ∈ A1πH by
Theorem 2.2(1)(3).

(4). Suppose that b ∈ A1πH and let p = bb1πH. Then, we consider the matrix representations of a and b
relative to the idempotent p:

a =
(
a1 a3
a4 a2

)
p

and b =
(
b1 0
0 b2

)
p
.

Obviously, b1 ∈ A
−1
1 with (b1)−1

A1
= b1πH. Also, by item (3) we get b1 = b(bb1πH) ∈ A1πH

1 . From Proposition

2.1, it follows that b2 = b − b2b1πH = b − b2bd
∈ A

qnil
2 .

Note that (
bk

1a1b1 bk
1a3b2

bk
2a4b1 bk

2a2b2

)
p
= bkab = bk+1a =

(
bk+1

1 a1 bk+1
1 a3

bk+1
2 a4 bk+1

2 a2

)
p
.

Thus, we have bk
1a3b2 = bk+1

1 a3, so, a3 = b−1
1 a3b2, which implies a3 = b−n

1 a3bn
2 for any n ∈ N. Since b2 ∈ A

qnil
2 ,

we have
lim
n→∞
∥a3∥

1
n ⩽ ∥b−1

1 ∥ lim
n→∞
∥a3∥

1
n lim

n→∞
∥bn

2∥
1
n = 0.

Hence, a3 = 0. In addition, it is easy to see that a1b1 = b1a1 and a2, b2 satisfy the “k∗” condition.
Now, we have

a =
(
a1 0
a4 a2

)
p

and a + b =
(
a1 + b1 0

a4 a2 + b2

)
p
.

From the condition a ∈ Aqnil, it follows that a1 ∈ A
qnil
1 and a2 ∈ A

qnil
2 by Lemma 3.8(1). Applying item

(2), we can obtain a2 + b2 ∈ A
qnil
2 , which implies a2 + b2 ∈ A

1πH
2 . Note that (p + b−1

1 a1) − (p + b−1
1 a1)2 =

−a1(b−1
1 + a1b−2

1 ) ∈ Aqnil
1 by Lemma 1.1(1). Hence, we conclude p + b−1

1 a1 ∈ A
1πH
1 . Then in view of item (3),

we obtain a1 + b1 = b1(p + b−1
1 a1) ∈ A1πH

1 . Finally, by Lemma 3.8(2) we deduce a + b ∈ A1πH.

The sufficiency of item (4) can be proved by the equality b = −a+ (a+ b) and the necessity of item (4).

Now, we present the equivalent characterization for the gπ-Hirano invertibility of the sum λa+µb under
the “k∗” condition.

Theorem 3.11. Let k, i, j ∈N, µ ∈ C be the root of unity and λ ∈ C. If a, b ∈ A1πH satisfy the “k∗” condition, then

(1) λa + µb ∈ A1πH
⇐⇒ (2) ai(λa + µb)a j

∈ A
1πH
⇐⇒ (3) ai

(
λ1 + µa1πHb

)
a j
∈ A

1πH.

Proof. (1)⇒ (2). Evidently, ai, λa + µb satisfy the “k∗” condition and ai
∈ A

1πH. Hence, by Lemma 3.10(3)
we get ai(λa + µb) ∈ A1πH. Since ai(λa + µb), a j also satisfy the “k∗” condition, then ai(λa + µb)a j

∈ A
1πH.

(2)⇒ (1). Let p = aa1πH. Then, as in the proof of Lemma 3.10(4) we have

a =
(
a1 0
0 a2

)
p
, b =

(
b1 0
b4 b2

)
p

and λa + µb =
(
λa1 + µb1 0
µb4 λa2 + µb2

)
p
,
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where a1 ∈ A
−1
1 ∩ A

1πH
1 , (a1)−1

A1
= a1πH and a2 ∈ A

qnil
2 . In addition, we have a1b1 = b1a1, also, a2, b2 satisfy

the “k∗” condition. Using b ∈ A1πH, by Lemma 3.8(2) we get b1 ∈ A
1πH
1 and b2 ∈ A

1πH
2 . So, from Corollary

2.4 it follows that µb2 ∈ A
1πH
2 . Note that λa2 ∈ A

qnil
2 and λa2, µb2 satisfy the “k∗” condition. In view of

Lemma 3.10(4), we get λa2 + µb2 ∈ A
1πH
2 . From Lemma 3.8(2), we claim that λa + µb ∈ A1πH if and only if

λa1 + µb1 ∈ A
1πH
1 . So, we only need to prove λa1 + µb1 ∈ A

1πH
1 .

