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Abstract. The concept of a conformal Ricci soliton generalizes that of a Ricci soliton. Notably the conformal
Ricci soliton is closely related to the conformal Ricci flow. This paper aims to characterize Riemannian
manifolds that admit a conformal gradient Ricci soliton. Furthermore, we present methods for constructing
such manifolds in the context of product manifolds and warped product manifolds.

1. Introduction

Since R. S. Hamilton[11] introduced the concepts of Ricci flow and Yamabe flow, numerous studies
have been published on those topics. In 2004, A. E. Fischer [10] proposed the conformal Ricci flow as
a modification of the classical Ricci flow, replacing the unit volume constraint with a scalar curvature
constraint. These resulting equations are called the conformal Ricci flow equations, as conformal geometry
plays a crucial role in constraining scalar curvature. Furthermore, the equations can be interpreted as the
sum of a conformal vector field and a Ricci flow equation. On an m-dimensional Riemannian manifold
(M, 1) the conformal Ricci flow equation takes the form

∂1̃

∂t
+ 2(S̃ +

1

m
) = −p1, r̃(1) = −1, (1)

where S̃ and r̃(1) are the Ricci curvature and the scalar curvature of the manifold (M, 1) respectively, and
p is a scalar non-dynamical field. The term-p1 acts as a constraint force to preserve the scalar curvature
condition [5]. The conformal Ricci flow equations are analogous to the Navier-Stokes equation of fluid
mechanics, and because of this analogy, the time-dependent scalar field p is referred to as a conformal
pressure [2].

In 2015, N. Basu and A. Bhattacharyya [2] introduced the conformal Ricci soliton equation given by

LX1 + 2S̃ = [2λ̃ − (p +
2
m

)]1̃, (2)
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where λ̃ is a constant and LX denotes the Lie derivative in the direction X. If λ̃ is a smooth function, a
conformal Ricci soliton is called a conformal almost Ricci soliton [7,8,9,14,17].

In [8], S. Dey studied conformal Ricci soliton and almost conformal Ricci soliton within the framework of
paracontact manifolds. In addition, this research method could be applied to the study of odd-dimensional
manifolds with an almost contact structure. In [13], authors studied isometries of almost Ricci-Yamabe
solitons and explored the conditions under which a given manifold that admits an almost Ricci-Yamabe
soliton will be isometric with Euclidean space or Euclidean sphere. They provided non-trivial examples to
verify the main theorems.

The equation (2) is the generalization of the classical Ricci soliton equation and simultaneously satisfies
the conformal Ricci flow equation. A conformal Ricci soliton [2,7,8,9] is called a conformal gradient Ricci
soliton if the associated vector field X is a gradient of some smooth function h defined on a manifold. In
this case, the conformal gradient Ricci soliton is given by

2∇̃∇̃h + 2S̃ = [2λ − (p +
2
m

)]1̃, (3)

where ∇̃ is the Riemannian connection on M. In this case, M is said to admit conformal gradient Ricci soliton
with (h, λ, p). Recently, P. Zhang, Y. Li, S. Roy, S. Dey and A. Bhattacharyya[18] studied the geometrical
structure in a perfect fluid space time with a torse-forming vector field in connection with the conformal
Ricci-Yamabe metric and the conformal η -Ricci-Yamabe metric. S. Dey [8,9] and S. Uddin [9] studied
conformal Ricci soliton and almost conformal Ricci soliton within the framework of paracontact manifolds
and Kenmotsu manifolds. In 2022, U. C. De, A. Sardar and K. De [6] studied and classified 3-dimensional
Riemannian manifolds endowed with a special type of vector field when the Riemannian metrics are Ricci-
Yamabe solitons and gradient Ricci-Yamabe solitons respectively. Moreover they constructed an example
related to their main theorem. This paper consist of five sections. The first section introduces the historical
background of this paper’s topic and research results , and necessary concepts.

