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Abstract. In this manuscript, we consider a beam model called the Shear beam model (no rotary inertia)
with a second sound. First, we establish well-posedness findings by applying the Faedo-Galerkin method,
and by constructing an appropriate Lyapunov functional, we show exponential decay findings for the

solutions of the system. Furthermore, our obtained findings are not related to any relationship between the
system parameters.

1. Introduction

In 1921, Timoshenko [17] introduced the classical system, which is made up of two hyperbolic equations
given by

P1Pc — K (@x + 1), = 0in (0,1p) X (0, 0),
P27 — by + kK (@x + ) = 0in (0,1p) X (0, 00),

such that the functions 1 and ¢ represent the rotational angle of the filament of the beam and the transverse
displacement, respectively, pi, p», b and « are fixed positive physical constants. For almost a century,

numerous researchers have spent a lot of time and effort studying this model. In [14] Said-Houari and
Laskri considered the Timoshenko system

Pl(Pn - K ((Px + '7[))3( = 0/ (xr T) € (0/ 1) X (0/ OO) s (1)
lePTT - blPxx +K ((Px + IP) + Hlﬁbf[ + ,ule)T (X,T - 7’) = 0/ (X, T) € (0/ 1) X (Or Oo)/
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such that yy, yy are positive constants and r > 0 represents the time delay. The initial data (¢o, @1, Yo, ¥1, fo)
belongs to an appropriate functional space. This system is equipped with the next boundary and initial
conditions

#(0,7) = (1, 1) =9(0,7) = ¢(1,7) =0, T €(0,0),
@(x,0) = @o(x), P(x,0) = p1(x), Y(x,0) = Po(x), x € (0,1),
Yr(x,0) = P1(x), Yo (x,T=7) = folx,T—7), (x,7) € (0,1) X [0,r].

Under a suitable assumption on the weights of the two feedbacks, the authors showed by applying the
semigroup method the well-posedness of the system and also demonstrated that (1) is exponentially stable
for the equal-speed wave propagation case. After the usual Timoshenko equations, the Shear model is
the first set of coupled equations for modeling wave propagation in beams. The Shear model, in essence,
considers the action of Shear distortion (but without rotary inertia) on the Euler-Bernoulli model, which
results in the coupled equations given by

{ P19 — K (@x + ), = 0in (0,1) X (0, 00),
—byy + x (@x + 4}) =01in (0,1y) x (0, c0),

where the functions ¢, 1, ¢ and « (@x + ) represent, respectively, the angle of rotation due to the bending
moment, the dimensionless moment, the dimensionless displacement and the dimensionless Shear. This
system is equipped with the next initial and Dirichlet-Neumann boundary conditions

{ #(0,7) = @lo, 7) = Px(0,7) = Pu(lo, 7) =0, T € (0, 0),
@(xr O) = (Po(X), (PT(x/ O) = (Pl(x)r QD(X, O) = ¢0(X), X € (Or lO) .

In [1], Jtnior et al. considered a damped Shear beam model given by

{ P10 — Kk (P + V), + e = 0in (0,1p) X (0, 0), 2
—bi) + kK (px + 1) = 01in (0,1) X (0, 0).

This system is equipped with the next initial and boundary conditions

{ ©(0,7) = (o, 7) = ¥(0,7) = Pr(ly, 7) = 0, T € (0, ), 3)
(P(x/ 0) = (p()(x)/ (pT(x/ 0) = (Pl(x)/ 1!1(.7(, O) = ll)o(X), X € (O/ ZO) .

The authors, by applying the Faedo-Galerkin method, showed the existence and uniqueness of weak and
strong solutions to (2)-(3). Moreover, through the multiplier techniques and the energy method, they
proved that the energy E(7) of (2)~(3) decays exponentially, regardless of any relationship between the
system coefficients. In [12], Ramos et al., based on Janior et al. [1], considered a Shear beam model given

by

{ p1ee = K (x + ), = 0in (0, 1) (0, ), @
=Dy + kK (Px + ) + Y = 0in (0,1p) X (0, 00).

