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Some types hypersurfaces of meta-metallic Riemannian manifolds
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Abstract. In this paper, we study submanifolds within meta-metallic Riemannian manifolds, focusing
specifically on hypersurfaces. We present key properties of the structures induced on these hypersurfaces
by the meta-metallic Riemannian structure of the ambient manifold. Additionally, we provide characteri-
zations for both invariant and non-invariant hypersurfaces within this class of manifolds.

1. Introduction

Manifolds are used to solve various problems in natural and engineering sciences. Additionally, they
are a popular subject as they contribute to the advancement of these sciences and open up new application
areas. Manifolds equipped with differential geometric structures possess rich geometric properties. Various
structures in Riemannian (and semi-Riemannian) manifolds, such as almost complex, almost product,
almost paracontact, and almost contact structures, provide a fundamental basis for studying the differential
and geometric properties of submanifolds.

Hypersurface studies play a crucial role in mathematics and numerous scientific disciplines, serving as a
bridge between theoretical geometry and practical applications. In differential geometry, key concepts such
as curvature, tangents, and normal vectors provide essential insights into both the intrinsic and extrinsic
properties of high-dimensional spaces. Beyond pure mathematics, the study of hypersurfaces has far-
reaching applications in physics, engineering, and computer science, offering deeper understanding and
innovative solutions to fundamental structural problems.

Manifolds with polynomial structures defined by constant coefficients allow the formulation of many
results in classical algebra and geometry through tools such as tensor fields and 1-forms. Yano [13]
introduced an f-structure, a generalization of complex and contact manifolds, while Goldberg and Yano [6]
further developed this concept, introducing the idea of polynomial structures on manifolds. Crasmareanu
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and Hretcanu [3] defined the Golden structure and developed the theory of Golden manifolds. Similarly,
Ozkan et al. introduced silver and bronze structures in [9, 10].

Metallic manifolds are a generalization of Golden manifolds, encompassing broader structural varia-
tions. Crasmareanu and Hretcanu [7] defined the metallic structure on Riemannian manifolds using a (1, 1)
tensor field | and the structure polynomial Q(X) = X? — pX — gI. Riemannian manifolds have significant
applications in various fields. For instance, Bekiros and Kouloumpou [2] developed the SBDIEM model,
which utilizes Riemannian manifolds and stochastic differential equations to model COVID and similar
epidemics.

Sahin [11] introduced almost poly Norden manifolds, which include Norden manifolds and Euclidean
spaces. Later, Sahin and Sahin [12] defined meta-Golden Riemannian manifolds inspired by the meta-
Golden ratio. Following this, Erdogan et al. [4] studied the hypersurfaces of meta-Golden Riemannian
manifolds.

Finally, Erdogan et al. [5] introduced meta-metallic Riemannian manifolds, inspired by the meta-
metallic-chi ratio and metallic manifolds. These manifolds provide a broader framework, encompassing
meta-Golden Riemannian manifolds and offering more precise results compared to metallic structures.

This paper consists of four sections. The second section presents the fundamental definitions used
throughout the paper. The third section provides essential information on meta-metallic Riemannian
manifolds. The fourth section discusses the hypersurfaces of these manifolds in detail, obtaining charac-
terizations for invariant and non-invariant hypersurfaces. Finally, two different examples are provided.

2. Preliminaries

Let p and g be positive integers. The positive solution of equation x> — px —¢q = 0 is considered a member
of the family of metallic ratios. The solution set is represented as

_pPFANP 4
£= 2

and these members are also referred to as the (p, g)-metallic numbers. If we substitute p = g = 1 into the

positive root of the metallic ratio above, we obtain ¢ = “T‘@, which gives the Golden Ratio. Until 2019, it
was claimed that the logarithmic spiral satisfied the Golden Ratio. However, Barlett ([1]) demonstrated that
this argument was incorrect and proved that an important class of logarithmic spirals perfectly satisfies the
meta-Golden-Chi ratio. Building on this, Sahin and Sahin defined a new class of manifolds using this ratio.
From Figure 1 in the article ([12]), the authors obtained

| —

=<+

-
=i =

which leads to the proposition t* — é X —1=0. Thus, the roots are found as

The correlation between the meta-Golden Chi ratio f and continued fractions was established by Hylebrouck

