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On bounds associated to the Hermite-Hadamard inequality for convex
mappings

Mehmet Zeki Sarikaya®*, Meryem Yildirim?

*Department of Mathematics, Faculty of Science and Arts, Diizce University, Diizce, Turkey

Abstract. Our main purpose in this paper to establish refined bounds associated with the Hermite-
Hadamard inequality for convex mappings. Through a mappings, we provide precise formulations of
these bounds and discuss their implications for the behaviour of convex functions.

1. Introduction

The Hermite-Hadamard inequality stands as a cornerstone in the realm of convex analysis, providing
bounds for the integral means of convex functions over certain intervals. In this paper, we delve into the
exploration of bounds associated with this celebrated inequality, particularly focusing on its application to
convex mappings. We establish refined bounds, shedding light on the intricacies of convex functions and
their integral means. Through rigorous mathematical analysis and the utilization of pertinent mathematical
tools, we unveil novel insights into the behaviour of convex mappings within the framework of the Hermite-
Hadamard inequality. Our findings contribute to the broader understanding of convex analysis and pave
the way for further investigations in this rich and fertile field of mathematics.

Definition 1.1. The function f : [2,b] C R — IR, is said to be convex if the following inequality holds
fAx+ A =Ny) <Af(x) + (1 = Nf(y)
forall x,y € [a,b] and A € [0, 1] . We say that f is concave if (—f) is convex.

The theory of convex functions is a crucial area of mathematics that has applications in a wide range of
fields, including optimization theory, control theory, operations research, geometry, functional analysis, and
information theory. This theory is also highly relevant in other areas of science, such as economics, finance,
engineering, and management sciences. One of the most well-known inequalities in the literature is the
Hermite-Hadamard integral inequality (see, [8]), which is a fundamental tool for studying the properties
of convex functions. This inequality has important implications in many areas of mathematics and has
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been extensively studied in recent years, leading to the development of new and powerful mathematical
techniques for solving a broad range of problems.

A5 < 55 [ roan < 0200 <1>

where f: I C R — R is a convex function on the interval I of real numbers and a,b € I witha < b.
Dragomir introduced in [2] the following associated mapping H : [0, 1] — R defined by

b
H(t):ﬁff(xt+(1—t)a;b)dx

for a given convex function f : [4,b] — R. The corresponding double integral mapping F : [0,1] — R in
connection with the HermiteHadamard inequalities is defined as

F(t)——fff(xt+(l—ty)dxdy

For main properties of these mappings and some related results see [1]-[8] the references therein.
S.S.Dragomir [8] gave the following bounds for two mappings related to the Hermite-Hadamard in-
equality for convex functions:

Theorem 1.2. Let f : [a,b] — R be a convex function on the interval [a, b]. Then we have

ff(x)dx+ 1—t)f(“+b) H(t)st(l—t)lf( O ff( )dx‘

b-a

and

b
b)
b—iaff(x)dx—P(t)SZt(l If()+f( ff( }

forany t € [0,1].

2. Main results

For a given convex mapping f : [2,b] = R, let ] : [0, 1] — R be defined by

b
1
Jt) = mf[f(xt+(1—t)a)+f(xt+(1—t)b)]dx

and let S : [0,1] — R be defined by

S(t)— ff(tx (1—f)—)d +_ff(tx+ _t)311+b)

To prove our main results, we require the following theorem:
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Theorem 2.1. Let f : [a,b] — R be a convex mapping. Then
i) | is convex on [0,1];

i) we have
f@a)+f(b)
tel[r(}f”] f f (x)dx, tilérl)l #)=—5—

iii) | decresening monotonically on [0,1].

Proof. i) Leta, > 0witha +p =1and t,t, € [0,1]. Then, by using convexity of f, we have

b
f[f(a(xtl + (1 -t)a)+p(xta+ (1 —t2)a))

]((Xt1+ﬁt2) = 2(b—11)
+ fla(xti + (1 —t)b) + B (xta + (1 — tp) b))] dx
b
< z(ba_a)f[f(xtl+(1—t1)a)+f(xt1+(1—t1)b)dx

2(b )ff(Xt2+(1 tr) a) +f(Xt2+(1—t2)b))dx

af () + BJ (tz)

which shows that | is convex function in [0, 1] .
ii) We shall prove the following inequalities:

f(a+b)<](t)<t—ff(x et (- f(a)+f(b)<f(a)+f(b)

2 - 2

for all t € [0,1]. To prove of the first inequality in (2), by Jensen’s integral inequality we get
b b
2](t) > f[blj f(xt+ (1- t)a)dx} +f[blTa f(xt+ (1- t)b)dx]

a+b a+b
= f(Tt+(1_t) )+f(Tt+(1—t)b),

and so by using convexity of f, we have

a+b

: t+(1—t)) f(a+bt+(l—t)b)2f(a;b).