In the second section, we study the geometric charecterization of conformal gradient Ricci soliton in the
product space. And we present a method to construct a model space with a conformal gradient Ricci soliton
in a product space in Theorems 2.2 and 2.3. In sections 3 and 4, we investigate the conformal gradient Ricci
soliton in the warped product manifold and also obtain Theorem 3.3 that how we can construct the model
space in the warped product manifold M = L ×cet F. In the last section 5, we are to characterize the twisted
manifold with conformal gradient Ricci soliton.

2. Conformal gradient Ricci soliton in the product manifold

Let M = B × F be the product manifold of an n-dimensional Riemannian manifold (B, 1) and a q-
dimensional Riemannian manifold (F, 1̄). If M = B × F admits a conformal gradient Ricci soliton with
(h̃, λ̃, p) , then the following equations holds:

∇bh̃a + Sba = [̃2λ̃ − (p + 2
n+q )]1ba,

∂bh̃x = 0,

∇̄yh̃x + S̄yx = K̃1̄yx,

r̃ = r + r̄,

(4)

where ∇ and ∇̄ are the Levi-Civita connections for 1 and 1̄ respectively, S and S̄ are Ricci curvatures on B
and F respectively. Additional, r̃ , r and r̄ are the scalar curvatures on M, B and F respectively. The ranges
of the indices a, b, ..., run from 1 to n, and x, y, ... from n + 1 to n + q. Moreover h̃a =

∂h̃
∂ua

, h̃x =
∂h̃
∂ūx

for the
coordinate neighborhoods {Ũ = (U, Ū); Ũh = (ua, ūx)} in B × F.

Since ∂bh̃x = 0, it follows from the second equation of (4) that h̃ can be expressed as the sum k+ l, where k
is a smooth function on B and l is a smooth function on F. Thus, the first and third equations of (4) reduces
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to

∇bka + Sba = K̃1ba, ∇̄ylx + S̄yx = K̃1̄yx. (5)

where we have set K̃ = 2λ − (p + 2
n+q ). Equation (5) shows that K̃ is constant and consequently, both B

and F become gradient Ricci solitons with (k, K̃) and (l, K̃) respectively. This leads to the following.

Theorem 2.1. If M = B × F admits a conformal gradient Ricci soliton with (h̃, λ̃, p), then both B and F are gradient
Ricci solitons with (k, K̃) and (l, K̃) respectively.

Conversely, suppose that B and F are gradient Ricci solitons with (k, ρ1) and (l, ρ2). If we set h̃ = k + l,
ρ = ρ1 = ρ2, λ̃ = c(=constant) and p = 2

n+q +ρ− 2c, then B×F admits a conformal gradient Ricci soliton with

(h̃, λ, p); that is, M = B × F admits a conformal gradient Ricci soliton with (h̃, λ, p). Thus, we have

Theorem 2.2. If B and F are gradient Ricci solitons with (k, ρ) and (l, ρ), then M = B×F admits a conformal gradient
Ricci soliton with (h̃ = k + l, λ̃ = c, p = 2

n+q + ρ − 2c), where c is an arbitrary constant.

Therefore Theorem 2.2 provides a method to construct model spaces of manifolds that admit conformal
gradient Ricci solitons.

In [15], the authors established the following:

Theorem 2.3. If B and F are gradient Ricci solitons for (h1, λ) and (h2, µ), then M = B×F is a gradient Ricci soliton
with (h̃ = h1 + h2, ρ̃ = λ = µ).

3. Conformal gradient Ricci soliton in the warped product manifold Rn × f F

Let M = Rn
× f F be a warped product manifold admitting a conformal gradient Ricci soliton (h̃, λ̃, p).

Then the following equations hold:

2∇bh̃a + 2Sba −
2q
f (∇b fa) = A1ba,

2∂bh̃x −
2 fb

f h̃x = 0,

2∇̄yh̃x + 2 f f ch̄c1̄xy + 2S̄yx − 2 f (△ f )1̄yx − 2(q − 1)|| fe||21̄yx = A f 21̄yx,

(6)

where A = 2λ − (p + 2
2n+1 ), fb =

∂ f
∂ub

, and △ f is a Laplacian of f with respect to 1.