This system is equipped with the next initial and boundary conditions

{ @(0,7) = (o, 7) = P(0,7) = Pr(lo,7) =0, T > 0,

(x,0) = po(x), P<(x,0) = p1(x), Y(x,0) = Po(x), 0 < x < ly. ©)

The authors by using semigroup techniques established that the system is non-exponentially stable. In
addition, the semigroup theory was used to achieve the system’s well-posedness (4)—(5). In [5], Ben Moussa
et al. considered a Shear beam system with thermal dissipation given by

PP — K ((Px + l,b)x + [JGX =0in (O/ lO) X (O/ Oo)/
—br + k (px + ) = 01in (0,1p) X (0, ),
€O — 60 + UPxr = 0in (0/ lp) X (0/ ),
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where 0 and ¢ > 0 represent, respectively, the difference in temperature from the configuration value Ty
and a physical constant that characterizes the heat conductivity of the material. Furthermore, this system
is equipped with the next initial and boundary conditions

{ (P(Or T) = (p(l()/ 7’—) = 11[}(0/ 7'—) = 11[}(10/ T) = GX(OI T) = QX(IOI T) = 0/ TE (O/ OO) ’
(P(X, 0) = (p()(x)/ (p’[(x/ 0) = (Pl(x)/ lnb(xr O) = lal)O(x)/ 0 (xr 0) = 60 (X), X € [0/ lO] .

The authors investigated a thermoelastic Shear beam model with thermal dissipation. They demonstrated,
by using the Faedo-Galerkin method, the well-posedness of the problem and the exponential stability by
using the multiplier technique. In addition, they display some numerical experiments to clearly show the
theoretical results. Recently, Ayadi et al. [3] considered the following coupled Timoshenko system

P1¢wc — K (@x + ), = 0in (0,1) X (0, 0),

P2Prr — by + 1 (@x + 1) + 80 + a () h(Y7) = 0in (0,1) X (0, 00), 6
P30 + gy + 6Py = 0in (0,1) X (0, ), ©)
¢qe+Bg+ 6, =0in (0,1) X (0, 0).

The authors discussed the solutions’ regularity and well-posedness using semi-group theory. Furthermore,
for alarge class of relaxation functions, they established an explicit and general decay result that is dependent
on a stability number p, which is defined as follows

Y (&_&)_Cézpl
#=1e kp3)\b bxps
This number p is important in establishing the asymptotic behavior of the energy associated with the system

(6). In [13], Ramos et al. considered a one-dimensional piezoelectric beam system with magnetic effect and
thermal dissipation given by

PUzr — QUxy + Vﬁpxx + hex =0in (0/ ZO) X (O, oo) ’
UPrt — ,Bpxx + Yﬁvxx =0in (O/ ZO) X (0/ 00) ’

€O + gy + hivy, = 01in (0,1p) X (0, 00),

¢Gr +q+kO; =01in (0,lp) X (0, 0).

This system is subjected to the next boundary and initial conditions

0 (x,0) = 0o (x), vr (x,0) =01 (x), x €(0,1p),
p(xro):pO(x)/ PT(xr0)=p1 (X), xe(O,lo),
G(X,O)ZQQ(X), ’7(3(/0):‘10(90, XE(O,Z()),
v(0,7) = avy (lo, T) — ¥Bpx (lo,T) =0, T € (0, 0),
p(OrT) = Y0x (lOrT)_px (ZO/T) = 0/ TE (O/ OO),
q(0,7)=0(lo,7) =0, T€(0,00),

where p, a, v, i, B, 11, ¢, ¢ and k are positive constants. The authors showed the existence and uniqueness
of system solutions by applying semigroup theory. Also, by using the energy method with the multiplier
techniques, they established the system’s exponential stability. This resultisindependent of any relationship
between the coefficients. Informed by the above works, in this manuscript we consider the problem

P1Pwc — K (@x + ), + 005 + up, = 0in (0,1p) X (0, 0),
—bYy + x (x + ) = 01in (0,1p) X (0, 0),

€O + gy + 0@ = 01in (0,1p) X (0, ),

¢qr +pg+ 6, =0in (0,1p) X (0, 00),

with the next initial and boundary conditions

{ ©(0,7) = p(lo, T) = ¥(0,7) = Yr(lo, 7) = g (0,7) = B (lp,7) = 0, T € (0,0),
(@, 9,1, 0,9) (x,0) = (@o, P1, Y0, 00, 90) (x), x € (0,1p).
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This paper’s goal is to investigate the well-posedness and asymptotic behavior of the solution of (7)
with a second sound. We establish the exponential decay. Furthermore, our results are not related to
any relationship between the system’s parameters. The role of the second sound term and its effect on
the asymptotic behavior of the solution appear in many works for various types of problems. To learn
more about this term, we recommend that readers consult the following sources [2, 7, 8, 10] in the case of
Timoshenko, porous-elastic systems, Bresse systems, and thermoelastic Laminated beams (see also [9, 11, 16]
and reference therein). Because the boundary conditions on ¢ are of Newmann type, we present a few
transformation that enables application of the Poincaré inequality to ¢. According to the second equation
in (7), we get

