
Filomat 39:25 (2025), 8789–8800
https://doi.org/10.2298/FIL2525789K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Non-null space curves related by a transformation of combescure
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Abstract. This study investigates non-null space curves in Minkowski 3-space that are related through the
Combescure transformation, a geometric operation characterized by parallel tangent vectors at correspond-
ing points. Using the Frenet apparatus, conditions for two non-null curves to exhibit this transformation
are derived, with a focus on their tangent, principal normal, and binormal vectors. The relationships re-
veal significant properties of curve interactions, including parallelism of Frenet vectors and connections to
Bertrand curve pairs. Additionally, the effects of the Combescure transformation on curvature and torsion
are analyzed and illustrated through examples. Furthermore, as an application, the conditions under which
a spatial curve associated with a non-null biharmonic curve via the Combescure transformation remains
biharmonic are determined and supported by relevant examples.

1. Introduction

An important aspect of the geometry of a curve involves analyzing curve pairs through the relationships
between their Frenet vectors, tangent, principal normal, and binormal. These vectors encapsulate critical
geometric information, enabling the study of curve interactions. Special attention is given to cases where the
Frenet vectors of one curve correspond to those of another, leading to six distinct geometric relationships
[14]. Such alignments define significant curve classes, like Bertrand and Mannheim curve pairs, which
exhibit unique geometric properties and dependencies [5].

For example, Bertrand curve pairs have parallel principal normals at corresponding points, implying
a relationship between their osculating planes. Mannheim curve pairs, where the principal normal of one
curve aligns with the binormal of another, highlight interactions between curvature and torsion. These
classifications play a key role in differential geometry, with applications in robotics, computer-aided design,
and structural analysis [1, 2, 10, 11, 18].

The Combescure transformation, a fundamental concept in differential geometry, relates two curves
whose tangent vectors are parallel at corresponding points, ensuring the parallelism of their principal
normal and binormal vectors. This transformation has been generalized to Riemannian manifolds, where
it defines ”parallel tangent deformations” preserving normal vector alignments. Hayden demonstrated
that flat spaces are the only Riemannian manifolds exhibiting the generalized Combescure (G.C.) property
[7, 20].
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In recent studies, the Combescure transformation has been used to systematically generate special
curves, such as Bertrand, Mannheim, and Salkowski curves, from a given curve. For instance, a Mannheim
curve can be derived from an anti-Salkowski curve. These investigations provide a framework for identify-
ing curve classes and exploring their geometric properties, enriching both theoretical and applied geometry
[3, 13, 15, 16].

In this paper, the geometric properties of non-null space curve pairs in Minkowski 3-space, which
possess parallel tangent vector fields or, equivalently, are associated through a Combescure transformation,
are studied by considering the works mentioned above. First and foremost, these curve pairs emerge as
having the same causal character and parallel Frenet vectors. It is also demonstrated that these curve
pairs have equal curvature ratios. The study further investigates the properties of certain special curves,
such as circular helices, general helices, and slant helices, which are connected through the Combescure
transformation to their corresponding associated curves, as these curves hold significant importance in
differential geometry. Additionally, the conditions for an associated curve connected via the Combescure
transformation to be a biharmonic curve are presented under a separate section dedicated to biharmonic
curves. All results are supported with illustrative examples.

2. Preliminaries

Minkowski space E3
1 is a three-dimensional affine space endowed with an indefinite flat metric 1(·, ·)

with signature (−,+,+). This means that metric bilinear form can be written as

1(u, v) = −u1v1 + u2v2 + u3v3,

for and two vectors u = (u1,u2,u3) and v = (v1, v2, v3) in E3
1. Recall that a vector u ∈ E3

1\{0} can be spacelike
if 1(u,u) > 0, timelike if 1(u,u) < 0 and null (lightlike) if 1(u,u) = 0 and u , 0. In particular, the vector u = 0
is spacelike. The norm of a vector u is given by ||u|| =

√
|1(u,u)|, and two vectors u and v are said to be

orthogonal, if 1(u, v) = 0. An arbitrary curve φ(s) in E3
1, can locally be spacelike, timelike, or null (lightlike), if

all its velocity vectors φ′(s) are respectively spacelike, timelike, or null. A null curve φ is parameterized by
pseudo-arc s if 1(φ′′(s), φ′′(s)) = 1. A spacelike or a timelike curve φ(s) has unit speed, if 1(φ′(s), φ′(s)) = ±1
[12], [17].