On the other hand, by using convexity of f, we get

1
J® =5 (

b
10 < 5o [HF@+a-Df@+er 0+ -0 fO)dx

a

b
- tblTaff(x)dx+(1—t)w
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and the second inequality in (2) is also proved. The last inequality is obvious because the mapping

G(t) = t—ff(x)dx+ pl@+/O +f

is decreasing monotonically on [0, 1] .
iii) If we use the convexity of the function f, we get the gradient inequality

fw) - f@) = f()u-2)
f@)-fw) < f@@-u

forany u,v € (a,b). Let t1,t; € (0,1) with t; < t,. Then,

b
J@-1t) = 5o [[Fat+ (=m0 f6i+0-tald

b
ﬁf[f(ﬂz+(1 = h)b) = f (xti + (1 = 1) b)] dx

b
(bl_a)ff'(xt2+(1—fz)ﬂ)(tz—fl)(x—a)dx

IN

b
+2(b1— a) ff’ (xtz + (1 = t2) b) (t2 = t1) (x = b) dx

= (tl tZ) ff (xtr + (1 —tr)a)(a—x)dx

(tl

*20=0) b) ff (xty + (1 — 1) b) (b — x) dx.

Since f is convex function on [a, b] and because t,x + (1 — t2)a, fx + (1 — t2)b € (a,b) holds for any x € (a,b)
and t, € (0,1), we obtain that

f@—fltax+Q—-t)a) = f(x+(1-t)a)(a—x)t
f(b) - f (tzx + (1 - i’z)b) > f/ (tzx + (]. - tz)b) (b - X)tz.

These results adding in the above last inequality, we get

b
It -1 < % [f @ - £ (2 + (1~ )] dx
(i —t)

S G—a) b) f [£ (b) = f (tax + (1 = t2)b)] dx

UL [f(a) O <t2>]
2
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and thus

J(t2) - (fl)
-t

(](t) f(a);f(b))so

Consequently, ] (t2) — J (t1) < 0 for 0 < t; < ¢, <1 which shows that | decreases monotonically on [0, 1].

Corollary 2.2. With the assumptions in Theorem 2.1, we have

b
f @)+ f(b) 1 2x+a+b
0 < _b—aff( 7] )dx

2

b b
blTaff(2x+4a+b)dx_blTaff(x)dx.

Theorem 2.3. Let f : [a,b] — R be a convex mapping. Then
i) S is convex on [0,1];

i1) we have
. 1 3a+b a+3b
5501552 o= [ o

iii) S increases monotonically on [0, 1].

Proof. i) Leta,f>0witha +p =1and t,t, € [0,1]. Then, by using convexity of f, we have

ff( (xt1+ l—t1)3a+b)+ﬁ(xt2+(1 t2)3a+b)) X

%aff(a(xtl L (1 —tl)az?)b)+ﬁ(xt2+(1 — 1) “Z3b))dx

atb
2

S (atl + ﬁi’z)

n+b

_ff(xt1+(1—t1)3“+b) e ff(xt1+(1—t1)a+3b)

a+b
2

IA

+b%ff(xt2+(1—tz)3“;b) ff((xt2+(1—t2)”+3b)) ”

asS (t) + BS (t2)

which shows that S is convex function in [0, 1].
ii) We shall prove the following inequalities:

b
f(#) < S(t)gtﬁff(x)dx+(1—t)%[f(sazb)+f(az3b)]
b
b
< b_aff(x)dxsw.