[i. 1 [1r 1
4+¢7 1 4+r{‘72

in 2014. If we define the positive and negative roots as t = ﬁ +-——and Y = W then
-_ 1
X=X
¢

PF =P +%,
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and
O = +7
are obtained, where ({) is the Golden Ratio ([8]).

Hretcanu and Crasmareanu [7] obtained that & is a metallic structure, which is a (1,1) tensor field on a
manifold 9N, if

I2X = pIX +gX 1)

is satisfied for X € X(9) where p, g are positive integers. Hence, let § be the Riemannian metric on 9t and
then (g, J) is called a metallic Riemannian structure if

53X, Y) = 30X, JY), )

for X, Y € X(). Therefore (9, §, f‘) is called an almost metallic Riemannian manifold. From (2), we found
that

J(IX, FY) = pa(X, FY) + 30X, Y). (3)

With an approach, similar to the method used to obtain the meta-golden chi ratio in [12], the meta-
metallic-chi ratio, which we will use throughout this article, is structured as follows;

.7
=+,
£oX
where £ denotes the metallic ratio. The roots of this equation are found as

X

F . |4p+

™=

The correlation between the meta-metallic Chi ratio y and continued fractions was found in [8].
We define the positive root by

2
%+ 4p+%
2 7

X=——""7-—

which is called the silver mean of inverse of metallic mean and the negative root by

)'(':—

q_ 7
3 4p+,b2
5 .

3. Meta-Metallic Manifolds

In this section we give basic definitions for a new type of manifold called a meta-metallic manifold
which can be considered as a generalization of meta-Golden manifolds, [12].

Definition 3.1. Let § be a (1,1) tensor field on almost metallic manifold (W, 3) which satisfies
IPX = pIX +gfX, 4)

for any X € X(W), then f is called an almost meta-metallic structure and (W, 3, B) is called an almost meta-metallic
manifold, [5].



S. Yiiksel Perktas et al. / Filomat 39:25 (2025), 8827-8839 8830

Theorem 3.2. Let ff be a (1, 1)—tensor field on almost metallic manifold (0, ). In that case, § is almost meta-metallic
structure iff

F* =9 —pp+pl, (5)
where 1 is the identity map, [5].

Definition 3.3. Let f§ is an almost meta-metallic structure on almost metallic manifold (R, 5, §). If § is compatible
with § on M, namely

3(BX, Y) = 8(X, pY), (6)
or equivalently

38X, BY) = 53X, BY) — p3(X, BY) + p3(X, V), (7)
forany X,Y € F(TEIVR), then (95?, fi, ﬁ, 8) is called almost meta-metallic Riemannian manifold.

Theorem 3.4. Let (W, 3, f, §) be an almost meta-metallic Riemannian manifold. Then f is integrable if Codazzi-like
equation (vﬁxﬁ)y — B(VxP)Y = 0 is ensured for any X, Y € T(TI), [5].

Theorem 3.5. Let (I, fvl, ﬁ, d) be an almost meta-metallic Riemannian manifold. If Vﬁ =0then VS = 0, [5].
Note that the Nijenhuis tensor field of § is defined by
Nz(X,Y) = 21X, Y1+ [BX, BY] - BIX, FY] - FIAX, Y],

forany X, Y €T (TON). If the Nijenhuis tensor field N, 3 vanishes then ﬁ is integrable. In this case %, g, E, d)
is called a meta-metallic Riemannian manifold.