Let {T,N,B}denote the moving Frenet frame along a curveφ inE3
1,T,N and B represent the tangent, prin-

cipal normal, and binormal vector fields, respectively. The form of the Frenet equations varies depending
on the causal character of the curve φ.

If φ is a non-null curve, the Frenet equations are given by: T′

N′

B′

 =
 0 ϵ2κ 0
−ϵ1κ 0 ϵ3τ

0 −ϵ2τ 0


 T

N
B

 (1)

where κ and τ are the first and the second curvature of the curve, respectively. Moreover, the following
conditions hold:

ϵ1 = 1(T,T) = ±1, ϵ2 = 1(N,N) = ±1, ϵ3 = 1(B,B) = ±1

1(T,N) = 1(T,B) = 1(N,B) = 0

where ϵ1ϵ2ϵ3 = −1 and ∃i ∈ {1, 2, 3} , ϵi = 1.

3. Non-null Space Curves Related by a Transformation of Combescure

In this section, the properties of non-null space curves associated with Combescure transformation in
Minkowski 3-space will be analysed. Firstly, let us give the Minkowski 3-space analogue of the definition
given by Graustein [6] and [19] in Euclidean 3-space.
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Definition 3.1. Let φ : I ⊆ R → E3
1 and φ∗ : I∗ ⊆ R → E3

1 be unit speed non-null curves with the same causal
characters inE3

1 with Frenet apparatus {T,N,B, κ, τ} and {T∗,N∗,B∗, κ∗, τ∗}, respectively. If the tangent vectors at the
corresponding points of φ and φ∗ are equal, these curves are called curves related by a transformation of Combescure.

Theorem 3.2. Let φ : I ⊆ R → E3
1 and φ∗ : I∗ ⊆ R → E3

1 be unit speed non-null curves with the same causal
characters in E3

1 with Frenet apparatus {T,N,B, κ, τ} and {T∗,N∗,B∗, κ∗, τ∗}, respectively. Then the tangent vector
T of φ is equal to the tangent vector T∗ of φ∗ at the corresponding points if and only if there exists C : I ⊆ R → R
differentiable function such that

φ∗
(

f (s)
)
= φ (s) +

d
dr

(
C (s) − ε1

d2C (s)
dt2

)
T − ε3

d2C (s)
dt2 N +

dC (s)
dt

B (2)

where t =
∫
τ (s) ds, r =

∫
κ (s) ds and f ′ (s) = ds∗/ds where s and s∗ arclength parameters of φ and φ∗, respectively.

Proof. Let φ : I ⊆ R→ E3
1 and φ∗ : I∗ ⊆ R→ E3

1 be unit speed non-null curves in E3
1 with Frenet apparatus

{T,N,B, κ, τ} and {T∗,N∗,B∗, κ∗, τ∗}, respectively. Assume that T = T∗ and

φ∗ (s∗) = φ∗
(

f (s)
)
= φ (s) + µ1 (s) T (s) + µ2 (s) N (s) + µ3 (s) B (s) (3)

where µ1, µ2 and µ3 are differentiable functions on I ⊆ R. Then differentiating (3) with respect to s and using
(1), we obtain

dφ∗

ds∗
ds∗

ds
=

(
µ′1 − ε1κµ2 + 1

)
T +

(
µ′2 +1 ε2κµ1 − ε2τµ3

)
N +

(
µ′3 + ε3τµ2

)
B.