lo

lo
b Ul + K (px +¢)dx = 0. (8)
0 0

So, by solving (8), we obtain

lo
Y (x,7)dx =0, YT > 0. )
0

Outline of the manuscript. This manuscript is organized as follows. In Section 2, we apply the Faedo-
Galerkin method to establish the well-posedness of (7). Next, in Section 3, we demonstrate that the system
(7) is exponentially stable by constructing a suitable Lyapunov functional.

2. The well-posedness of the problem

By applying the Faedo-Galerkin method in this section, we demonstrate the existence of a weak solution
for (7). To achieve this, we use the Sobolev space H(lJ (0,1p) and the Lebesgue space L2 (0, lp), with their usual
scalar products and norms. Let us define the space H as follows:

H = Hy (0,1p) X L* (0, 1o) x H. (0,1p) x L*(0,1p) X L* (0, 1o),
where H! (0,1y) = H' (0,1y) N L2 (0, ly) such that

lo
L2(0,1y) = {feLZ(O,lo): f(x)dx:O},
0

and
H2(0,1o) = {f € H?(0, o) : £ (0) = fu (lp) = 0.

We now define the following spaces as follows:
HL(0,10) = {f € H'(0,lo) : f (lo) = 0} and H} (0, o) = {f € H' (0,15) : £ (0) = 0}.

Definition 2.1. Let (¢o, @1, 0, 60, q0) € H. We will say that (¢, y, 0,q) or U = (@, ¢+, Y, 0,q) is a weak solution
of (7),if U € C([0, Tol; H) and satisfies

p1 ﬁo Qrctidx + Kflo (@x + ) updx + 6[010 Oxudx + fol” Qeudx =0, Yu € H} (0,1o),
bfoo Yywydx + Kfoo (px + Y)wdx =0, Yw € HL (0,1y),

c folo O vdx + folo grodx + folo prvdx =0, Yo € L2(0,1p),

c fOIO gezdx + B folo gzdx + folo O.zdx =0, Yz € L2(0,1p),

(10)

fora.e. T €(0,Ty) and
(¢, 9,1, 0,9) (0) = (po, p1, 0, B0, 90) - (11)
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Theorem 2.2. If the initial data (o, @1, Yo, 60, 90) € H, then (7) admits a weak solution satisfying

@ € L=(0, To; H} (0,10)), ¢« € L¥(0, To; L2 (0,1p)), Y € L*(0, To; H! (0, o)),
0el” (0/ TOI L2 (0/ ZO))/ q eL” (O/ TOI L2 (0/ ZO))

Proof. The proof is provided by applying the Faedo-Galerkin method. Let us describe the method. We
divide into four steps. In Step 1, solutions of the approximate problem. In Step 2, give energy estimates for
approximate solutions. In Step 3, passage to limits. In Step 4, justify the initial conditions.

Step 1. Approximate problem. Let {uj};’il, {vj}]f"’:l, {wj}]f"’:1 and {Z]'};; be orthonormal bases in H?(0, [y) N
H;(0,1p), H(0, 1o))NHZ(0, 1), H}, (0, o) and H}) (0,lp), respectively, which are all of them orthonormal in L? (0, Iy),
and the both bases {u j}]f“’:l, {U]-};?il constituted by the eigenfunctions of —d., (.) associated, respectively, to the

eigenvalues {)\;} and {/\;’}, that are
—Oxllj = /\}u]- and — 0,0} = /\}IZJ]‘, 1<j<n.
Now, for every integer n € IN, we define the finite-dimensional subspaces by
(U, Vo, Wn, Zyy) = (span {uy, us, ..., un}, span{v1, v, ..., 0}, span {wy, wo, ..., wy}, span {z1, 2, ..., Zu}) -