Corollary 3.6. Let (W, 3, B, §) be an almost meta-metallic Riemannian manifold. If V§ = 0, then the meta-metallic
structure is integrable and so (E)jt, fvi, ﬁ, 8) is a meta-metallic Riemannian manifold, [5].

Proposition 3.7. An almost meta-metallic structure f§ is an isomorphism on T, for each p € M, [5].

Proposition 3.8. Lef (EIVTE, fi, ﬁ, d) be an almost meta-metallic Riemannian manifold. Then

o If ( is the eigenvalue of the metallic structure 3, then j and i are the eigenvalues of the meta-metallic structure

o Ifp — ¢ is the eigenvalue of the metallic structure I then

qZ
(07

+ ,[4p +

Q
1
=
Ll
N T

and

L fap+ L
p—£ A

2

G=

are the eigenvalues of the meta-metallic structure f, [5].
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4. Hypersurfaces of Meta-Metallic Riemannian Manifolds

Now, let us examine the conditions satisfied by the structures induced on the hypersurface of an almost
meta-metallic Riemannian manifold. However, in this study, we analyze the structure induced on the
tangent bundle of the hypersurface without considering it as a metallic structure, by taking the induced
structures as non-invariant.

Proposition 4.1. Let (W, §, T, §) be an almost meta-metallic Riemannian manifold, M be a hypersurface of M and
3 and B be the structures induced on the tangent bundle of the hypersurface from the metallic and meta-metallic
structures of the ambient manifold, respectively. In this case,

H = (S,ﬁ,U/W/vru/brC/g)

is the induced structure on I by the almost meta-metallic Riemannian structure (3, f, §) satisfies the followings;

1. 32X = p3X +gX - ov(X)U,

© % NS LA W N

_ R =
N RO

- v(IX) = (p - )o(X),

. JU = (p-bU,

. o(U) =pb+q-1?,

- 9(3X,Y) = g(X, 3Y)  o(X) = g(X, U),

- 9(3X, BY) = pg(IX, Y) + q9(X, Y) — o(X)o(Y),
B2X = IBX — ppX + pX + u(X)(U - V),
- v(BX) = (p = b+ Ju(X) + u(pX),

. BV = IV —pV + (U - V),

- u(V)=p+cb—p-c)+o(V),

- u(X) = g(X, V),

- 9(BX,Y) = g(X, BY),

13. g(BX, BY) = g(IX, BY) = pg(X, BY) + pg(X, Y) = u(X)u(Y) + o(Xu(Y),

where X, Y € T(TIM); b,c € C°(M,R); g = §

m’

U,V e I(TM) and v, u are 1— forms.

Proof. Let (M, T, B, §) be an almost meta-metallic Riemannian manifold and 9 be a hypersurface of 9%. For
any X € I'(TM) and the local unit normal vector field N € T(T9it*), we write

IX
IIN

IX + v(X)N,
U+bN, beC°(kR)

where IX € T(T9) and U = (JN)7. Similarly,

pX
N

BX + u(X)N,
V +cN, ce C*(M,R)

where X € T(T9) and V = (N)7.
From (8),(9) and (2), we have

o(X) = §(IX,N) = (X, IN) =

(8)
©)

(10)
(11)

g(Xx, ),
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where g is the induced metric on M defined by g = 4|,

By applying J to the both sides of (8), we obtain
§2x FIX + o(X)IN,
pIX+po(X)N +gX = X+ (IX)N + o(X)U + bo(X)N.

By equating the tangential and normal parts of the last equation,
32X = pIX + gX - o(X)U

and

v(IX) = (p - b)o(X)

are obtained. 5
Similarly, by applying U to the both sides of (9),

N = JU+bIN,
pIN+gN = IU +o(U)N +bU + b°N,
pU+pbN+gN = IU +o(U)N + bU + b*N

which implies
JU=@p-bvU

and
o(U) = g + pb - b*.

Now by using (2), (3) and (8); we get
pa(3X,Y) +q9(X,Y) = g(3X, 3Y) + o(X)o(Y),

which implies

g(3X, BY) = pg(IX,Y) + q9(X,Y) — v(X)o(Y).