From (6), we obtain the following Theorem

Theorem 3.1. Let M = Rn
× f F admit a conformal gradient Ricci soliton with (h̃, λ̃, p) and assume q > 2. Then:

(a) If h̃x = 0 for all x = n + 1, ...,n + q, then F is an Einstein manifold.
(b) If h̃a = 0 for all a = 1, 2, ...,n, then M is either an Einstein manifold or a product manifold. Moreover, F is Einstein.

Proo f . (a) From the first equation of (6), it follows that h̃ depends only on Rn. From the third equation of
(6), it follows that F must be an Einstein manifold because S̄ = K1̄yx, where K is constant on F by the second
Bianchi identity.
(b) The second equation of (6) shows that either f or h̃ is constant, implying that M is Einsein or a product
manifold. Moreover, we see that F becomes an Einstein manifold from the third equation of (6).

If h̃ = k+ l, then fblx = 0 from the second equation of (6). Hence either f is constant, making M a product
making, or F is Einstein.
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Theorem 3.2. Let the warped product manifold M = Rn
× f F admits a conformal gradient Ricci soliton with (h̃, λ̃, p)

and q > 2. If h̃ = k + l for some functions k on B and l on F respectively, then either F is an Einstein manifold or M is
a product manifold.

We next investigate how to construct the model spaces of the manifold with a conformal gradient Ricci
soliton on the warped product manifold R × f F for the Einstein manifold F, referring to Theorems 3.1 and
3.2.

Theorem 3.3. Let F be an Einstein manifold and if we set h̃(t) = t2

2 and f (t) = cost, then the warped product manifold
M = R × f F admits a conformal gradient Ricci soliton. Furthermore, the following relations hold: λ̃ − p

2 −
1

n+1 = 1
and r̄

q −
tsin2t

2 − (q − 1)sin2t = 0, where r̄ is the scalar curvature of F, and S̄ = r̄
q 1̄.

Proo f . To construct a model space where the warped product manifold M = R × f F admits conformal
gradient Ricci soliton with (h̃, λ̃, p) , the quantities (h̃, λ̃, p) must satisfy the following equations:

h̃11 = λ̃ −
p
2 −

1
n+1 ,

∂1h̃x −
f1
f h̃x = 0,

∇̄yh̃x + f f 1h̄11̄xy + S̄yx + f (△ f )1̄yx − (q − 1)|| f1||21̄yx = (λ̃ − p
2 −

1
n+1 ) f 21̄yx.

(7)

Then, to satisfy (7), the following must be satisfied:

λ̃ −
p
2 −

1
n+1 = 1, r̄

q −
tsin2t

2 − (q − 1)sin2t = 0, (8)

where we have put S̄ = r̄
q 1̄ .

Therefore if the relations in (8) hold, then the warped product manifold R × f F becomes a conformal
gradient Ricci soliton manifold with (h̃ = t2

2 , λ̃, p) and the warping function f (t) = cost. Theorem 3.3 allows
us to construct a model space in the warped product manifold admitting a conformal gradient Ricci soliton.

Thus Theorem 3.3 provides a complete model of a conformal gradient Ricci soliton on a warped product
manifold with Einstein fiber.

In [4], B.Y.Chen proved

Theorem 3.4. If M is a m-dimensional Riemannian manifold that admits a nowhere-zero concircular vector field,
then M is locally a warped product I ×ϕ(s) F, where ϕ(s) is a nowhere-vanishing function on I and F is a Riemannian
(m − 1)-manifold.

In [12], the following theorem was proved.

Theorem 3.5. Let F be a 2n-dimensional Kaehler manifold and c a nonzero constant. Let f = cet be a function on a
line L. Then the warped product space M = L × f F has an almost contact metric structure (ϕ, ξ, η, 1) that satisfies

∇Xϕ · Y = −η(Y)ϕX − 1(X, ϕY)ξ,

∇Xξ = X − η(X)ξ.
(9)

In an almost contact Riemannian manifold, if the Ricci tensor S satisfies S = a1 + bη ⊗ η, where a and b
are scalar functions, then it is called an η-Einstein manifold[3,12].