8781
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for all t € [0,1]. To prove of the first inequality in (3), by Jensen’s integral inequality we get

ath

2 b
25(t) > f %f(tﬂ(l—t)?’“;b)dx +f bfﬂf(txﬂl—t)”’fb)dx

%
3a+b a+3b
ERNiEY
and so by using convexity of f, we have
1 (3a+b)\ 1 _(a+3b a+b
= )

On the other hand, by using convexity of f, we get

gb b
b%af(tf(x)+(1—t)f(3a;b))dx+biaf(tf(x)+(1—t)f(az3b))dx

tﬁfbf(x)dx+(l—t)%[f(3a:b)+f(atl3b)]

and the second inequality in (3) is also proved. The last inequality is obvious because the mapping

b
1 1] (3a+b 3b
Gl(t)ztmff(x)dx+(1—t)§[f( “; )+f(‘“zl )]

is increasing monotonically on [0, 1] .
iii) If we use the convexity of the function f, we get the gradient inequality

fw) = f(©) > f' (v) (u—0)
for any u,v € (a,b). Let f1, ¢, € (0,1) with #; < t,. Then, S being convex on (0, 1)

S(t2) — S(t1)
th —t

S()

IA

> S, (h)

a+h
1 , 3a+b 3a+b
= mff+(xt1+(l—t1) 1 )(x— 1 )dx

b
1 , a+3b a+3b
+mff+(xt+(l—t) 2 )(X— 2 )dx
ath
7

Since f is convex function on [4, b] and because fx + (1 — t)3”T+b, tx + (1 - t)”fT% € (a,b) holds for any x € (a, b)

and t € [0, 1], we obtain that
f(?)a;b)—f(xtl -t 3a;—b) fi(xh -t 3a;—b)(3a;—b —x)h

f(az3b)—f(xt1+(1—t1)b) > f;(xt1+(1—t1)”z3b)(”z3b—x)t1

v

\
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and thus

S(t2) = S(t)
th —t

~h (b 11)

S
Ny

Consequently, S (f,) — S (t1) = 0 for 0 < f; < t; < 1 which shows that S increases monotonically on [0,1]. [

ot b
(xt1+ t1)3u+b)dx+ff(xt1+(1tl)a+3b)dx]

2

Theorem 2.4. With the assumptions in Theorem 2.1, we have

min {t,1— ) lf(” O _ ff( )dx‘ )

f@)+f®)
2

b
1
t(b_a)[f(x)dx+(1_t) _](t)

< max{t,1-1) If(”)+f(b) ff(x)dx‘

forany t € [0,1].

Proof. Recall the following result obtained by Dragomir in [5],

Zmin{t,l—t}[f(X)+f(y) _f(x+y)

2 2
tf )+ A= f(y)— ftx+ 1 —-1)y)
f@)+f(y) X+y

[ 2 _f( )]

IN

IA

2max{t,1—t} 5

forall x,y € [a,b] and ¢ € [0, 1] . On making use of the inequality (5) we can write as follows

Zmin{t,l—t}[f(x)+f(a) f(“”)]

2

< @+ A1 @ - fltx+ (1)
< Zmax{t,l—t}[f(X);f(a)_f(x;a)
and
Zmin{t,l—t}[f(X);f(b)_f(x;b)
< tf)+A -8 fb) - ftx+ (1 -1)b)
< Zmax{t,l—t}[f(X)+f(b)—f(x+b)]

2 2
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forall x € [a,b] and t € [0, 1]. Adding above two results, we have

2min{t,1 - [f( f(a)"'f(b f(x+a) f(x+a)

2
2tf(x)+(1—t)[f(a)+f(b)]—f(tx+ (1—-t)a) - f(tx+ (1 - t)b)

2 max {t, 1 - [f() ORI p(xra) f(xza)]-

Integrating over x € [a, b] in (6) we get

2min{t,1—t}lfbf(x)dﬂ(b—a)w—fb[f(xT”)ﬁuf("zﬂ)]dx‘

a

IA

IA

b

b
< 2tff(x)dx+(1—t)(b—a)[f(a)+f(b)]—f[f(tx+(1—t)a)+f(tx+(1—t)b)]dx

a

< 2max{t,1—t}lff(x)dx+(b—a)w—fh[f(xTﬂl)Jrf(xTM)]dx‘.

a

Using the change of the variable and by multiplying the result by ﬁ, we obtain desired equality (4). O

Theorem 2.5. With the assumptions in Theorem 2.3, we have

b

min { L ryax+lr a+3b 3a+b x+a x+a g
ot f o) () [ 252)
tblTaff(x)dx+(1—t)%[f(az3b)+f(3a;b)}—5(t)

oot [ [ {52 (o)t [ ) 30

forany t € [0,1].