Note that

ai(λa + b)a j =

ai+ j
1 (λa1 + µb1) 0
µai

2b4a j
1 ai

2(λa2 + µb2)a j
2


p

.

Since ai(λa + µb)a j
∈ A

1πH, then ai+ j
1 (λa1 + µb1) ∈ A1πH

1 . In addition, according to the hypothesis a ∈ A1πH,
we have a − am+1

∈ A
qnil for some m ∈N. Then we get

a−1
1 − a−m−1

1 = a1πH
− (a1πH)m+1 = −(a1πH)m+2(a − am+1) ∈ Aqnil,

which implies a−1
1 ∈ A

1πH
1 . So, we get that λa1 + µb1 = (a−1

1 )i+ j
(
ai+ j

1 (λa1 + µb1)
)
∈ A

1πH
1 by Lemma 3.10(3),

which is what we need.
(2)⇔ (3). It is clear that

ai
(
λ1 + µa1πHb

)
a j =

(
ai+ j

1 (λp + µa−1
1 b1) 0

0 λai+ j
2

)
p

.

Note that λai+ j
2 ∈ A

qnil
2 and by Lemma 3.10(1) we have ai

2(λa2+µb2)a j
2 ∈ A

qnil
2 . On the other hand, it is clear to

see ai+ j
1 (λa1+µb1) ∈ A1πH

1 if and only if ai+ j
1 (λp+µa−1

1 b1) ∈ A1πH
1 . Thus, we conclude that ai(λa+µb)a j

∈ A
1πH

is equivalent to ai
(
λ1 + µa1πHb

)
a j
∈ A

1πH.

Remark 3.12. (i) One can see that (1) ⇒ (2) and (2) ⇔ (3) in Theorem 3.11 are valid even if b is not gπ-
Hirano invertible. However, the following example shows that (2) ⇒ (1) does not hold in general if b is not

gπ-Hirano invertible. Let A = M2(C), i = j = 2 ∈ N, λ = µ = 1 ∈ C, a =
(
0 1
0 0

)
and b =

(
2 0
0 2

)
. Clearly,

ai(λa + µb)a j = 0 ∈ A1πH. But, λa + µb =
(
2 1
0 2

)
< A1πH.

(ii) By the proof of Theorem 3.11, it is clear that the condition i, j ∈ N can be replaced by i, j ∈ N ∪ {0} and
i + j , 0. For the case i = j = 0, the implication (3) ⇒ (2) also holds, that is to say, if µ ∈ C is the root of unity,
λ ∈ C, and a, b ∈ A1πH satisfy the “k∗” condition, then we have

λ1 + µa1πHb ∈ A1πH =⇒ λa + µb ∈ A1πH.

But, in general the converse of the above implication is not true. For example, takeA = C, a = 0, b = 1, λ = 2 and
µ = 1. Then, λa + µb = 1 ∈ A1πH. But, λ1 + µa1πHb = 2 < A1πH. If we assume that both λ and µ are the roots of
unity, then we have the following result: let λ, µ ∈ C be the roots of unity and a, b ∈ A1πH satisfy the “k∗” condition,
then

λ1 + µa1πHb ∈ A1πH
⇐⇒ λa + µb ∈ A1πH.

Dual to Theorem 3.11, we have the following result.

