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Abstract. In this paper, we study submanifolds within meta-metallic Riemannian manifolds, focusing
specifically on hypersurfaces. We present key properties of the structures induced on these hypersurfaces
by the meta-metallic Riemannian structure of the ambient manifold. Additionally, we provide characteri-
zations for both invariant and non-invariant hypersurfaces within this class of manifolds.

1. Introduction

Manifolds are used to solve various problems in natural and engineering sciences. Additionally, they
are a popular subject as they contribute to the advancement of these sciences and open up new application
areas. Manifolds equipped with differential geometric structures possess rich geometric properties. Various
structures in Riemannian (and semi-Riemannian) manifolds, such as almost complex, almost product,
almost paracontact, and almost contact structures, provide a fundamental basis for studying the differential
and geometric properties of submanifolds.

Hypersurface studies play a crucial role in mathematics and numerous scientific disciplines, serving as a
bridge between theoretical geometry and practical applications. In differential geometry, key concepts such
as curvature, tangents, and normal vectors provide essential insights into both the intrinsic and extrinsic
properties of high-dimensional spaces. Beyond pure mathematics, the study of hypersurfaces has far-
reaching applications in physics, engineering, and computer science, offering deeper understanding and
innovative solutions to fundamental structural problems.

Manifolds with polynomial structures defined by constant coefficients allow the formulation of many
results in classical algebra and geometry through tools such as tensor fields and 1-forms. Yano [13]
introduced an f -structure, a generalization of complex and contact manifolds, while Goldberg and Yano [6]
further developed this concept, introducing the idea of polynomial structures on manifolds. Crasmareanu
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For this reason, the authors would like to thank TÜBİTAK.
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feyza.esra.erdogan@ege.edu.tr (Feyza Esra Erdoğan)
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and Hretcanu [3] defined the Golden structure and developed the theory of Golden manifolds. Similarly,
Özkan et al. introduced silver and bronze structures in [9, 10].

Metallic manifolds are a generalization of Golden manifolds, encompassing broader structural varia-
tions. Crasmareanu and Hretcanu [7] defined the metallic structure on Riemannian manifolds using a (1, 1)
tensor field J and the structure polynomial Q(X) = X2

− pX − qI. Riemannian manifolds have significant
applications in various fields. For instance, Bekiros and Kouloumpou [2] developed the SBDIEM model,
which utilizes Riemannian manifolds and stochastic differential equations to model COVID and similar
epidemics.

Şahin [11] introduced almost poly Norden manifolds, which include Norden manifolds and Euclidean
spaces. Later, Şahin and Şahin [12] defined meta-Golden Riemannian manifolds inspired by the meta-
Golden ratio. Following this, Erdoğan et al. [4] studied the hypersurfaces of meta-Golden Riemannian
manifolds.

Finally, Erdoğan et al. [5] introduced meta-metallic Riemannian manifolds, inspired by the meta-
metallic-chi ratio and metallic manifolds. These manifolds provide a broader framework, encompassing
meta-Golden Riemannian manifolds and offering more precise results compared to metallic structures.

This paper consists of four sections. The second section presents the fundamental definitions used
throughout the paper. The third section provides essential information on meta-metallic Riemannian
manifolds. The fourth section discusses the hypersurfaces of these manifolds in detail, obtaining charac-
terizations for invariant and non-invariant hypersurfaces. Finally, two different examples are provided.

2. Preliminaries

Let p and q be positive integers. The positive solution of equation x2
−px− q = 0 is considered a member

of the family of metallic ratios. The solution set is represented as

/c =
p ∓
√

p2 + 4q
2

and these members are also referred to as the (p, q)-metallic numbers. If we substitute p = q = 1 into the
positive root of the metallic ratio above, we obtain ϕ̇ = 1+

√
5

2 , which gives the Golden Ratio. Until 2019, it
was claimed that the logarithmic spiral satisfied the Golden Ratio. However, Barlett ([1]) demonstrated that
this argument was incorrect and proved that an important class of logarithmic spirals perfectly satisfies the
meta-Golden-Chi ratio. Building on this, Şahin and Şahin defined a new class of manifolds using this ratio.
From Figure 1 in the article ([12]), the authors obtained

χ̄ =
1
ϕ̇
+

1
χ̄

which leads to the proposition χ̄2
−

1
ϕ̇
χ̄ − 1 = 0. Thus, the roots are found as

1
ϕ̇
∓

√
4 + 1

ϕ̇2

2
.