So, we will find an approximate solution

(¢" ", 0", g (1) =Y fr@u(), ) 7t (D00, ) K (Dw; (), Y L (02 ()],
j=1 j=1 j=1 j=1

for the following approximate problem

p1 (e 1) + K (@ + 9", 102) + 6 (6, 1) + 1 (i, 1) = 0, Yu € Uy,
b o) + k(@ +¢",0) =0, Vo€V,

c(0%,w)+ (g%, w)+o(ph, w)=0, YweW,, (12)
c(q1,2) +B(q",2) +(01,2) =0, Vz € Z,,
with the initial conditions
(", @, 4", 0,4 (0) = (9, 7 W0, 03, 48), (13)
and
((ng(P;l/ Vo, 96’,178) = (o, ¢1, Y0, B0, 90) strongly in H. (14)

Substituting ¢", ", 6", g" into (12) and taking u = u;, v = v;, w = w; and z = zj, for j = 1,...,,n, we get the
linear ordinary differential system shown below

plfj?“TT + /\;Kf]?“ + Kél <vk, qu> gp — 6é1 <wk, ij>h;'z + Hf]nr =0,
(bA;f + K) g+ Kél (ukx,vj)f,? =0,
ch?f + él <zkx,wj> Ly - 6; <uk, wjx>f,fT =0,

n
oL +pLi - X (wi, 25 ) 1 =0,

(15)

with initial conditions

£10) = (@), £ = (4, u5), g 0) = (¢, 9)),
h'; 0) = (Qg,w]-), L;? 0) = (qg,zj), j=1,..,n.
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The application of the basic ODE theory yields the existence of a uniquelocal solution U,, = (¢", %, ¢", 6", 4")
for (15) in a maximal interval [0, ,,) with 0 < 7, < T for every n € IN.

Step 2. Energy estimates for approximate solutions. Replacing u by ¢}, v = ¢}, w = 6" and z = ¢" in
(12), we obtain

plﬁ, Plpidx + Kfo (@2 + Y @lidx + 5 [ Ongptdx + [ |1 dx =0,
b it + i [ (g + ") Pldx = 0,
¢ [ 010mdx + [ q16"dx + 6 [\ pt,0"dx = 0,
l[) n-n l[) nz l(] no-n
Gfo q.q dx+‘8f0 |q | dx+f0 0%q"dx = 0.

By performing some calculations, we obtain

l(] l()
%]E” (1) + yf 2 dx + /3f lg"[*dx = 0, (16)
0 0

where

o I I ] y
n p n b 0 n 0 n n ’ n ’ n
E (T):zflfo |(pT|2dx+§f0 |gbx|2dx+gf0 |(px+1,b |2dx+%f0 |6 |2dx+§‘fo‘ |q |2dx.

Then, according to (16), for all 7 € [0, To], n € IN, we find

T lo T lg
E" (1) + fo fo |2 dxds + B fo fo lg"| dxds = B (0) < o, (17)

such that o1 > 0 depends on the initial data. Hence, approximate solutions are defined for the whole range
[0, To].
Step 3. Passage to the limit. According to (17) and the definition of [E" (1), we conclude that
{¢"} is bounded in L® (O To; Hy (0, lo))
{9”} is bounded in L*® (0 To; L2 (0, Ip) )
{¢"} is bounded in L*® (0 To; HL (0, lo)) (18)
{6"} is bounded in L® (O To; L% (0, lo))
{g"} is bounded in L® (O, To; L% (0, lo)) .

Then we can extract a subsequence of {¢"}, {¢"}, {6"} and {4"} still denoted by {¢"}, {¢"}, {0"} and {g"} such
that

" = @ in L™ (0, To; H} (0,10)),

¢ = @rin L (0, To; L2 (0,10)),

Y Sy in L (0, To; HE (0, 10)), (19)
0" = 0in L~ (0, To; L2 (0,10)),

g" = qin L= (0, To; L2 (0, o).

Using the weak star convergence (19), we obtain for every j < n,

Kfolo (P + ") ujedx + 6f010 Ofujdx + folo Plujdx

- K folo (px + ) ujpdx + 0 folo Oxujdx + folo @ujdx in L= (0, To)

b [} ropedx + & [° (@l + 9") ojx

—b j(;lo Yr0jpdx + K folo (¢x + ¢) vjdx in L™ (0, To)

folo giwidx + 6 flo Prwdx — flo gxwjdx + 06 folo puw;dx, in L* (0, To)
B qrzidx + ) 0'zidx — B [ qzidx + [ Oazjdx in L (0, Ty).