Also we have

J(3X,Y) = g(3X,Y)

and

J(X, JY) = g(X, JY)

which gives g(IX,Y) = g(X, JY) via (2).
On the other hand by applying f§ to the both sides of (10),

X = BBX+u(X)pN,
IEX = pPX +pX = BX+uX)N + u(X)V + cu(X)N,

which implies

IBX + v(BX)N + u(X)U + bu(X)N — ppX — pu(X)IN + pX = ﬁZX + u(BX)N + u(X)V + cu(X)IN,

8832

(12)

via (8) and (9). By equating the tangential and normal components of (12), following equalities are

obtained;

BEX = IBX - pBX + pX + u(X)U - u(X)V,

v(BX) = (p—"b+c)ulX)+u(X).
Applying f to the both sides of (11), we get
PN = BV +cfN,
JEN —pfN +pN = BV +u(V)N +cV + AN,

IV + (V)N + cU + bcIN — pV — pcN + pIN

BV + u(V)N + cV + N
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which gives

BV = IV -pV+cU-cV,
u(V) (V) + (bc—pc+p— ),

by equating the the tangential and normal components.
Moreover, from (6), (10) and (11);

JBEX+uX)N,Y) = G BY +u(Y)N),
gBXY) = g(X, BY)
and
JBEX+u(X)N,IN) = 44X,V +cIN),
uX) = g(x,v),

are obtained. Then by using (7), we get

FEX, BY) - pa(X, BY) + pi(X, Y),

g“(SX + v(X)IN, ﬁY + u(Y)IN)

—pd(X, BY + u(Y)N) + pi(X, Y),

g(IX, BY) + o(X)u(Y) - pg(X, BY) + pg(X, Y),

FBX, BY)
JX + u(X)N, BY + u(Y)IN)

g(BX, BY) + u(X)u(Y)

which gives
g(BX, BY) = g(IX, BY) = pg(X, BY) + pg(X, Y) = u(X)u(Y) + o(Xu(Y).

O

Proposition 4.2. Let M be a hypersurface of a meta-metallic Riemannian manifold (%, 5, B, §) and 3 and B be the
structures induced on the tangent bundle of the hypersurface from the metallic and meta-metallic structures of the
ambient manifold, respectively. Then the induced structure

I1=(3,8,U,V,0,u,b,c,g)
on M satisfies the followings;
1. (VxP)Y = g(ANX, Y)V + u(Y)ANX,
2. (Vxu)Y = cg(AnNX,Y) — g(ANX, BY),
3. VxV = (c - pANX,

4. X(c) = ~29(ANX, V),

O

. (VxI)Y = g(AnX, VU + o(Y)AnX,

[=))

. (Vx0)Y = bg(AnX, Y) — g(ANX, TY),
7. VXU = (b - S)A]NX/
8. X(b) = —29(AnX, U),

where X,Y € T(TM); b,c € C°ON,R); g = §
connection on M from M.

m U,V e I(TM) and v,u are 1— forms and V is the induced
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Proof. For a hypersurface M of (3%, §, J, §), the Gauss and Weingarten formulas are given by
VxY = VxY + h(X, Y)N, VxIN = -ApnX
for any X € T'(T9) and IN € I'(T9+), respectively. Here 1 denotes the second fundamental form of M; Ay is
the shape operator in the direction of N given by g(AnX, Y) = h(X, Y) and V is the induced connection on 9t.
Now assume that M is a hypersurface of a meta-metallic Riemannian manifold (ﬂji, fvi, ﬁ, g). It is well

known that Vg = 0, [4]. By using (10) and (11),

VxBY = fVxY,
namely,

VxBY + h(X, BY)N + X(u(Y))N — u(Y)AnX = BVxY + u(VXY)IN + h(X, Y)V + ch(X, Y)N (13)

is obtained, for any X,Y € I'(T9). If the normal and tangential parts of (13) equate to each other which
implies that
(Vxu)Y = ch(X, Y) = h(X, BY),

and
(VxB)Y = g(ANX, Y)V + u(Y)AnX.