The correlation between the meta-Golden Chi ratio χ̄ and continued fractions was established by Hylebrouck

in 2014. If we define the positive and negative roots as χ̄ = 1
2ϕ̇
+

√
4+ 1
ϕ̇2

2 and ¯̄χ = 1
2ϕ̇
−

√
4+ 1
ϕ̇2

2 , then

¯̄χ =
1
ϕ̇
− χ̄,

ϕ̇χ̄2 = ϕ̇ + χ̄,
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and

ϕ̇ ¯̄χ2 = ϕ̇ + ¯̄χ

are obtained, where ϕ̇ is the Golden Ratio ([8]).
Hretcanu and Crasmareanu [7] obtained that ℑ̌ is a metallic structure, which is a (1, 1) tensor field on a

manifold M̌, if

ℑ̌
2X = pℑ̌X + qX (1)

is satisfied for X ∈ X(M̌) where p, q are positive integers. Hence, let ǧ be the Riemannian metric on M̌ and
then (ǧ, ℑ̌) is called a metallic Riemannian structure if

ǧ(ℑ̌X,Y) = ǧ(X, ℑ̌Y), (2)

for X, Y ∈ X(M̌). Therefore (M̌, ǧ, ℑ̌) is called an almost metallic Riemannian manifold. From (2), we found
that

ǧ(ℑ̌X, ℑ̌Y) = pǧ(X, ℑ̌Y) + qǧ(X,Y). (3)

With an approach, similar to the method used to obtain the meta-golden chi ratio in [12], the meta-
metallic-chi ratio, which we will use throughout this article, is structured as follows;

χ̇ =
q
/c
+

p
χ̇
,

where /c denotes the metallic ratio. The roots of this equation are found as

q

/c ∓
√

4p + q2

/c2

2
.

The correlation between the meta-metallic Chi ratio χ̇ and continued fractions was found in [8].
We define the positive root by

χ̇ =

q

/c +
√

4p + q2

/c2

2
,

which is called the silver mean of inverse of metallic mean and the negative root by

χ̈ =

q

/c −
√

4p + q2

/c2

2
.

3. Meta-Metallic Manifolds

In this section we give basic definitions for a new type of manifold called a meta-metallic manifold
which can be considered as a generalization of meta-Golden manifolds, [12].

Definition 3.1. Let β̌ be a (1, 1) tensor field on almost metallic manifold (M̌, ℑ̌) which satisfies

ℑ̌β̌2X = pℑ̌X + qβ̌X, (4)

for any X ∈ X(M̌), then β̌ is called an almost meta-metallic structure and (M̌, ℑ̌, β̌) is called an almost meta-metallic
manifold, [5].
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Theorem 3.2. Let β̌ be a (1, 1)−tensor field on almost metallic manifold (M̌, ℑ̌). In that case, β̌ is almost meta-metallic
structure iff

β̌2 = ℑ̌β̌ − pβ̌ + pI, (5)

where I is the identity map, [5].

Definition 3.3. Let β̌ is an almost meta-metallic structure on almost metallic manifold (M̌, ℑ̌, ǧ). If β̌ is compatible
with ǧ on M̌, namely

ǧ(β̌X,Y) = ǧ(X, β̌Y), (6)

or equivalently

ǧ(β̌X, β̌Y) = ǧ(ℑ̌X, β̌Y) − pǧ(X, β̌Y) + pǧ(X,Y), (7)

for any X,Y ∈ Γ(TM̌), then (M̌, ℑ̌, β̌, ǧ) is called almost meta-metallic Riemannian manifold.

Theorem 3.4. Let (M̌, ℑ̌, β̌, ǧ) be an almost meta-metallic Riemannian manifold. Then β̌ is integrable if Codazzi-like
equation (∇β̌Xβ̌)Y − β̌(∇Xβ̌)Y = 0 is ensured for any X,Y ∈ Γ(TM̌), [5].