Theorem 3.13. Let k, i, j ∈ N, µ ∈ C be the root of unity and λ ∈ C. If a, b ∈ A1πH satisfy ab
k∏

l=1
αl = ba

k∏
l=1
αl for

any α1, α2, · · · , αk ∈ {a, b}, then

(1) λa + µb ∈ A1πH
⇐⇒ (2) ai(λa + µb)a j

∈ A
1πH
⇐⇒ (3) ai

(
λ1 + µa1πHb

)
a j
∈ A

1πH.
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4. Anti-triangular matrices involving the gπ-Hirano inverse

In this section, we mainly consider some sufficient and necessary conditions for anti-triangular matrices(
a b
c 0

)
over Banach algebras to be gπ-Hirano invertible.

The authors [15] found the anti-triangular matrix
(
1 1
c 0

)
∈M2(A) is Drazin invertible if and only if c ∈ A

is Drazin invertible. But, for the gπ-Hirano case, we do not have the corresponding result, which can be

seen from the following example. LetA = C and c = 1. Obviously, 1 ∈ A1πH. But,
(
1 1
1 0

)
<M2(A)1πH, since(

1 1
1 0

)
−

(
1 1
1 0

)n+1

< M2(A)qnil, for any n ∈ N. So, what is the equivalent conditions for
(
1 1
c 0

)
∈ M2(A) to

be gπ-Hirano invertible?

At the beginning, we consider the equivalent conditions for the matrix
(
1 1
c 0

)
∈ M2(A) to be g-Hirano

invertible. The definition of the g-Hirano inverse was introduced by Chen and Sheibani [2], namely an
element a ∈ A has g-Hirano inverse if there exists x ∈ A such that

xax = x, ax = xa and a2
− ax ∈ Aqnil.

Clearly, by Theorem 2.6 we see that the g-Hirano inverse is a subclass of the gπ-Hirano inverse. Denote by
A
1H the set of all g-Hirano invertible elements inA.

Theorem 4.1. Let M =
(
1 1
c 0

)
∈M2(A). Then,

c ∈ Aqnil
⇐⇒M ∈M2(A)1H.

Proof. From [2, Theorem 2.4] it follows that M ∈M2(A)1H if and only if N :=M−M3 = −

(
2c c
c2 c

)
∈M2(A)qnil.

Therefore, we only need to prove that c ∈ Aqnil is equivalent to N ∈M2(A)qnil.

Suppose that c ∈ Aqnil. Then, N = −
(
c 0
0 c

) (
2 1
c 1

)
∈M2(A)qnil by Lemma 1.1(1).

On the contrary, by N ∈M2(A)qnil we get that
(
2c − λ c

c2 c − λ

)
is invertible, for any λ ∈ C\{0}. Since

(
1 −1
0 1

) (
2c − λ c

c2 c − λ

)
=

(
−c2 + 2c − λ λ

c2 c − λ

)
,

we deduce that
(
−c2 + 2c − λ λ

c2 c − λ

)
is invertible for any λ ∈ C\{0}. Hence, there exists

(
x y
z w

)
∈ M2(A)

such that (
−c2 + 2c − λ λ

c2 c − λ

) (
x y
z w

)
=

(
1 0
0 1

)
and (

x y
z w

) (
−c2 + 2c − λ λ

c2 c − λ

)
=

(
1 0
0 1

)
.
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So, we can obtain the following equations

(−c2 + 2c − λ)y + λw = 0, (1)

c2y + (c − λ)w = 1, (2)

x(−c2 + 2c − λ) + yc2 = 1, (3)

λx + y(a − λ) = 0. (4)

By the equation (1), we have w = 1
λ

(
c2
− 2c + λ

)
y, which together with (2) imply

1 = c2y + 1
λ (c − λ)

(
c2
− 2c + λ

)
y = 1

λ

(
c3
− 2c2 + 3λc − λ2

)
y.