(20)
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Note that if u,, — u weakly star in L* (0, Ty) , then

To du To To To du
f 7 ~g(t)dt = —f u,g’ (1)dt — —f ug’ (t)dt = f —g(t)dt, Vg e Cé (0, Tp) .
0 T 0 0 o drt

. . .. . I I I
So, ‘Z‘T" — Z—;‘ in ©’ (0, Tp). Using this information to foo P ujdx, fOO OFwidx and foo qyzjdx, we get

p1 [ @udx = pr [ prettjdx in D (0, To),
Cfolo ng]dx — Cflo Qijdx in®d (0, TO) , (21)
¢ folo Jrzjdx = ¢ foo gezjdx in ©’ (0, Tp) .

Passing to the limit in (12), using (20)-(21), we get forall j > 1,

01 folo Prolhjdx + K folo (@x +P)ujpdx +0 folo Oxujdx + u folo @ujdx =0,
b folo r0dx + K J;)lo (px + ) vjdx =0,

c j(;lu O wjdx + folo gxwidx + 6 folo Puwdx =0,

c folo g.zjdx + folo qgzjdx + folo Oxzjdx = 0.

Since {M]-}]f’":1 , {vj}]?’il i {w]-};?":1 and {Zj};il are Hilbert bases in H}(0, 1), HX(0, lo), L* (0, ly) and L? (0, ly), respec-
tively, (10) follows immediately.
Step 4. Initial data. By applying the Aubin-Lions-Simon theorem (Theorem II.5.16, [6]), because

The embedding of H; (0,1p) in L (0,1p) is compact,
The embedding of L? (0, ) in L* (0, lp) is continuous.

Then, we get the embedding of [E « in C(0, To; L2(0,1y)) is compact where

ok
dt

Ecoco = {(p" € L™ (0, To; Hy (0,10)), ¢ = —— € L™ (0, To; L* (0, lo))},

by (18), we get {¢p"} bounded in E «, then there exist {¢"} subsequence of {¢p"}
@" =3 @ strongly in C(0, To; L2 (0, 1o)).
Therefore,
® (0) = @o.
Let 17 () be a smooth function in T with € C* ([0, Ty]) such that n(0) = 1 and n(Ty) = 0. Next, by integration

the third equation of (10) with respect to 7 over (0, Ty) and using integration by part, then taking v = n(7)m(x),
we obtain for every m € H(l) (0,1p),

To o To o To rlo
cf f O.n(t)m(x)dxdt — f gn(t)my(x)dxdt — (Sf f @1n(T)1y(x)dxdT = 0.
0 Jo 0 Jo 0o Jo

The integration of the first term by part yields

T() l() lo TU IU
f f O.n(T)(x)dxdt = —f 0 (x,0) t(x)dx — f f 01 (7)1 (x)dxdr.
o Jo 0 0o Jo
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Thus,

lo To plo To plo
Cfo G(O)H(x)dxz—cfo fo Q(x,T)nT(T)n(x)dxd’c—j; I) gn(t)my(x)dxdt

To  plo
-0 fo ‘fo Q1(T) Tty (x)dxdT, (22)

forallm € H(l) (0, Ip). By using a similar technique with the third equation of (12) and by exploiting the initial
conditions (13), we obtain

l() To l() To l(]
cf Opmt(x)dx = —cf f 0" (x, 7) N (T)1t(x)dxdt — f f g n(t)me(x)dxdt
0 o Jo o Jo

To il
-0 fo fo‘ @rn(T)m(x)dxdr. (23)

By recalling (14) and (19) and passing to the limit in (23), we get

N To plo To o
c f(; Oomt(x)dx = —c ](; fo 0 (x, T) N (T)m(x)dxdt — f(; | qn(t)my(x)dxdt

To lo
-5 f Qon(T)(X)dxd, (24)
0 0

forall e Hé(O, Ip). The comparison of (22) and (24) leads to
0 (0) = 6y.
Similarly, we get

(P, ¥, 9) (0) = (@1, Yo, 90) -
As aresult, (p, ), 0,9) is weak solution of (7). Using (10) and similar technique to obtain (16), we have

l() lo
E%_]E(T) = _yf |(p7|2dx—‘8f g dx <o, (25)
0 0

where

lo lo lo lo lo
P b
E(7) ::El‘fO |¢T(2dx+§£ (¢x|2dx+gj; |g0x+1p|2dx+§£ |6|2dx+§£ |q)2dx.