Theorem 3.5. Let (M̌, ℑ̌, β̌, ǧ) be an almost meta-metallic Riemannian manifold. If ∇β̌ = 0 then ∇ℑ̌ = 0, [5].

Note that the Nijenhuis tensor field of β̌ is defined by

Nβ̌(X,Y) = β̌2[X,Y] + [β̌X, β̌Y] − β̌[X, β̌Y] − β̌[β̌X,Y],

for any X,Y ∈ Γ(TM̌). If the Nijenhuis tensor field Nβ̌ vanishes then β̌ is integrable. In this case (M̌, ℑ̌, β̌, ǧ)
is called a meta-metallic Riemannian manifold.

Corollary 3.6. Let (M̌, ℑ̌, β̌, ǧ) be an almost meta-metallic Riemannian manifold. If ∇̌β̌ = 0, then the meta-metallic
structure is integrable and so (M̌, ℑ̌, β̌, ǧ) is a meta-metallic Riemannian manifold, [5].

Proposition 3.7. An almost meta-metallic structure β̌ is an isomorphism on TpM̌, for each p ∈ M̌, [5].

Proposition 3.8. Let (M̌, ℑ̌, β̌, ǧ) be an almost meta-metallic Riemannian manifold. Then

• If /c is the eigenvalue of the metallic structure ℑ̌, then χ̇ and χ̈ are the eigenvalues of the meta-metallic structure
β̌.

• If p − /c is the eigenvalue of the metallic structure ℑ̌ then

G =

q

p−/c +
√

4p + q2

(p−/c)2

2

and

Ǧ =

q

p−/c −
√

4p + q2

(p−/c)2

2

are the eigenvalues of the meta-metallic structure β̌, [5].
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4. Hypersurfaces of Meta-Metallic Riemannian Manifolds

Now, let us examine the conditions satisfied by the structures induced on the hypersurface of an almost
meta-metallic Riemannian manifold. However, in this study, we analyze the structure induced on the
tangent bundle of the hypersurface without considering it as a metallic structure, by taking the induced
structures as non-invariant.

Proposition 4.1. Let (M̌, β̌, ℑ̌, 1̌) be an almost meta-metallic Riemannian manifold, M be a hypersurface of M̌ and
ℑ and β be the structures induced on the tangent bundle of the hypersurface from the metallic and meta-metallic
structures of the ambient manifold, respectively. In this case,

Π = (ℑ, β,U,V, v,u, b, c, 1)

is the induced structure onM by the almost meta-metallic Riemannian structure (ℑ̌, β̌, 1̌) satisfies the followings;

1. ℑ2X = pℑX + qX − v(X)U,

2. v(ℑX) = (p − b)v(X),

3. ℑU = (p − b)U,

4. v(U) = pb + q − b2,

5. 1(ℑX,Y) = 1(X,ℑY) v(X) = 1(X,U),

6. 1(ℑX,ℑY) = p1(ℑX,Y) + q1(X,Y) − v(X)v(Y),

7. β2X = ℑβX − pβX + pX + u(X)(U −V),

8. v(βX) = (p − b + c)u(X) + u(βX),

9. βV = ℑV − pV + c(U −V),

10. u(V) = p + c(b − p − c) + v(V),

11. u(X) = 1(X,V),

12. 1(βX,Y) = 1(X, βY),

13. 1(βX, βY) = 1(ℑX, βY) − p1(X, βY) + p1(X,Y) − u(X)u(Y) + v(X)u(Y),

where X,Y ∈ Γ(TM); b, c ∈ C∞(M̌,R); 1 = 1̌
∣∣∣
M

;U,V ∈ Γ(TM) and v,u are 1− forms.