In [12], the author proved
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Theorem 3.6. Let M be an almost contact manifold that satisfies the equation (7) of dimension 2n + 1. If M is
η-Einstein and a is constant(or b is constant), then M is an Einstein manifold.

Let F be a Kaehler manifold and c a nonzero constant. Let f = cet be a function on a line L. Then,
by Theorem 3.5, the warped product manifold M = L × f F admits an almost contact metric structure that
satisfies the equation (9).

If M admits gradient Ricci soliton, then Si j + ∇iη j = ρ1i j and that

Si j = (ρ − 1)1i j + ηiη j (10)

by the second equation of (9). From the second equation of (9) and the second Bianch’s identity, we obtain
Si jξ j = (1 − 2n)ηi. Thus, we see that ρ = 1 − 2n, which corresponds to

Si j = −2n1i j + ηiη j, (11)

where lx = ∂l
∂ūx

. Hence M becomes η-Einstein. From this fact and Theorems 3.5 and 3.6, we have

Theorem 3.7. Let F be a Kaehler manifold and c a nonzero constant. Then the warped product space M = L ×cet F a
gradient Ricci soliton becomes Einstein, where the vector field ξ is in the admitted almost contact structure (ϕ, ξ, η, 1)
on M.

If M admits a conformal gradient Ricci soliton, then [2(λ − 1) − (p + 2
2n+1 )]1i j + 2ηiη j = 0. If ξ is in the

almost contact structure (ϕ, ξ, η, 1), then we get Si j = [λ − 1 + ( p
2 + n)]1i j + ηiη j, that is M is η-Einstein. From

this fact and Theorems 3.5 and 3.6, we obtain the following Theorem

Theorem 3.8. Let F be a Kaehler manifold and c a nonzero constant. Then the warped product space M = L ×cet F
with a conformal gradient Ricci soliton becomes Einstein, where the vector field ξ is in the admitted almost contact
structure (ϕ, ξ, η, 1) on M.

4. Conformal gradient Ricci soliton in the warped product manifold B × f F

Let M = B × f F be a warped product manifold, where (B, 1) is an n-dimensional Riemannian manifold
and (F, 1̄) is a q-dimensional Riemannian manifold. Suppose that M = B × f F admits a conformal gradient
Ricci soliton with (h̃, λ̃, p). Then the following equations hold:

2∇bh̃a + 2(Sba −
q
f ∇b fa) = K̃1ab,

∂bh̃x −
fb
f h̃x = 0,

2∇̄yh̃x + f f ch̃c1̄yx + 2(S̄yx − f (△ f )1̄yx − (q − 1)|| fe||21̄yx) = K̃ f 21̄yx,

r̃ = r + r̄
f 2 −

2q(△ f )
f −

q(q−1)
f 2 || fe||2,

(12)

where we have put K̃ = 2λ − (p + 2
n+q ).

From (12), we have

Theorem 4.1. Let the warped product manifold M = B × f F admits a conformal gradient Ricci soliton with (h̃, λ, p)
and q > 2. Then:
(a) If h̃a = 0, then K̃ depends only on B. In this case, either M is a product manifold with an Einstein manifold B and
F, or both M and F are Einstein.
(b) If h̃x = 0, then K̃ depends only on B, and F an Einstein manifold.
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Proo f . (a) since h̃a = 0 for all a, it follows from the first equation of (12) that K̃ depends only on B and
fbh̃x = 0. Hence, either f is constant, making B is an Einstein manifold or h̃ is constant, implying that either
M is a product manifold of an Einstein manifold and F, or both M and F are Einstein.
(b) If h̃x = 0 for all x, then we see that K̃ depends only on B from the first equation of (12) and S̄ becomes an
Einstein manifold from the third equation of (12).