From T = T∗,we get

µ′1 − ε1κµ2 + 1 = ds∗
ds

µ′2 + ε2κµ1 − ε2τµ3 = 0
µ′3 + ε3τµ2 = 0

 . (4)

In the solution of the above system, if we take

µ3 =
dC (s)

dt
, (5)

where t =
∫
τ (s) ds, which is the arclength element of the binormal indicatrix of φ, and using the third

equation in (4) , then we get

µ2 = −ε3
1
τ

d
ds

(
dC (s)

dt

)
= −ε3

1
τ

d2C (s)
dt2

dt
ds

= −ε3
d2C (s)

dt2 . (6)

Substituting (5) and (6) in the second equation in (4) ,we obtain

µ1 =
1
κ

(
−ε2µ

′

2 + τµ3

)
=

1
κ

(
τ

dC (s)
dt
− ε2

d
ds

(
−ε3

d2C (s)
dt2

))
=

1
κ

(
τ

dC (s)
dt
+ ε2ε3

d3C (s)
dt3

dt
ds

)
.
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If we use r =
∫
κ (s) ds,which is the arclength element of the tangent indicatrix of φ, and chain rule, we get

µ1 =
1
κ

(
τ

dC (s)
dt
+ ε2ε3

d3C (s)
dt3

dt
ds

)
=

dC (s)
dt

dt
ds

ds
dr
+ ε2ε3

d3C (s)
dt3

dt
ds

ds
dr

=
dC (s)

dt
dt
dr
+ ε2ε3

d3C (s)
dt3

dt
dr

=
d
dr

(
C (s) + ε2ε3

d2C (s)
dt2

)
.

Substituting µ1, µ2 and µ3 in (3), we obtain

φ∗
(

f (s)
)
= φ (s) +

d
dr

(
C (s) + ε2ε3

d2C (s)
dt2

)
T − ε3

d2C (s)
dt2 N +

dC (s)
dt

B.

Conversely, assume that φ : I ⊆ R → E3
1 be a unit speed non-null curve in E3

1 with Frenet apparatus
{T,N,B, κ, τ}, C : I ⊆ R→ R be a differentiable function and

φ∗ (s∗) = φ∗
(

f (s)
)
= φ (s) +

d
dr

(
C (s) + ε2ε3

d2C (s)
dt2

)
T − ε3

d2C (s)
dt2 N +

dC (s)
dt

B. (7)

Differentiating (7) with respect to s,we find

dφ∗

ds∗
ds∗

ds
=

{
1 +

d
ds

(
dC
dr
− ε1

d3C
dt3

dt
dr

)
− ε2

d2C
dt2

dr
ds

}
T

+

{
ε2

dC
dr

dr
ds
+ ε3

d3C
dt3

dt
dr

dr
ds
− ε3

d3C
dt3

dt
ds
− ε2

dC
dt

dt
ds

}
N (8)

+

{
−

d2C
dt2

dt
ds
+

d2C
dt2

dt
ds

}
B.

By using t =
∫
τ (s) ds and r =

∫
κ (s) ds in (8) ,we get

T∗
ds∗

ds
=

{
1 +

d
ds

(
dC
dr
− ε1

d3C
dt3

dt
dr

)
− ε2

d2C
dt2

dr
ds

}
T.

Since T∗ and T are unit vectors from above equality, we get T∗ = T. Thus φ∗ and φ are non-null space curves
are related by a transformation of Combescure. This completes the proof.

Theorem 3.3. Let φ : I ⊆ R → E3
1 and φ∗ : I∗ ⊆ R → E3

1 be unit speed non-null curves with the same causal
characters in E3

1 with Frenet apparatus {T,N,B, κ, τ} and {T∗,N∗,B∗, κ∗, τ∗}, respectively. The curves φ and φ∗ are
related by a transformation of Combescure if and only if N = N∗ and B = B∗ at the corresponding points of φ and φ∗.

Proof. The proof is clear from the above proof of theorem.

Corollary 3.4. If two non-null space curves in E3
1 are connected related by a transformation of Combescure, then

these curves have parallel Frenet vectors.