Additionally, since (Vxﬁv)]N = 0, it follows
VxfN
VxV + h(X, V)N + X(¢)IN — cAnNX

3WXN/
—ﬁANX - M(A]NX)N,

via (10), (11) and Gauss-Weingarten formulas. By equating the tangential and normal components of the
last equation we obtain
va = CA]NX - ﬁA]NX

and
X(c) = —u(AnX) — h(X, V).

It is well known that if vﬁv =0 then VI = 0. So from (8) and (9) for a hypersurface 9t of a meta-metallic
Riemannian manifold (‘Jj'i, g , ﬁ, J), we have
VxJY = VxY,
Vx3Y + h(X, JY)N + X(0(Y))N — o(Y)AnNX = IVxY + 0(VxY)IN + (X, Y)U + bh(X,Y)IN (14)

which implies
(VxI)Y = v(Y)AnX + (X, Y)U

and
(Vx0)Y = —=h(X, 3Y) + bh(X,Y),

by equating the tangential and normal parts of (14). On the other hand, again by using (8), (9) and VJ =0,
then we get

VxIN = JVxN,
VxU + h(X, U)N + X(B)N — bANX = —FANX — 0(ANX)N,

which gives
VxU = —SA]NX + bA]NX,

and
X() = -h(X,U) — v(AnX).

O
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Definition 4.3. Let M be a hypersurface of an almost meta-metallic Riemannian manifold (O, 3, B, §). For any point
peM;

i- if 3(T,M) C T, M and B(TPEUE) C T,M which implies that SB(TPEUE) C T,M then M is called an invariant
hypersurface,

ii-if § B(T,M) ¢ T, then M is called a non-invariant hypersurface.

Let M be an invariant hypersurface of an almost meta-metallic Riemannian manifold (i)ji, | , 5, ). In this
case, from (8)-(11), we have v = 0 (or equivalently U = 0) and u = 0 (or equivalently V = 0).
Then the following theorem is stated.

Theorem 4.4. A hypersurface M of an almost meta-metallic Riemannian manifold (R, S, , §) is invariant iff the
normal vector field of M is the eigenvector of § and f with the eigenvalue b and c, respectively.

Theorem 4.5. Let M be a hypersurface of an almost meta-metallic Riemannian manifold (9, 5, B, §). Then M is
invariant iff

NP

> (15)

and

_b—px p?-2p(b+2)+b?

> (16)

c

Proof. From equalities (4) and (10) of Proposition 4.1; if Mt is an invariant hypersurface namely, v = 0 (or
equivalently U = 0) and u = 0 (or equivalently V = 0) then we have

pb+q—-b*=0
and
p+cb-p—-c)=0
which imply
p o PENP+Ag
=
and

b—p=£ \p2—2pb+2)+ b2
c= :
2

Conversely, assume that b and c are given above. Then from equalities (4) and (10) of Proposition 4.1 we
have v = 0 and u = 0, which show that 9t is an invariant hypersurface. [

Corollary 4.6. Let I be an invariant hypersurface of a meta-metallic Riemannian manifold O, 3, §, §). Then I and
B are parallel with respect to V.

Theorem 4.7. Let I be a non-invariant hypersurface of a meta-metallic Riemannian manifold (IR, g, B, §) with the
induced structure I1 = (3,8, U, V,v,u,b, ¢, g). Then W is totallly geodesic iff I and B are parallel on IN with respect
to'V.