So, y is left invertible. Similarly, using (3) and (4) we conclude that y is right invertible. Therefore, y is
invertible and y−1 = 1

λ

(
c3
− 2c2 + 3λc − λ2

)
. So, c3

−2c2+3λc−λ2 is invertible. Hence, 0 < σ(c3
−2c2+3λc−λ2)

for any λ ∈ C\{0}.
Now, assume that there exists t ∈ C\{0} such that t ∈ σ(c). Then, we can find λ0 ∈ C\{0} satisfying

t3
− 2t2 + 3λ0t − λ2

0 = 0. So, 0 ∈ σ(c3
− 2c2 + 3λ0c − λ2

0), which contradicts with 0 < σ(c3
− 2c2 + 3λc − λ2) for

any λ ∈ C\{0}. Hence, σ(c) = {0}, i.e. c ∈ Aqnil.

Remark 4.2. By Theorem 4.1, we get

c ∈ Aqnil =⇒M =
(
1 1
c 0

)
∈M2(A)1πH.

However, in general the converse of the above implication does not hold, which can be seen from the following example:

Example 4.3. Let A = C and c = −1. Observe that
(

1 1
−1 0

)6

=

(
1 0
0 1

)
. Therefore, we get that

(
1 1
−1 0

)
∈

M2(A)1πH and
(

1 1
−1 0

)1πH

=

(
0 −1
1 1

)
. However, −1 < Aqnil.

Next, we will consider the gπ-Hirano invertibility for the anti-triangular matrix
(
a b
c 0

)
over Banach

algebras. For future reference we state two lemmas as follows.

Lemma 4.4. Let a, b ∈ A. Then, ab ∈ A1πH if and only if ba ∈ A1πH.

Proof. If ab ∈ A1πH, then ab − (ab)m+1
∈ A

qnil, for some m ∈ N. By induction, we have
(
(ba)2

− (ba)m+2
)n
=

b
(
ab − (ab)m+1

)n
(ab)n−1a, for any n ∈N. Thus,

lim
n→∞
∥

(
(ba)2

− (ba)m+2
)n
∥

1
n ≤ ∥a∥∥b∥ lim

n→∞
∥(ab − (ab)m+1)n

∥
1
n = 0.

So, (ba)2
− (ba)m+2

∈ A
qnil, which means ba ∈ A1πH.

Lemma 4.5. Let M =
(
a c
0 b

) (
or

(
a 0
d b

))
∈M2(A). Then,

(1) a ∈ Aqnil and b ∈ Aqnil
⇐⇒M ∈M2(A)qnil;

(2) a ∈ A1πH and b ∈ A1πH
⇐⇒M ∈M2(A)1πH.

Proof. (1). Suppose that M =

(
a c
0 b

)
∈ M2(A)qnil. Let P =

(
1 0
0 0

)
∈ M2(A). Then we have the following

matrix representation of M relative to the idempotent P:
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M =
(
A C
0 B

)
P
, where A =

(
a 0
0 0

)
, B =

(
0 0
0 b

)
and C =

(
0 c
0 0

)
.

By Lemma 3.8(1), we obtain A ∈ (PM2(A)P)qnil and B ∈ ((I − P)M2(A)(I − P))qnil, i.e. σPM2(A)P(A) = {0} and
σ(I−P)M2(A)(I−P)(B) = {0}. Note that σPM2(A)P(A)∪{0} = σM2(A)(A). So, σM2(A)(A) = {0}, which implies that λI−A
is invertible, for any λ , 0. Hence, λ1− a is invertible, so σA(a) = {0}. Therefore, a ∈ Aqnil. Similarly, we can
get b ∈ Aqnil. On the contrary, applying σM2(A)(M) ⊆ σA(a) ∪ σA(b) we deduce M ∈M2(A)qnil.

(2). By item (1) and Theorem 2.2, item (2) holds directly.

Now, we are ready to present an existence criterion for the gπ-Hirano inverse of the anti-triangular
matrix under the “k⋆” condition as follows.

Theorem 4.6. Let M =
(
a b
c 0

)
∈M2(A) and k ∈N. If a, bc satisfy the “k⋆” condition, then

a, bc ∈ A1πH
⇐⇒M ∈M2(A)1πH.

Proof. Note that

M =
(
1 0
0 c

) (
a b
1 0

)
.