Theorem 3.5. Let φ : I ⊆ R → E3
1 and φ∗ : I∗ ⊆ R → E3

1 be unit speed non-null curves with the same causal
characters in E3

1 with Frenet apparatus {T,N,B, κ, τ} and {T∗,N∗,B∗, κ∗, τ∗}, respectively. Then the tangent vector T
of φ is equal to the tangent vector T∗ of φ∗ if and only if

φ∗
(

f (s)
)
= f ′ (s)φ (s) −

∫
f ′′ (s)φ (s) ds (9)

for f ′ (s) = ds∗/ds where s and s∗ are arclength parameters of φ and φ∗, respectively.



O. Keçilioğlu, K. İlarslan / Filomat 39:25 (2025), 8789–8800 8793

Proof. Let φ : I ⊆ R → E3
1 and φ∗ : I∗ ⊆ R → E3

1 be unit speed non-null curves with the same causal
characters in E3

1 with Frenet apparatus {T,N,B, κ, τ} and {T∗,N∗,B∗, κ∗, τ∗}, respectively. Assume that the
tangent vector T ofφ is equal to the tangent vector T∗ ofφ∗.Then from Theorem 3.2, there exists C : I ⊆ R→ R
such that

φ∗
(

f (s)
)
= φ (s) +

d
dr

(
C (s) − ε1

d2C (s)
dt2

)
T − ε3

d2C (s)
dt2 N +

dC (s)
dt

B (10)

where t =
∫
τ (s) ds and r =

∫
κ (s) ds. Differentiating (10) with respect to s and by using T = T∗, we get

ds∗

ds
= f ′ (s) = 1 +

d
ds

(
dC
dr
− ε1

d3C
dt3

dt
dr

)
− ε2

d2C
dt2

dr
ds

and

T∗ds∗ = f ′Tds (11)

By integrating the last equality, we have

φ∗
(

f (s)
)
= f ′ (s)φ (s) −

∫
f ′′ (s)φ (s) ds. (12)

Conversely we assume that equation (9) is satisfy. By differentiating (9) with respect to s, we get (11) .Which
means that The tangent vectors of the curves φ and φ∗ are equal. This completes the proof.

Corollary 3.6. Let φ : I ⊆ R → E3
1 and φ∗ : I∗ ⊆ R → E3

1 be unit speed non-null curves with the same causal
characters in E3

1 with Frenet apparatus {T,N,B, κ, τ} and {T∗,N∗,B∗, κ∗, τ∗}, respectively. If the tangent vector T of
φ is equal to the tangent vector T∗ of φ∗ then we get

f ′ (s) =
ds∗

ds
=
κ
κ∗
=
τ
τ∗
.

Proof. Let φ : I ⊆ R → E3
1 and φ∗ : I∗ ⊆ R → E3

1 be unit speed non-null curves with the same causal
characters in E3

1 with Frenet apparatus {T,N,B, κ, τ} and {T∗,N∗,B∗, κ∗, τ∗}, respectively. Assume that the
tangent vector T of φ is equal to the tangent vector T∗ of φ∗. Then differentiating T = T∗ with respect to s,
we have

ds∗

ds
κ∗N∗ = κN

which implies that

ds∗

ds
=
κ
κ∗
.

Also differentiating B = B∗ with respect to s,we get

ds∗

ds
τ∗N∗ = τN

which implies that

ds∗

ds
=
τ
τ∗
.
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As a consequence of the theorems and results stated and proven above, the relationships between certain
special curves, which are extensively studied in differential geometry, and their corresponding conjugate
curves under the Combescure transformation are presented below without proof.

Corollary 3.7. Let φ : I ⊆ R → E3
1 and φ∗ : I∗ ⊆ R → E3

1 be unit speed non-null curves with the same causal
characters inE3

1 with Frenet apparatus {T,N,B, κ, τ} and {T∗,N∗,B∗, κ∗, τ∗}, respectively. If the tangent vectors at the
corresponding points of φ and φ∗ are equal, these curves are called curves related by a transformation of Combescure.
Then we have the followings.