If the potential function h̃ is represented as h̃ = k + l for some functions k on B and l on F respectively,
then we observe that K̃ depends only on B from the first equation of (12) and fblx = 0. This implies that
either f is constant or l is constant.
If f is constant, then M becomes a product manifold and

2∇bka + 2Sba = K̃1ba,

2∇̄ylx + 2S̄yx = K̃ f 21̄yx, .
(13)

hold according to the equation (12).
Hence we see that K̃ depends only on F from the second equation of (13), which implies that K̃ becomes

constant. Therefore M turns into a product manifold of gradient Ricci soliton B with (k, K̃) and the gradient
Ricci soliton F with (l, f 2K̃). If l is constant, then we can conclude that F becomes an Einstein manifold base
on the second equation of (13). Thus we have

Theorem 4.2. Let the warped product manifold M = B × f F admits a conformal gradient Ricci soliton with (h̃, λ, p)
and q > 2. Suppose that the potential function h̃ = k+ l for some functions k on B and l on F respectively. Then either
M is a product manifold of a gradient Ricci soliton B with (k, K̃), and a gradient Ricci soliton F with (l, K̃), or F is an
Einstein manifold.

So far, we have considered the case where the total space M has dimension ≥ 4. We now turn to the
case where the dimension M = 3. This will allow us to understand the geometric characterizations of each
space in all dimensions.

Let us consider the 3-dimensional warped product manifold M = B × f F which admits a conformal
gradient Ricci soliton with (h̃, λ, p). Since the conformal curvature tensor C = 0 in the 3-dimensional
Riemannian manifold, we obtain

R̃kji
h = (S̃ jiδk

h
− S̃kiδ j

h + 1̃ jiS̃k
h
− 1̃kiS̃ j

h) + r̃
2 (1̃kiδ j

h
− 1̃ jiδk

h),

S̃ ji + ∇̃ jh̃i = B1̃ ji

r̃ = −△̃h̃ + 3A,
(14)

where we define A = λ− ( p
2 +

1
3 ) and B = 4A− △̃h̃− r̃. Hence we derive S̃ ji + ∇̃ jh̃i = (4A− △̃h̃− r̃)1 ji from the

first and second equations of (14). From the second equation of (14), we observe that M becomes an almost
gradient Ricci soliton. Moreover, we obtain

Sab + ∇bh̃a =
q
f ∇b fa + A1ab,

∂ah̃x = 1
f fah̃x,

S̄yx + ∇̄yh̃x = ( f△ f + (q − 1)|| fe||2 − f f ah̃a)1̄yx.

(15)

If h̃a = 0, then we see that fah̃x = 0 from the second equation of (15). Since f and h̃ depend only on B
and F respectively, either fa = 0 or h̃x = 0; that is, f is a constant or h̃ is a constant. In the first case, if f is a
constant, then M becomes a product manifold. Moreover B becomes an Einstein manifold and S̄+ ∇̄∇̄h̃ = 0
from the first and third equations of (15), where h̃ depends only on F. In the second case, if h̃ is a constant,
F becomes an Einstein manifold by using the third equation of (15).
If h̃x = 0, then F becomes an Einstein manifold from the third equation of (15). Thus we have
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Theorem 4.3. Let M = B × f F be a 3-dimensional warped product manifold that admits a conformal gradient Ricci
soliton with (h̃, λ, p). Then:
(a) If h̃a = 0, then either f is constant or h̃ is constant. In the former case, M becomes a product manifold of an Ein-
stein manifold B and F with S̄+∇̄∇̄h̃ = 0, where n , 2. In the latter case, F becomes an Einstein manifold, where q , 2.

(b) If h̃x = 0, then F is an Einstein manifold, where q , 2.

If the potential function h̃ is represented as h̃ = k + l for some functions k on B and l on F respectively,
in the 3-dimensional warped product manifold M = B × f F with a conformal gradient Ricci soliton with
(h̃, λ, p), then we obtain

Sab + ∇bka =
q
f ∇b fa + A1ab,

falx = 0,

S̄yx + ∇̄ylx = ( f△ f + (q − 1)|| fe||2 − f f aka)1̄yx.