By Lemma 4.4, we have

M ∈M2(A)1πH
⇐⇒ N :=

(
a b
1 0

) (
1 0
0 c

)
=

(
a bc
1 0

)
∈M2(A)1πH.

Consider the following decomposition:

N2 =

(
a2 0
a 0

)
+

(
bc abc
0 bc

)
:= N1 +N2.

Since a, bc satisfy the “k⋆” condition, so do N1 and N2. Therefore, by using Corollary 2.3, Theorem 3.2 and
Lemma 4.5(2) we deduce that

N ∈M2(A)1πH
⇐⇒ N2

∈M2(A)1πH
⇐⇒ N1,N2 ∈M2(A)1πH

⇐⇒ a, bc ∈ A1πH,

as required.

It is easy to see that if the hypothesis a, bc satisfy the “k⋆” condition in Theorem 4.6 is replaced by the
hypothesis bc, a satisfy the “k⋆” condition then this theorem still holds. So, we immediately obtain the
following corollary.

Corollary 4.7. Let M =
(
a b
c 0

)
∈M2(A). If abc = 0 (or bca = 0), then

a, bc ∈ A1πH
⇐⇒M ∈M2(A)1πH.

Let us remark that in Corollary 4.7 the condition abc = 0 or bca = 0 in general can not be substituted by
acb = 0 or cab = 0, which can be seen from the following examples.

Example 4.8. Let H be an infinite-dimensional Hilbert space and A = B(H) be the algebra of all bounded linear

operators. Take M =
(
A B
C 0

)
∈M2(A), where A,B and C are defined as follows. Let A ∈ B(H)\{0} be a quasinilpotent

operator. Since A , 0, then A− 3I , −3I. So, there exists x , 0 such that (A− 3I)x , −3x. Let t = (A− 3I)x. Then,
t , −3x. Let us prove that t < Span{x}. If we suppose that t = λx, then (A − 3I)x = λx, i.e. (A − (3 + λ)I) x = 0,
which is possible only when λ = −3, since A is quasinilpotent. Hence, t = −3x, which is a contradiction. Now, take
y , 0 and define B ∈ B(H) satisfying By = −t and B ≡ 0 on Span{y}⊥. Next, let C ∈ B(H) be such that Cx = 3y,
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Ct = 0 and C ≡ 0 on Span{x, t}⊥. Now, since R(B) = Span{t}, we get CB = 0. So, ACB = 0 and using the fact that
σ(BC) ∪ {0} = σ(CB) ∪ {0}, we get σ(BC) = {0}, i.e. BC is quasinilpotent. Clearly, we have A,BC ∈ A1πH. Now, by(
A − 3I B

C −3I

) (
x
y

)
=

(
(A − 3I)x + By

Cx − 3y

)
=

(
t − t

3y − 3y

)
= 0, we get that 0 ,

(
x
y

)
∈ N

(
A − 3I B

C −3I

)
. Then, 3 ∈ σ(M).

Thus, 3 − 3n+1
∈ σ(M −Mn+1), for any n ∈N. Note that 3 − 3n+1 , 0, for any n ∈N. Thus, M −Mn+1 < Aqnil for

any n ∈N, so, M <M2(A)1πH.

Example 4.9. Let A = M2(C) and M =

(
a b
c 0

)
∈ M2(A). If we take a =

(
0 1
1 0

)
and b = c =

(
1 0
0 0

)
, then

a, bc ∈ A1πH and cab = 0. But, M <M2(A)1πH.
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[10] D. Mosić, Reverse order laws for the generalized strong Drazin inverses, Appl. Math. Comput. 284 (2016) 37-46.
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[15] H.L. Zou, J.L. Chen, D. Mosić, The Drazin invertibility of an anti-triangular matrix over a ring, Stud. Sci. Math. Hung. 54 (2017)

489-508.
[16] H.L. Zou, J.L. Chen, H.H. Zhu, Yujie Wei, Characterizations for the n-strong Drazin invertibility in a ring, J. Algebra Appl. 20

(2021) Aticle ID:2150141.
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