(i) The curvature ratios of the space curve pairs (φ,φ∗) are equal. In other words

κ
τ
=
κ∗

τ∗

(ii) The space curve pairs (φ,φ∗) is a Bertrand curve pairs.
(iii) If φ is a circular helix or general helix then φ∗ is a circular helix or general helix.
(iv) If the curve φ is a non-null slant helix, then the necessary and sufficient condition for the curve φ∗ to be a slant

curve is that f ′ =
ds∗

ds
is a nonzero constant.

(v) If φ is a non-null Salkowski curve, then φ∗ cannot be a Salkowski curve. For the φ∗ to be an anti-Salkowski
curve, the torsion of the curve φ must be equal to f ′. If φ is a non-null anti-Salkowski curve, then φ∗ can be an
anti-Salkowski curve if f ′ is a nonzero constant. For the φ∗ to be a Salkowski curve, the curvature of the curve
φ must be equal to f ′.

Example 3.8. Let us consider the curve in E3
1 given by

φ (s) =
(
sinh s, cosh s,

√

2s
)

with the curvatures κ = 1 and τ =
√

2 and the Frenet frame as

T (s) =
(
cosh s, sinh s,

√

2
)

N (s) = (sinh s, cosh s, 0)

B (s) =
(
−

√

2 cosh s,−
√

2 sinh s,−1
)
.

If we take C (s) =
√

2s2 in Theorem 3.2, we obtain related by transformation of Combescure curve φ∗1 as follows

φ∗1
(

f (s)
)
=

((
1 +
√

2
)

sinh s,
(
1 +
√

2
)

cosh s,
√

2
(
1 +
√

2
)

s
)

with curvatures κ∗1 =
1

1+
√

2
and τ∗1 =

√
2

√
2+1

.

If we take C (s) =
√

2s3 Theorem 3.2, we obtain related by transformation of Combescure curve φ∗2 as follows

φ∗2
(

f (s)
)
=

(
−3
√

2 cosh s +
(
1 + 3

√

2s
)

sinh s,−3
√

2 sinh s +
(
1 + 3

√

2s
)

cosh s, 3s2 +
√

2s − 6
)

with curvatures κ∗2 =
1

3
√

2s+1
and τ∗2 =

√
2

3
√

2s+1
.
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Figure 1: The curves φ (red), φ∗1 (green), and φ∗2 (blue)given in Example 1 are illustrated together.

Example 3.9. Let us consider the curve in E3
1 given by

φ (s) =
(√

2 sinh s,
√

2 cosh s, s
)

withe the curvatures κ =
√

2 and τ = −1 and the Frenet frame as

T (s) =
(√

2 cosh s,
√

2 sinh s, 1
)

N (s) = (sinh s, cosh s, 0)

B (s) =
(
cosh s, sinh s,

√

2
)
.

If we take C (s) = sinh s Theorem 3.2, we obtain related by transformation of Combescure curve φ∗1 as follows

φ∗1
(

f (s)
)
=

(√
2 sinh s + 1,

√

2 cosh s, s
)

with curvatures κ∗1 =
√

2
2
√

2 sinh s+1
and τ∗1 =

−1
2
√

2 sinh s+1
.

If we take C (s) =
√

2s3 Theorem 3.2, we obtain related by transformation of Combescure curve φ∗2 as follows

φ∗2
(

f (s)
)
=

(
6
√

2 cosh s +
(√

2 − 6
√

2s
)

sinh s, 6
√

2 sinh s +
(√

2 − 6
√

2s
)

cosh s,−3s2 + s + 6
)

with curvatures κ∗2 =
√

2
12s+1 and τ∗2 =

−1
12s+1 .
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Figure 2: The curves φ (red), φ∗1 (green), and φ∗2 (blue) given in Example 3.9.