(16)

where lx = ∂l
∂ūx

.

Hence we see that either fa = 0 or lx = 0 from the second equation of (16) because f and l are depend
only on B and F, respectively. In the first case, fa = 0, we see that B becomes (almost) a gradient Ricci
soliton and S̄ + ∇̄∇̄l = 0. In the second case, lx = 0, then we obtains S̄ + ∇̄∇̄l = H1̄yx, where we have defined
H = f△ f + (q − 1)|| fe||2 − f f aka and that ∂xP = 0, meaning P is a constant on F. Thus, we have

Theorem 4.4. Let M = B × f F be a 3-dimensional warped product manifold that admits a conformal gradient Ricci
soliton with (h̃, λ, p). Suppose h̃ = k + l for some functions k on B and l on F, respectively, then either M becomes a
product manifold of (almost) gradient Ricci soliton B with (k,A) and F with S̄+ ∇̄∇̄l = 0, or F is an Einstein manifold.

5. Conformal gradient Ricci soliton in the twisted product manifold

Let the M = B × f F be a twisted product manifold that admits a conformal gradient Ricci soliton with
(h̃, λ̃, p). Then the following equations hold:

2∇bh̃a + 2(Sab −
q
f ∇b fa) = K̃1ba,

∂ah̃x −
fa
f h̃x − (q − 1)( 1

f ∂a fx − 1
f 2 fa fx) = 0,

2[∇̄yh̃x −
1
f ( fyh̃x + fxh̃y − f zh̃z1̄yx) + f f ch̃c1̄yx] + 2[S̄yx − f (△ f )1̄yx − (q − 1)|| fe||21̄yx

−
△̄ f
f 1̄yx −

(q−2)
f ∇̄y fx +

2(q−2)
f 2 fy fx −

(q−3)
f 2 || fw||21̄yx] = K̃ f 21̄yx,

(17)

where we have defined K̃ = 2λ − (p + 2
n+q ), fx =

∂ f
∂̄ux

, and △̄ f is a Laplacian of f with respect to 1̄.

If the potential function h̃ depends only on B, then h̃x = 0. Since 1
f ∂a fx − 1

f 2 fa fx = ∂a∂x(ln f ), we derive
(q − 1)∂a∂x(ln f ) = 0 from the second equation in (17). Hence, f can be represented as f = f ∗ f̄ for some
functions f ∗ and f̄ on B and F, respectively. From the first equation in (17), we observe that K̃ depends only
on B and

Sab + ∇bh̃a =
K̃
2 1ab +

q
f ∗∇b fa∗. (18)

Moreover, we find that

S̄yx = [ f (△ f ) + (q − 1)|| fe||2 +
△̄ f
f +

(q−3)
f 2 || fw||2 + K̃

2 f 2
− f f ch̃c]1̄yx +

(q−2)
f̄ ∇̄y f̄x −

2(q−2)
f̄ 2 f̄y f̄x. (19)

If we express f (△ f ) + (q − 1)|| fe||2 +
△̄ f
f +

(q−3)
f 2 || fw||2 + K̃

2 f 2
− f f ch̃c = W, then we see that W depends only on

F. Moreover if q = 2 and W is a constant, then F becomes an Einstein manifold. Thus, we have
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Theorem 5.1. Suppose that the twisted product manifold M = B× f F admits a conformal gradient Ricci soliton with
(h̃, λ, p), where h̃ depends only on B. Then:
(a) The quantity K̃ depends only on B.
(b) the warping function f can be expressed as f = f ∗ f̄ for some function f ∗ on B and f̄ on F, respectively.
(c) the Ricci tensor S on B and S̄ on F satisfy the forms given in equations (18) and (19).
(d) if q = dimF = 2 and the quantity W is a constant, then F is an Einstein manifold.