Proof. Let (M̌, ℑ̌, β̌, 1̌) be an almost meta-metallic Riemannian manifold andM be a hypersurface of M̌. For
any X ∈ Γ(TM) and the local unit normal vector fieldN ∈ Γ(TM⊥), we write

ℑ̌X = ℑX + v(X)N, (8)

ℑ̌N = U + bN, b ∈ C∞(M̌,R) (9)

where ℑX ∈ Γ(TM) andU = (ℑ̌N)⊤. Similarly,

β̌X = βX + u(X)N, (10)

β̌N = V + cN, c ∈ C∞(M̌,R) (11)

where βX ∈ Γ(TM) andV = (β̌N)⊤.
From (8),(9) and (2), we have

v(X) = 1̌(ℑ̌X,N) = 1̌(X, ℑ̌N) = 1(X,U),
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where 1 is the induced metric onM defined by 1 = 1̌
∣∣∣
M

.
By applying ℑ̌ to the both sides of (8), we obtain

ℑ̌
2X = ℑ̌ℑX + v(X)ℑ̌N,

pℑX + pv(X)N + qX = ℑ
2X + v(ℑX)N + v(X)U + bv(X)N.

By equating the tangential and normal parts of the last equation,

ℑ
2X = pℑX + qX − v(X)U

and
v(ℑX) = (p − b)v(X)

are obtained.
Similarly, by applying ℑ̌ to the both sides of (9),

ℑ̌
2N = ℑ̌U + bℑ̌N,

pℑ̌N + qN = ℑU + v(U)N + bU + b2N,

pU + pbN + qN = ℑU + v(U)N + bU + b2N

which implies
ℑU = (p − b)U

and
v(U) = q + pb − b2.

Now by using (2), (3) and (8); we get

p1(ℑX,Y) + q1(X,Y) = 1(ℑX,ℑY) + v(X)v(Y),

which implies
1(ℑX,ℑY) = p1(ℑX,Y) + q1(X,Y) − v(X)v(Y).

Also we have
1̌(ℑ̌X,Y) = 1(ℑX,Y)

and
1̌(X, ℑ̌Y) = 1(X,ℑY)

which gives 1(ℑX,Y) = 1(X,ℑY) via (2).
On the other hand by applying β̌ to the both sides of (10),

β̌2X = β̌βX + u(X)β̌N,

ℑ̌β̌X − pβ̌X + pX = β2X + u(βX)N + u(X)V + cu(X)N,

which implies

ℑβX + v(βX)N + u(X)U + bu(X)N − pβX − pu(X)N + pX = β2X + u(βX)N + u(X)V + cu(X)N, (12)

via (8) and (9). By equating the tangential and normal components of (12), following equalities are
obtained;

β2X = ℑβX − pβX + pX + u(X)U − u(X)V,
v(βX) = (p − b + c)u(X) + u(βX).

Applying β̌ to the both sides of (11), we get

β̌2N = β̌V + cβ̌N,

ℑ̌β̌N − pβ̌N + pN = βV + u(V)N + cV + c2N,

ℑV + v(V)N + cU + bcN − pV − pcN + pN = βV + u(V)N + cV + c2N
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which gives

βV = ℑV − pV + cU − cV,
u(V) = v(V) + (bc − pc + p − c2),

by equating the the tangential and normal components.
Moreover, from (6), (10) and (11);

1̌(βX + u(X)N,Y) = 1̌(X, βY + u(Y)N),
1(βX,Y) = 1(X, βY)

and

1̌(βX + u(X)N,N) = 1̌(X,V + cN),
u(X) = 1(X,V),

are obtained. Then by using (7), we get

1̌(β̌X, β̌Y) = 1̌(ℑ̌X, β̌Y) − p1̌(X, β̌Y) + p1̌(X,Y),
1̌(βX + u(X)N, βY + u(Y)N) = 1̌(ℑX + v(X)N, βY + u(Y)N)

−p1̌(X, βY + u(Y)N) + p1̌(X,Y),
1(βX, βY) + u(X)u(Y) = 1(ℑX, βY) + v(X)u(Y) − p1(X, βY) + p1(X,Y),

which gives
1(βX, βY) = 1(ℑX, βY) − p1(X, βY) + p1(X,Y) − u(X)u(Y) + v(X)u(Y).