4. Biharmonic Curves Under Combescure Transformation

In this section, we investigate the conditions under which the counterpart of a non-null biharmonic
curve, obtained via the Combescure transformation, remains a biharmonic curve. Before addressing this
question, we briefly summarize biharmonic curves in Minkowski 3-space and the previously obtained
results.

A unit-speed curve γ : I → M is biharmonic if the Laplacian of its mean curvature vector field satisfies
∆H = 0. In semi-Euclidean 3-space, biharmonicity is equivalent to ∆∆γ = 0. Chen and Ishikawa [4]
demonstrated that all biharmonic curves in semi-Euclidean spaces En

v lie within three-dimensional totally
geodesic subspaces. In Minkowski 3-space E3

1, Inoguchi classified all biharmonic curves as helices with
curvature κ and torsion τ satisfying κ2 = τ2 [8], [9]. We know that studying biharmonic curves helps in
understanding the behavior of elastic curves in Lorentzian spaces, which differ significantly from Euclidean
spaces due to the indefinite metric. The following result, provided by Inoguchi [8], expresses the necessary
and sufficient conditions for a non-null curve in Minkowski 3-space to be a biharmonic curve.

Proposition 4.1. Let γ be a unit speed curve in Minkowski 3-space E3
1. Then, γ is biharmonic if and only if γ is

congruent to one of the following:

1. A spacelike or timelike line.
2. A spacelike curve such that h(γ, γ) = 0, given by

γ(s) = (as3 + bs2, as3 + bs2, s),

where a and b are constants such that a2 + b2 , 0.
3. A spacelike helix with a spacelike principal normal vector field satisfying κ2 = τ2 = a2, given by

γ(s) =
(

a2s3

6
,

as2

2
,−

a2s3

6
+ s

)
.

4. A timelike helix satisfying κ2 = τ2 = a2, given by

γ(s) =
(

a2s3

6
+ s,

as2

2
,

a2s3

6

)
.
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The following theorem provides the conditions under which the associated curve of a non-null bihar-
monic curve in Minkowski 3-space, related through the comberscure transformation, is also a biharmonic
curve.

Theorem 4.2. Let φ : I ⊆ R → E3
1 and φ∗ : I∗ ⊆ R → E3

1 be unit speed non-null curves with the same causal
characters in E3

1 with Frenet apparatus {T,N,B, κ, τ} and {T∗,N∗,B∗, κ∗, τ∗}, respectively. When the curve φ(s) is a
biharmonic curve, a necessary and sufficient condition for the associated curve φ∗

(
f (s)

)
, related to φ(s) through the

Combescure transformation, to also be a biharmonic curve is that one of the following conditions is satisfied

(i) f ′ (s) = ds∗/ds is a constant different from 0 and 1.

(ii) The curve φ∗
(

f (s)
)

is given by φ∗
(

f (s)
)
= f ′ (s)φ (s) +

−→
C ,where

−→
C = (c1, c2, c3) ∈ E3

1 is a constant vector.

(iii) The differentiable function C(s) in Theorem 3.2 given by C (s) =
(1 − λ)κτ2

24
s4 +

c1

6
s3 +

c2

2
s2 + c3s+ c4.Where

f ′ (s) = λ = ds∗
ds , 1 and non-zero constant, ci ∈ R (i = 1, 2, 3, 4) .

Proof. We assume that the curves φ(s) and φ∗
(

f (s)
)

are related by a Combescure transformation. If the
curve φ(s) is a biharmonic curve, then according to the above proposition its curvature functions satisfy
the equality κ2 = τ2 = a2 where a ∈ R0. On the other hand, if φ∗

(
f (s)

)
is a biharmonic curve, its curvature

functions satisfy (κ∗)2 = (τ∗)2 = b2 where b ∈ R0. Since φ(s) and φ∗
(

f (s)
)

are related by a Combescure
transformation, Corollary 3.6 implies that

f ′ (s) =
ds∗

ds
=
κ
κ∗
=
τ
τ∗
.