IA

Proof. On making use of the inequality (5) we can write as follows

f(x)+f(3“7+b)_f(x+3u4_+b]]

2min{t,1 -t}

> > (7)

IA

G0+ _t)f(3a+b) f( (1_t)3a+b)
[f(x +f(%) _f(x+ 3”7”’]}
2

2

IN

2max{t, 1 —t}

for all x e[ M] and t € [0, 1]Jand

a+3b a+3b
Zmin{t,l—t}[f(X)+2f( ; )_f(x+24 ]] ©
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< e —t)f(a+3b) f(tx (1_t)a+3b)
a+3b a+3b
< Zmax{t,l—t}[f(x) +2f( ! )—f(x+2 ]}

forall x € [”*b b] and t € [0,1]. Integrating over x € [ a, %t ] in(7)and x € [’”b b] in (8) , we have

n+b

) )

a+b
2min{t, 1 -t} ff(xdx

a+b

< tff(x)dx+(1 : (3”;b)—ff(tx+(1—t)3“;“b)dx
N ~ b -
< 2max{t,1-t %ff(x)d bzaf(3a2b)—%ff(x+24 ]dx
and
a+3b + at3b
2min{t, 1 -t} ff(x ( ) ff( ]
< ff(x)+(1 (a+3b) ff( +3b)dx
b
<

2 max {t, 1 - ff(x (”+3b) ff(wrz#)dx.

By adding these two results, we get

b

2min{t,1—t}l%ff(x)dx+7

a a

b
< tff(x)dx+(1—t)b;a[f(az%)+f(3u;b)
ff(tx+(1—t)3a+b)dx ff(tx+(1—t)a+3b) X
<

2maxf{t,1— l

oo U)o

Using the change of the variable and by multiplying the result by 71, we obtain desired inequality. [J
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3. Applications

Let us consider the convex mapping f : (0,00) = R, f(x) =17, p € (—00,0) U [1,00){-1} and 0 < a < b.
Define the mapping

b
Jp () = ﬁ f[(xt + (1 -t)a)’ + (xt+ (1 —t)b)’]dx.

Itis obvious that ], (0) = A (a?,b%), J, (1) = L}, (a, b) where we recall that A (a,b) = %42 and L} (a,b) = - e

(b-a)(p+1)’
p € (=00,0) U[1,00) {1} and for t € (0,1) we have
bt-+(1—t)a b
I, = _t f u”du+; f vdo
r ~ 2t(b—a) 2t (b —a)

a at+(1-t)b
L), (a, bt + (1 - tya) + L) (at + (1 = £) b, b)
= 2 .

The following proposition holds via Theorem 2.1, applied for the convex function f (x) = x”.
Proposition 3.1. With the above assumptions, we have for the function |, :

i) is convex on [0, 1] ;
ii) has the bounds

inf J, () = LZ (a,b), sup],(t)=A@,b);

telo 1] te[0,1]

iii) decreases monotonically on [0, 1] ;
iv) The following inequalities hold
L, (a, bt + (1 - tya) + L, (at + (1 = £) b, b)

AP (a,b) >

IN

tLy (a,b) + (1 =) A (@, b') < A (@, 1F).
Now, on making use of Theorem 2.4 we can state the following result as well:
Proposition 3.2. With the above assumptions, we have
min {t,1 -} [A (@, ") - L} (a, b)]

L, (a, bt + (1 = t)a) + Ly (at + (1 — t) b, b)
2

IN

tLy (a,b) + (1 - ) A (@, b") —

IA

max {t,1 -} [A (@, ") - L} (a,b)]
forany t € [0,1].

4. Conclusion

In conclusion, this paper introduces novel extensions of the weighted Hermite-Hadamard inequalities
and demonstrates their relevance to fractional integrals. Our contributions expand upon existing research,
offering valuable insights and techniques for addressing a broad range of mathematical and scientific
challenges. Moving forward, further exploration of the implications and applications of these extensions
holds promise for advancing knowledge and fostering innovation in diverse fields.
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