Proposition 4.2. LetM be a hypersurface of a meta-metallic Riemannian manifold (M̌, ℑ̌, β̌, 1̌) and ℑ and β be the
structures induced on the tangent bundle of the hypersurface from the metallic and meta-metallic structures of the
ambient manifold, respectively. Then the induced structure

Π = (ℑ, β,U,V, v,u, b, c, 1)

onM satisfies the followings;

1. (∇Xβ)Y = 1(ANX,Y)V + u(Y)ANX,

2. (∇Xu)Y = c1(ANX,Y) − 1(ANX, βY),

3. ∇XV = (c − β)ANX,

4. X(c) = −21(ANX,V),

5. (∇Xℑ)Y = 1(ANX,Y)U + v(Y)ANX,

6. (∇Xv)Y = b1(ANX,Y) − 1(ANX,ℑY),

7. ∇XU = (b − ℑ)ANX,

8. X(b) = −21(ANX,U),

where X,Y ∈ Γ(TM); b, c ∈ C∞(M̌,R); 1 = 1̌
∣∣∣
M

; U,V ∈ Γ(TM) and v,u are 1− forms and ∇ is the induced
connection onM from M̌.



S. Yüksel Perktaş et al. / Filomat 39:25 (2025), 8827–8839 8834

Proof. For a hypersurfaceM of (M̌, β̌, ℑ̌, 1̌), the Gauss and Weingarten formulas are given by

∇̌XY = ∇XY + h(X,Y)N, ∇XN = −ANX

for anyX ∈ Γ(TM) andN ∈ Γ(TM⊥), respectively. Here h denotes the second fundamental form ofM; AN is
the shape operator in the direction ofN given by 1(ANX,Y) = h(X,Y) and∇ is the induced connection onM.

Now assume that M is a hypersurface of a meta-metallic Riemannian manifold (M̌, ℑ̌, β̌, 1̌). It is well
known that ∇̌β̌ = 0, [4]. By using (10) and (11),

∇̌Xβ̌Y = β̌∇̌XY,

namely,

∇XβY + h(X, βY)N +X(u(Y))N − u(Y)ANX = β∇XY + u(∇XY)N + h(X,Y)V + ch(X,Y)N (13)

is obtained, for any X,Y ∈ Γ(TM). If the normal and tangential parts of (13) equate to each other which
implies that

(∇Xu)Y = ch(X,Y) − h(X, βY),

and
(∇Xβ)Y = 1(ANX,Y)V + u(Y)ANX.

Additionally, since (∇̌Xβ̌)N = 0, it follows

∇̌Xβ̌N = β̌∇̌XN,

∇XV + h(X,V)N +X(c)N − cANX = −βANX − u(ANX)N,

via (10), (11) and Gauss-Weingarten formulas. By equating the tangential and normal components of the
last equation we obtain

∇XV = cANX − βANX

and
X(c) = −u(ANX) − h(X,V).

It is well known that if ∇̌β̌ = 0 then ∇̌ℑ̌ = 0. So from (8) and (9) for a hypersurfaceM of a meta-metallic
Riemannian manifold (M̌, ℑ̌, β̌, 1̌), we have

∇̌Xℑ̌Y = ℑ̌∇̌XY,

∇XℑY + h(X,ℑY)N +X(v(Y))N − v(Y)ANX = ℑ∇XY + v(∇XY)N + h(X,Y)U + bh(X,Y)N (14)

which implies
(∇Xℑ)Y = v(Y)ANX + h(X,Y)U

and
(∇Xv)Y = −h(X,ℑY) + bh(X,Y),

by equating the tangential and normal parts of (14). On the other hand, again by using (8), (9) and ∇̌ℑ̌ = 0,
then we get

∇̌Xℑ̌N = ℑ̌∇̌XN,

∇XU + h(X,U)N +X(b)N − bANX = −ℑANX − v(ANX)N,

which gives
∇XU = −ℑANX + bANX,

and
X(b) = −h(X,U) − v(ANX).
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Definition 4.3. LetM be a hypersurface of an almost meta-metallic Riemannian manifold (M̌, ℑ̌, β̌, 1̌). For any point
p ∈M;
i- if ℑ̌(TpM) ⊂ TpM and β̌(TpM) ⊂ TpM which implies that ℑ̌β̌(TpM) ⊂ TpM then M is called an invariant
hypersurface,
ii- if ℑ̌β̌(TpM) 1 TpM thenM is called a non-invariant hypersurface.