Then, from (25), we can deduce that for every 7 € [0, Ty], n € IN,
E (1) <E(0) < 02, (26)

where g, > 0 depends on the initial data. As a result, the solution of (7) can be applied to the entire interval
[0/ TO] SO,

sup E (1) <E(0) < 0».
TE[O,TU]

Hence,

Consequently, we obtain

@ € L=(0, To; H} (0,10)), ¢ € L¥(0, To; L2 (0,10)), ¥ € L=(0, To; H! (0, o)),
6 € L*(0, To; L* (0, 10)), g € L=(0, To; L* (0, lo)).

‘PHLw(o,TO;HgJ(o,IO)) + ”‘P”LW(O,TO;HJ(O,IO)) + ”(PT“LW(O,TO;LZ(O,ZO)) +10ll0, 70220000 + ”q”L"“(O,To;LZ(O,lo)) < 02

which completes the proof of the Theorem (2.2). O
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3. Exponential stability

8863

In this section, we use the multiplier technique to demonstrate the energy of the system’s solution is

exponentially stable. So, we need the next lemmas.

Lemma 3.1. Let U = (¢, ¢, 1, 0,9) be the solution of (7). Then, the energy functional, defined by

1 [°
E(r) = 5 fo [pl(pi + Y2 + i (@ + ) + O + ng] dx,

satisfies

IO lQ
E'(t) = —ﬁf qPdx — yf @2dx < 0.
0 0

(27)

(28)

Proof. We multiply (7)1, (7)2, (7)3, (7)4 by @+, ¥+, 0, g respectively, and integrate over (0,ly), through the

integration by parts and the boundary conditions, we arrive at (28). O

Lemma 3.2. Let (p, ¢, 0, q) be a solution of (7). Then, the functional

lo
L (1) = p1f Q-pdx, >0,
0

satisfies

lo ly
I} (1) < - (b — &1 (2uC3 + 25Cp)) fo P2dx — (i — 1 (26 + 2uCp)) 0 (px + 1) dx

H . 2 o . 2
— dx + — dx.
+(p1+4€1)fo‘ (o x+4€1 | 0°dx

Choosing €1 < min( , we get

b K
4uC2+45Cp’ 45+4ycp)

b [P 2 K (" 2 H o 2 0 o 2
Lws—3 | i3 [ @) dx+(p1+E) 0 @de+Efo 6dx.

(29)

Proof. By differentiating I1(t), exploiting (7)1, (7)2, applying the integration by parts and through the

boundary conditions, we arrive at

IU 10 ]0 10 10
I (t)=-b 2dx — x (Qx + ) dx + py f p2dx -6 @Odx — yf Q. pdx
0 0 0 0 0

lo 10 ]0 l() lO
=-b Y2dx -k (Qx + )2 dx + py f @2dx + 6f @ 0dx — ‘uf Qpdx.
0 0 0 0 0

By applying the Young and Poincaré inequalities, we obtain

lo lo lo
(5f @ 0dx < 6£1f 2dx + if 62dx
0 0 4e1 Jo

lo lo lo
<20ey | (@x+ ) dx +26Cpe; f Yidx + o 0dx,
0 0 4e1 Jo

(30)

(31)
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and

lo lo ‘Ll lo

—u Qpdx < ueiCp qoxdx * e (p%dx
0 €1

lo

<2ueiCp | (px + ) dx +2uei C2 z,b2dx t <p2dx. (32)
0

We get (29) by substituting (31) and (32) in (30). O
Lemma 3.3. Let (p, ¢, 0, q) be a solution of (7). Then, the functional

IO X
L (1) = —cf qf 0 (y)dydx, © >0,
0 0

satisfies

IU l(]
L(t)<—(1- ﬁ1053)f 0%dx +( + < ~+ g—és ) 7*dx + 0 P2dx. (33)
c 0 deey Jo

Proof. By differentiating I,(7), from (7)3, (7)s and through the boundary conditions with integration by parts,
we arrive at

lo X lo X
Ié(r)=—cf qTf G(y)dydx—Cf qf 0 (y) dydx
0 0 0 0
lg X IU X C l(] X C(S lg X
:ﬁf qf 6(y)dydx+f Qxf 8(y)dydx+—f qf qydydx+—f qf Pycdydx
0
l() l(] l(]
ﬁf f 6(y)dydx+f f 0 (y)dydx + = f 2dx+—f g dx
l() lg g g l()
=ﬁf qf G(y)dydx—f dex+—f qzdx+—f qo-dx. (34)
0 0 0 ¢ Jo ¢ Jo

By applying the Young inequality, we obtain

B f ’ f 0 (y) dydx < Blos fo ' szx+ﬁ 0 fo dx, (35)

Iy lo lo
© qp.dx < i—684f 7 dx + <0 p2dx. (36)
0 0 0

and

c 4cey
Substituting (36) and (35) in (34), we get (33). [

Now, we give the next definition of the Lyapunov functional

IL(T) = N()IE(T) + 11 (T) + Nllz (’l') , (37)
such that Ny and N are positive constants.