If the potential h̃ is a concircular scalar field in the twisted product manifold admitting a conformal
gradient Ricci soliton with (h̃, λ, p), then ∇̃ j∇̃ih̃ = ϕ1̃i j for some scalar field ϕ. In this case, we see that S̃ = A1̃,
from equation (3), where we have set A = λ − p

2 −
1

n+q − ϕ. Hence, M becomes an Einstein manifold if
n + q = dimM ≥ 3.

Since 0 = ∇̃ah̃x = ∂ah̃x −
fah̃x

f , we get 0 = −(q − 1)( 1
f ∂a fx − 1

f 2 fa fx) = −(q − 1)∂a∂x(ln f ) from the second
equation of (15). Hence, f can be represented by f = f ∗ f̄ for some functions f ∗and f̄ on B and F respectively.
Thus, we have

Theorem 5.2. Let M = B × f F be a twisted product manifold admitting a conformal gradient Ricci soliton with
(h̃, λ, p), where h̃ is a concircular scalar field. Then M becomes Einstein manifold if dimM ≥ 3 ,and f can be represented
by f = f ∗ f̄ for some functions f ∗ and f̄ on B and F respectively.

If the mixed component of Ricci curvature S̃(A,X) = 0, or if the manifold M is conformally flat in a twisted
product manifold M, then M becomes a warped manifold. The warping function f can be represented as
f = f ∗ f̄ for some functions f ∗ and f̄ on B and F, respectively (see [1],[16] ), where A and X are vector fields
on B and F, respectively. In [16], the authors refer to M as mixed Ricci- flat if S̃(A,X) = 0.
If f = f ∗ f̄ , then we obtain f∂a fx − fa fx = 0. Hence, if h̃ = k + l and f = f ∗ f̄ , then the equation (17) becomes

2∇bka + 2(Sab −
q
f ∗∇b f ∗a ) = K̃1ba,

f ∗a lx = 0,

∇̄ylx − 1
f̄ ( f̄ylx + f̄xly) + S̄yx +

2(q−2)
f 2 fy fx −

(q−2)
f ∇̄y fx

+[ f̄ z

f̄ lz + f ∗ f ∗d f̄ 2kd − f (△ f ) − △̄ f
f − (q − 1)|| fe||2 −

(q−3)
f 2 || fw||2 − K̃

2 f 2]1̄yx = 0

(20)

From the first equation of (20), we see that K̃ depends only on B, and from the second equation of (13),
we obtain either f ∗a = 0 or lx = 0. If the case of f ∗a = 0, we see that f depends only F and B becomes an
almost gradient Ricci soliton with (k, K̃

2 ) from the first equation of (20). In the second case of lx = 0, the third
equation of (20) becomes

S̄yx −
(q−2)

f̄ ∇̄y f̄x +
2(q−2)

f̄ 2 f̄y f̄x = 1
2 [K̃ f 2 +

2(q−3)
f̄ 2 || f̄w||2 +

2△̄ f̄
f̄ + 2 f (△ f ) + 2(q − 1)|| fe||2 − 2 f f ckc]1̄yx (21)

Since ∇̄y∇̄x( 1
f̄ ) = 1

f̄ 3 (2 f̄x f̄y − f̄ ∇̄y f̄x), we get

S̄yx + (q − 2) f̄ ∇̄y∇̄x( 1
f̄ ) + 1

2 [K̃ f 2 +
2(q−3)

f̄ 2 || f̄w||2 +
2△̄ f̄

f̄ + 2 f (△ f ) + 2(q − 1)|| fe||2 − 2 f f ckc]1̄yx = 0.

Thus we have

Theorem 5.3. Let the twisted product manifold M = B× f F admits a conformal gradient Ricci soliton with (h̃, λ, p).
Suppose M is either conformally flat or mixed Ricci-flat and the potential function h̃ is given by h̃ = k + l for some
functions k on B and l on F respectively, then:
(a) The quantity K̃ depends only on B.
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(b) Either B is an almost gradient Ricci soliton with (k, K̃
2 ), or S̄ on F satifies the relation S̄ + f̄ ∇̄∇̄( q−2

f̄ ) + A1̄ = 0,

where A is defined as A = K̃ f 2 +
2(q−3)

f̄ 2 || f̄w||2 +
2△̄ f̄

f̄ + 2 f (△ f ) + 2(q − 1)|| fe||2 − 2 f f ckc. We see that the quantity A
depends only on F. In this case, if q = dimF = 2 and A is constant on F, then F is an Einstein manifold.