LetM be an invariant hypersurface of an almost meta-metallic Riemannian manifold (M̌, ℑ̌, β̌, 1̌). In this
case, from (8)-(11), we have v = 0 (or equivalentlyU = 0) and u = 0 (or equivalentlyV = 0).
Then the following theorem is stated.

Theorem 4.4. A hypersurface M of an almost meta-metallic Riemannian manifold (M̌, ℑ̌, β̌, 1̌) is invariant iff the
normal vector field ofM is the eigenvector of ℑ̌ and β̌ with the eigenvalue b and c, respectively.

Theorem 4.5. Let M be a hypersurface of an almost meta-metallic Riemannian manifold (M̌, ℑ̌, β̌, 1̌). Then M is
invariant iff

b =
p ±
√

p2 + 4q
2

(15)

and

c =
b − p ±

√
p2 − 2p(b + 2) + b2

2
. (16)

Proof. From equalities (4) and (10) of Proposition 4.1; if M is an invariant hypersurface namely, v = 0 (or
equivalentlyU = 0) and u = 0 (or equivalentlyV = 0) then we have

pb + q − b2 = 0

and
p + c(b − p − c) = 0

which imply

b =
p ±
√

p2 + 4q
2

and

c =
b − p ±

√
p2 − 2p(b + 2) + b2

2
.

Conversely, assume that b and c are given above. Then from equalities (4) and (10) of Proposition 4.1 we
have v = 0 and u = 0,which show thatM is an invariant hypersurface.

Corollary 4.6. LetM be an invariant hypersurface of a meta-metallic Riemannian manifold (M̌, ℑ̌, β̌, 1̌). Thenℑ and
β are parallel with respect to ∇.

Theorem 4.7. LetM be a non-invariant hypersurface of a meta-metallic Riemannian manifold (M̌, ℑ̌, β̌, 1̌) with the
induced structureΠ = (ℑ, β,U,V, v,u, b, c, 1). ThenM is totallly geodesic iff ℑ and β are parallel onM with respect
to ∇.

Proof. From equalities (1) and (5) of Proposition 4.2; the proof is obvious.
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Let M be a totally umbilical hypersurface of a meta-metallic Riemannian manifold (M̌, ℑ̌, β̌, 1̌) with the
induced structure Π = (ℑ, β,U,V, v,u, b, c, 1). Since A = λI then from Proposition 4.2, we have

(∇Xβ)Y = λ(1(X,Y)V + u(Y)X),

(∇Xu)Y = λ(c1(X,Y) − 1(X, βY)),

∇XV = λ(c − β)X,

X(c) = −2λ1(X,V),

(∇Xℑ)Y = λ(1(X,Y)U +V(Y)X),

(∇Xv)Y = λ(b1(X,Y) − 1(X,ℑY)),

∇XU = λ(b − ℑ)X,

X(b) = −2λ1(X,U),



(17)

for all X,Y ∈ Γ(TM).

Theorem 4.8. LetM be a totally umbilical invariant hypersurface of a meta–metallic Riemannian manifold with the
induced structure Π = (ℑ, β,U,V, v,u, b, c, 1). Then ℑ = bI and β = cI, where b and c are constant functions.

Proof. From the third, fourth and the last two equations in (17), we complete the proof.

Conversely, suppose that M is a hypersurface of a meta-metallic Riemannian manifold such that ℑ = bI
and β = cI. Then from (17) one can easily see that ∇XV = 0 and ∇XU = 0.

Example 4.9. Let E5 be a Euclidean space with an almost metallic structure ℑ̌ given by

ℑ̃ : E5
→E5

(x1, x2, x3, y1, y2)→(/cx1, /cx2, /cx3, (p − /c)y1, (p − /c)y2).