Lemma 3.4. Let (@, 1, 0,q) be the solution of (7). Then, there exist two positive constants k1 and i, such that the
Lyapunov functional (37) satisfies

K1E (1) < L(7) < x[E (1), VT >0, (38)
and

L'(t) < -p1E (1), YT > 0. (39)
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Proof. Through (37), we have

lo lo X
|]L(T)—N0]E(T)|Sp1‘£ )(pT(p(dx+N1gf(; |q|j; |9(y)|dydx.

Using ¢2 < 2(py + lp)2 + 2¢? and applying the inequalities of Poincaré, Young and Cauchy-Schwarz, we
arrive at

IL(7) = NoE (1)l < CiN1E (1),
which yields

(No = Ci1N1) E(7) < L(7) < (No + C1N1) E (1),

1 201G} 2piCp

where C; = lomax{l } max{Nl, TN N

Poincaré constant. By selecting Ny sufficiently large such that Ny > C1N; we find (38). From now on, we
will show that (39) holds. By utilizing (28), (29), and (33), we get to

< lp and N; is large enough such that N; > 1 with Cp is the

N e f“’z _( _( y)_ cd
L' (1) < (Noﬂ N1(E+C+Té | qu NQ[J p1+4—€1 N4C64) (p,[

lo
-3 [ a5 [ pax= (M -phen - ) [ 0P
2 0 451 0

By setting ¢ !
3= 5,7 7
2By

2 2 Iy Io
LI(T)<—(N05 Nl(ﬁ—+g+ge ])f qzdx—(No[J—(P1+i)_N ¢ )f (pfdx
0 451 4C& 0
b lo ) K N1 5 ly 5
~2 xx = o (<Px+¢) dx — (7—4—€1)f0 6%dx.

We now choose the following parameters appropriately.
First, we select N; large enough such that N; > 1 and

Ny 0
60 7—E>0.

Next, we pick Ny large enough so that Ny > C1Nj,

Bl ¢ o u cb
Noﬁ Ny T+ +—€4 >Oand62—N0p (p1+E)_NE>O

So, we end up with

lo lo l(] lO
L' (1) < =01 f g*dx — 6, f @2dx — E gbzdx - E (Qx + V) dx — 69 f 0%dx.
0 0 0

Moreover,

lO IO lo lO
L'(7) < - [f gdx + f Qrdx + Y2dx + (px + tp)z dx + f 92dx] , (40)
0 0 0 0
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where @ = min (60, 01,02, g, %) > 0. We have it on the other hand,

l(] IQ 10 l(] lO
E(t) < C; [f gPdx + f 2dx + Y2dx + (px + 1/1)2 dx + f szx] ,
0 0 0 0 0

which implies that

l() lg l(] l() ID
- [f 7*dx + f 2dx + P2dx + (px + ¢)2 dx + f 92dx] < —G3E(7). (41)
0 0 0 0 0

The combination of (40) and (41) gives (39). O

In what follows, we estimate the system’s energy (7) using the equivalence relation (38) and the estima-
tion (39). Now, we can specify and demonstrate the following stability result.

Theorem 3.5. Let (@,,0,q) be the solution of (7). Then, the solution (@,1,0,q) decays exponentially, i.e., there
are two positive constants, A1 and A, such that

E(t) < Ape™™7, VT > 0. (42)
Proof. By exploiting the estimation (39), we get to

L'(7) < -B1E (1), YT > 0.
Using IL ~ E, we deduce that

L'(t) < -AIL(7), VT >0, (43)
with Ay = 1/x2 > 0. By performing integration of (43), we get

L(7) < L(0)e ™7, V7 > 0. (44)

By exploiting I ~ [E and (44), there exist a constant A, = IL(0)/x; > 0 such that (42) holds. The proof is
complete. [
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