So far, we have considered the case the dimension M ≥ 4. We now turn to the case where the dimension of
M is equal to 3. This will enable us to know the geometric characterizations of each space in all dimensions.
Let us consider the 3-dimensional twisted product manifold M = B × f F that admits a conformal gradient
Ricci soliton with (h̃, λ, p). Since the conformal curvature tensor C vanishes identically in the 3-dimensional
Riemannian manifold, we obtain

R̃kji
h = (S̃ jiδk

h
− S̃kiδ j

h + 1̃ jiS̃k
h
− 1̃kiS̃ j

h) + r̃
2 (1̃kiδ j

h
− 1̃ jiδk

h),

S̃ ji + ∇̃ jh̃i = U1̃ ji,

r̃ = −△̃h̃ + 3A,
(22)

where we have set A = λ − ( p
2 +

1
3 ), U = 4A − △̃h̃ − r̃, and △̃h̃ is a Laplacian of h̃ with respect to 1̃. From

the second and third equations of (22), we see that M becomes an almost gradient Ricci soliton and U = A,
respectively. Moreover, we obtain

Sab + ∇bh̃a =
q
f ∇b fa + A1ab,

−(q − 1)( 1
f ∂a fx − 1

f 2 fa fx) + ∂bh̃x −
fb
f h̃x = 0,

S̄yx + ∇̄yh̃x −
1
f fyh̃x −

1
f fxh̃y −

q−2
f ∇̄y fx +

2(q−2)
f 2 fy fx = Q1̄yx,

(23)

where Q = A f 2 + f (△ f ) + 1
f (△̄ f ) + (q − 1)|| fe||2 +

q−3
f 2 || fx||2 − f f ch̃c −

f zh̃z

f .

If the potential function h̃ depends only on F, then h̃a = 0 and that S = q
f ∇∇ f +A1 from the first equation

of (23).
If the potential function h̃ depends only on B, then h̃x = 0. Since 1

f ∂a fx − 1
f 2 fa fx = ∂a∂x(ln f ), we obtain

∂a∂x(ln f ) = 0 from the second equation of (23) when q , 1. Therefore, f can be represented as f = f ∗ f̄ for
some functions f ∗ and f̄ on B and F, respectively. From the first equation of (23), we see that A depends
only on B and

Sab + ∇bh̃a = A1ab +
q
f ∗∇b fa∗. (24)

Moreover, we obtain

S̄yx = [A f 2 + f (△ f ) + 1
f (△̄ f ) + (q − 1)|| fe||2 +

q−3
f 2 || fx||2 − f f ch̃c − f zh̃z]1̄yx +

(q−2)
f̄ ∇̄y f̄x −

2(q−2)
f̄ 2 f̄y f̄x. (25)

If we put A f 2 + f (△ f ) + 1
f (△̄ f ) + (q − 1)|| fe||2 +

q−3
f 2 || fx||2 − f f ch̃c − f zh̃z = V and if V is a constant on F, then F

becomes an Einstein manifold, and that it is a space of constant curvature when q = 2. Thus, we have

Theorem 5.4. Let M = B × f Fbe a 3-dimensional twisted product manifold that admits a conformal gradient Ricci
soliton with (h̃, λ, p). Then:

(a) If h̃a = 0, then the Ricci tensor S on B takes the form S = q
f ∇∇ f + A1.

(b) If h̃x = 0, then the warping function f can be expressed as f = f ∗ f̄ for some functions f ∗ and f̄ on B and F,
respectively, when q , 1. In this case, if a certain function V defined on F is constant, then F becomes an Einstein
manifold and is a space of constant curvature when q = 2.
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