Now, we define a (1, 1) tensor field β̌ on (E5, ℑ̌) by

β̌ : E5
→E5

(x1, x2, x3, y1, y2)→(χ̇x1, χ̇x2, χ̇x3,−χ̌y1,−χ̌y2),

where χ̌ =
/c+
√
/c2
+4p

2 .

It is easy to see that β̌ is a meta-metallic structure onE5 and so (E5, ℑ̌, β̌, <, >) is an almost meta-metallic Riemannian
manifold, where <,> is the usual Euclidean metric on E5.

Now, we consider a hypersurfaceM of E5 given by x1 = x2. Then TM is spanned by

Z1 =
∂
∂x1
+
∂
∂x2
, Z2 =

∂
∂x3
, Z3 =

∂
∂y1
, Z4 =

∂
∂y2
.

In this case it is easy to see that ℑ̌(TM) ⊂ TM and β̌(TM) ⊂ TM which implies thatM is an invariant hypersurface
of E5.

Example 4.10. LetRn+k be the (n+k)−dimensional real number space with a coordinate system (x1, ..., xn, xn+1, ..., xn+k).
We define

ℑ̃(x1, ..., xn, xn+1, ..., xn+k) = (/cx1, ..., /cxn, (p − /c)xn+1, ..., (p − /c)xn+k)
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and
β̃(x1, ..., xn, xn+1, ..., xn+k) = (χ̇x1, χ̇x2, ..., χ̇xn,−χ̌xn+1,−χ̌xn+2, ...,−χ̌xn+k)

where /c denotes the metallic ratio,

χ̇ =

q

/c +
√

4p + q2

/c2

2
and

χ̌ =
/c ∓
√
/c2 + 4p

2
.

Since we write

ℑ̃β̃2(x1, ..., xn, xn+1, ..., xn+k) = (χ̇2/cx1, ..., χ̇
2/cxn, χ̌

2(p − /c)xn+1, ..., χ̌
2(p − /c)xn+k),

then it is easy to see that
ℑ̃β̃2 = pℑ̃ + qβ̃,

which implies (Rn+k, ℑ̃, β̃) is an almost meta-metallic manifold. Moreover, the usual product <,> on Rn+k satisfies
(2) (or equivalently (3)) then (Rn+k, ℑ̃, β̃, <, >) is an almost meta-metallic Riemannian manifold.

Consider the hypersurface Sn+k−1(r) of Rn+k which is given by

Sn+k−1(r) =

(x1, ..., xn, xn+1, ..., xn+k) :
n∑

i=1

x2
i +

n+k∑
j=n+1

x2
j = r2

 ⊂ Rn+k,

and the normal vector field of Sn+k−1(r) at any point (x1, ..., xn, xn+1, ..., xn+k) ∈ Sn+k−1(r) is defined by

N =
1
r

(x1, ..., xn, xn+1, ..., xn+k). (18)

Then there exists a tangent vector (X1, ...,Xn,Xn+1, ...,Xn+k) on hypersphere for every point p = (x1, ..., xn, xn+1, ..., xn+k) ∈
Sn+k−1(r) iff

n∑
i=1

xiXi +

n+k∑
j=n+1

x jX j = 0. (19)

Then by using (8) and (9) we write

ℑ̃(Xi,X j) = ℑ(Xi,X j) + v(Xi,X j)N,

ℑ̃N = U + bN, (20)

where (Xi,X j) = (X1, ...,Xn,Xn+1, ...,Xn+k) ∈ TpSn+k−1(r).
Since

ℑ̃N =
1
r

(/cx1, ..., /cxn, (p − /c)xn+1, ..., (p − /c)xn+k) (21)

and b =< ℑ̃N,N >, then we obtain

b =
1
r2 (/c

n∑
i=1

x2
i + (p − /c)

n+k∑
j=n+1

x2
j ). (22)
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UsingU = ℑ̃N − bN with the last equation above, we get

U =
2/c − p

r3

(
(

n+k∑
j=n+1

x2
j )x1, ..., (

n+k∑
j=n+1

x2
j )xn,−(

n∑
i=1

x2
i )xn+1, ...,−(

n∑
i=1

x2
i )xn+k

)
, (23)

which implies that

v(Xi,X j) =< (Xi,X j),U >=
2/c − p

r3 ((
n+k∑

j=n+1

x2
j )(

n∑
i=1

xiXi) − (
n∑

i=1

x2
i )(

n+k∑
j=n+1

x jX j)).