Proof. From equalities (1) and (5) of Proposition 4.2; the proof is obvious. [



S. Yiiksel Perktas et al. / Filomat 39:25 (2025), 8827-8839 8836

Let M be a totally umbilical hypersurface of a meta-metallic Riemannian manifold (3%, J, f, §) with the
induced structure IT = (3,8, U, V, v,u, b, ¢, g). Since A = Al then from Proposition 4.2, we have

(VxB)Y = A(g(X, V)V + u(Y)X),
(Vxw)Y = Aeg(X, Y) = g(X, BY)),
VxV = A(c - p)X,

X(e) = =2A9(X, V),
(VxI)Y = A(g(X, V)U + V(Y)X),
(Vx0)Y = A(bg(X, Y) - g(X, TY)),
VxU = A(b - J)X,

X(b) = -2Ag(X, U),

(17)

forall X, Y € T(TM).

Theorem 4.8. Let I be a totally umbilical invariant hypersurface of a meta—metallic Riemannian manifold with the
induced structure I1 = (3,8, U, V,v,u,b,c,g). Then 3 = bl and B = cI, where b and c are constant functions.

Proof. From the third, fourth and the last two equations in (17), we complete the proof.

Conversely, suppose that M is a hypersurface of a meta-metallic Riemannian manifold such that 3 = bl
and $ = cl. Then from (17) one can easily see that VxV =0and VxU =0. O

Example 4.9. Let IE® be a Euclidean space with an almost metallic structure 3 given by

J:E SE°
(21, x2, X3, Y1, Y2) = (€x1, £x2, £x3, (p — )1, (P — O)y2).

Now, we define a (1,1) tensor field  on (IE?, ) by

ﬁ - B> S
(1, X2, X3, Y1, Y2) = (%1, XX2, XX3, =X Y1, —XV2),

L E 4

where Y = —5—.
It is easy to see thatﬁ is a meta-metallic structure on IE°> and so (IE°, | , 3, <, >) is an almost meta-metallic Riemannian

manifold, where <, > is the usual Euclidean metric on E°.

Now, we consider a hypersurface M of B> given by x1 = xp. Then T is spanned by

J d d d d
Zl—EWLa—xz, Z2_8_x3' Za—%, Z4—@-
In this case it is easy to see that I(TI) € TM and F(TIM) € TIN which implies that M is an invariant hypersurface
of .

Example 4.10. Let R"*K be the (n+k)—dimensional real number space with a coordinate system (X1, ..., Xu, X1, - Xn+k)-
We define

ﬁ(-xl/ seey xn/ xn+1/ seey x‘rl+k) = (ﬁxll ceey ﬁxl’l/ (P - t)xn+1/ ceey (P - t)x‘rl+k)
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and
ﬁ(‘xll ceor X Xty eees xn+k) = (Xxlr sz, ceey Xxn/ _Xxn+1/ _)v(x}’l+2/ ey _)?xn+k)

where { denotes the metallic ratio,

%+ 4p+£—22
X= 2
and
£F A +4p
X=——755—"
2

Since we write

ﬁ[:;z(xll seey xn/ xn+1/ seey x‘rl+k) = (thxj, cey Xzﬁxnr )V(Z(P - ﬁ)xl’l+1/ ceey Xz(p - ﬁ)x?H-k)/

then it is easy to see that

3p* =p3 +ap,
which implies (R™**, 3, ) is an almost meta-metallic manifold. Moreover, the usual product <,> on R"** satisfies
(2) (or equivalently (3)) then (R", 5, B, <,>) is an almost meta-metallic Riemannian manifold.