Thus, f ′ (s) is a non zero constant, satisfying condition (i).
Since φ∗

(
f (s)

)
is a biharmonic curve, the function f ′ (s) is a non zero constant. From Theorem 3.5, we

get

φ∗
(

f (s)
)
= f ′ (s)φ (s) +

−→
C ,

where
−→
C = (c1, c2, c3) ∈ E3

1 is a constant vector. Therefore, condition (ii) is satisfied.
From Theorem 3.2, we obtain

f ′ (s) = 1 +
d
ds

(
dC
dr
− ε1

d3C
dt3

dt
dr

)
− ε2

d2C
dt2

dr
ds
. (13)

Since φ∗
(

f (s)
)

is a biharmonic curve, the function f ′ (s) = λ is a non zero constant. By using t =
∫
τ (s) ds,

r =
∫
κ (s) ds, and κ2 = τ2 = a2 (where a ∈ R0) in equation (13) ,we get easily obtain

d4C
ds4 = (1 − λ)κτ2

By integrating, we find

C (s) =
(1 − λ)κτ2

24
s4 +

c1

6
s3 +

c2

2
s2 + c3s + c4

where f ′ (s) = λ = ds∗
ds , 1 is a non-zero constant, and ci ∈ R (i = 1, 2, 3, 4) . Thus, condition (iii) is satisfied.

Conversely, it is straightforward to prove that if the curve φ(s) is a biharmonic curve and one of the
conditions (i)-(iii) is satisfied, then the curve φ∗

(
f (s)

)
is also a biharmonic curve.
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Corollary 4.3. Using f ′ (s) as a non-zero constant, the equation of the biharmonic curve φ∗
(

f (s)
)
, which is Combes-

cure related with the biharmonic curve φ(s), is obtained as follows using Theorem 3.

φ∗
(

f (s)
)
= f ′ (s)φ (s) +

−→
C (14)

where
−→
C = (c1, c2, c3) ∈ E3

1 is a constant vector. Since all curves in the family described by the above equality have the
same curvatures, they are equivalent to the curve φ∗

(
f (s)

)
= f ′ (s)φ (s) under the isometries of Minkowski 3- space.

Example 4.4. Let us consider the spacelike biharmonic curve in E3
1 with a spacelike principal normal given by

φ (s) =
(
−

s3

6
,−

s3

6
+ s,

s2

2

)
with the curvatures κ = 1, τ = −1 and the Frenet frame as

T (s) =
(
−

1
2

s2, 1 −
1
2

s2, s
)

N (s) = (−s,−s, 1)

B (s) =
(
−

1
2

s2
− 1,−

1
2

s2, s
)
.

If we take C (s) = − s4

12 in Theorem 3.2, we obtain related by transformation of Combescure curve φ∗ as follows

φ∗
(

f (s)
)
=

(
−

1
2

s3,−
1
2

s
(
s2
− 6

)
,

3
2

s2
)

with curvatures κ∗ = 1
3 and τ∗ = − 1

3 . Since (κ∗)2 = (τ∗)2 = 1
9 , φ

∗ is a biharmonic curve.

Figure 3: The curves φ (red), φ∗ (blue) given in Example 4.4.

Example 4.5. Let us consider the timelike biharmonic curve in E3
1 with a spacelike principal normal given by

φ (s) =
(
s +

2
3

s3, s2,
2
3

s3
)
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with the curvatures κ = τ = 2 and the Frenet frame as

T (s) =
(
2s2 + 1, 2s, 2s2

)
N (s) = (2s, 1, 2s)

B (s) =
(
−2s2,−2s, 1 − 2s2

)
.

If we take C (s) = s4 in Theorem 3.2, we obtain related by transformation of Combescure curve φ∗ as follows

φ∗
(

f (s)
)
=

(4
3

s
(
2s2 + 3

)
, 4s2,

8
3

s3
)

with curvatures κ∗ = τ∗ = 1
2 . Since (κ∗)2 = (τ∗)2 = 1

4 , φ
∗ is a biharmonic curve.

Figure 4: The curves φ (red), φ∗ (blue) given in Example 4.5.
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