If we put
∑n

i=1 xiXi = −
∑n+k

j=n+1 x jX j = θ, then the last equation can be written as

v(Xi,X j) =
2/c − p

r
θ. (24)

By using (20) and (24) we get

ℑ(Xi,X j) = (/cXi −
2/c − p

r
θxi, (p − /c)X j −

2/c − p
r
θx j). (25)

Furthermore by using (10) and (11) we write

β̃(Xi,X j) = β(Xi,X j) + u(Xi,X j)N,
β̃N = V + cN, (26)

since

β̃N =
1
r

(χ̇x1, ..., χ̇xn,−χ̌xn+1, ...,−χ̌xn+k) (27)

and c =< β̃N,N >, we calculate

c =
1
r2 (χ̇(

n∑
i=1

x2
i ) − χ̌(

n+k∑
j=n+1

x2
j )). (28)

By usingV = β̃N − cN, we get

V =
χ̇ + χ̌

r3 ((
n+k∑

j=n+1

x2
j )x1, ..., (

n+k∑
j=n+1

x2
j )xn,−(

n∑
i=1

x2
i )xn+1, ...,−(

n∑
i=1

x2
i )xn+k), (29)

which implies that

u(Xi,X j) =< (Xi,X j),V >=
χ̇ + χ̌

r3 ((
n+k∑

j=n+1

x2
j )(

n∑
i=1

xiXi) − (
n∑

i=1

x2
i )(

n+k∑
j=n+1

x jX j)).

Then we get

u(Xi,X j) =
χ̇ + χ̌

r
θ. (30)

By using (26) and (30), we obtain

β(Xi,X j) = (χ̇Xi −
χ̇ + χ̌

r2 θxi,−χ̌X j −
χ̇ + χ̌

r2 θx j). (31)

Hence Sn+k−1(r) is a non-invariant hypersurface of the almost meta-metallic Riemannian manifold (Rn+k, ℑ̃, β̃, <, >)
endowed with the induced structure (ℑ, β,U,V, v,u, b, c) given by (23 - 25 ) and (29 - 31).
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Example 4.11. Let E5 be a Euclidean space with an almost metallic structure ℑ̌ given by

ℑ̃ : E5
→E5

(xi, yi, z)→ℑ̃(xi, yi, z) =
(p
2

xi +

√
p2 + 4q

2
yi,

p
2

yi +

√
p2 + 4q

2
xi, (p − /c)z

)
,

where /c is metallic ratio and (xi, yi, z) is a coordinate system on E5 for i=1,2. Now, we define a (1, 1) tensor field β̌ on
(E5, ℑ̌) by

β̌ : E5
→ E5

(xi, yi, z)→ β̌(xi, yi, z) = (−
χ̌ + ˇ̌χ

2
xi +
χ̌ − ˇ̌χ

2
yi,

χ̌ − ˇ̌χ
2

xi −
χ̌ + ˇ̌χ

2
yi, −χ̌z),

where χ̌ =
/c∓
√
/c2
+4p

2 and ˇ̌χ = −(p−/c)∓
√

(p−/c)2+4p
2 .

It is easy to see that β̌ is a meta-metallic structure on E5 and so (E5, ℑ̌, β̌, <, >) is an almost meta-metallic
Riemannian manifold, where <,> is the usual Euclidean metric on E5.
Now, we consider a hypersurfaceM of E5 given by y1 = y2

2. Then TM is spanned by

Z1 =
∂
∂x1
, Z2 =

∂
∂x2
, Z3 = 2y2

∂
∂y1
+
∂
∂y2
, Z4 =

∂
∂z

and TM⊥ is spanned by

N =
∂
∂y1
− 2y2

∂
∂y2
.

In this case it is easy to see that ℑ̌β̌(TM) 1 TM which implies thatM is a non-invariant hypersurface of E5.
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