Consider the hypersurface S™*=1(r) of R"** which is given by

n n+k
+k—1 . 2 2 _ 2 +k
SN = (X1, eoey Xty Xt 1y ooy Xak) - E x; + E xXj=r,C R,
i=1 j=n+1

and the normal vector field of Sl at any point (X1, ..., Xp, Xnt1, -0 Xntk) € S"+=1() is defined by
1
N = ;(xb coer Xty XLy oo Xtk)- (18)

Then there exists a tangent vector (X1, ..., Xu, Xn+1, ..., Xn+k) 01 hypersphere for every point p = (X1, ..., Xu, Xp+1, s Xn+k) €

Sn+k—1 (1,.) 1ﬁ

n n+k
XX + xiX; =0. (19)
7%
i=1 j=n+1

Then by using (8) and (9) we write

IX, X)) = I(X, X)) +0(X;, X)N,
SN = U+bN, (20)
where (X;, X]) = (X1, o0 X0, Xot1, 0 Xiak) € Tpsm'k_l(?’).
Since
< 1
SN = ;(ﬁxlr "'Iﬁxnl (P - t)x‘rl+1/ ey (p - ﬁ)xn+k) (21)

and b =< JIN, N >, then we obtain

1 n n+k
bzr—2(¢2x?+(p—ﬁ) Y ). (22)
i=1 j=n+1
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Using U = IN — bIN with the last equation above, we get

Zﬁ n+k n+k

() () )

] n+1 j=n+1

U=

which implies that

t n+k n+k
00X, X,) =< (X, X)), U >= =F 2)(2 xX) - (Z DY, xX).
j=n+l j=n+1
Ifwe put Yy xiX; = — Z;’j 11 XX = 0, then the last equation can be written as
2-p
o(X;, X)) = T@.
By using (20) and (24) we get
2¢ - 26—
30, X)) = X - Lo, (p - %, - =L o).
Furthermore by using (10) and (11) we write
B, X)) = BCX:, X;) + u(X;, XN,
BN = V+cN,
since
5 1. . y v
PIN = — (X1, ooy XXty = X1, oy = Xk
and ¢ =< fIN,IN >, we calculate
1 n+k
=5 Z - X( Z
j=n+1
By using V = BN — cIN, we get
n+k
+
- X Z ety (Y ), —(Z N, —(Z k),
j=n+1 j=n+1
which implies that
n+k
u(X;, X)) =< (X;, X)),V >= & 2)(2 xiX;) - (Z DY X)),
j=n+1 j=n+1
Then we get
u(X;, X;) =& : L.

By using (26) and (30), we obtain

. xX+Xx y X+X
BXi, Xj) = (XX — 0%, =X = r—zexj)-

)X, _(Z X; )xn+1/

n

xl‘z)xn+k)r

i=1

8838

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

Hence S"™*-1(r) is a non-invariant hypersurface of the almost meta-metallic Riemannian manifold (R™*, 3, , <, >)
endowed with the induced structure (3,8, U, V,v,u,b, c) given by (23 - 25 ) and (29 - 31).
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Example 4.11. Let E® be a Euclidean space with an almost metallic structure 3 given by

9:F -F
. VP2 +4 2+ 4
(xi, yi,z) > 3(xi, yi, 2) = (gxi + %yi, g]/i + %xu (- 4)z),

where £ is metallic ratio and (x;, y;, z) is a coordinate system on E5 fori=1,2. Now, we define a (1,1) tensor field ﬁ on

(E°, §) by

[fi:]E5 — B°
. v + M v M v M ~ + M 5
(xi,yi,Z)—>ﬁ(xi,yi,2)=(—X2Xxi+szyi, Xz xi—szyi, -X2),
—_ 2 —_
where)\e — t"’ \Jf +4}7 and;{ — 7(177{:)“' VZ(P*¢)2+4P.

It is easy to see that ﬁ is a meta-metallic structure on E® and so (IE?, fi,ﬁv, <,>) is an almost meta-metallic
Riemannian manifold, where <, > is the usual Euclidean metric on IE°.
Now, we consider a hypersurface MM of B> given by y1 = y»>. Then T is spanned by

9 9 o 9 9

Zl—a—xll ZZZE’ ZS:Zyzﬂ-’-&_yz' Z4=£

and TN is spanned by

d d
N=— —2ypp—.
ayl y28y2

In this case it is easy to see that g B(TIN) ¢ TIN which implies that M is a non-invariant hypersurface of E°.
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