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Abstract. In this work, we prove a new theorem by using properties related to symmetric functions. All
of the conclusions drawn in this work are based on this theorem. We introduce new generating functions
for the product of Gaussian Pell and Padovan numbers, Gaussian Perrin numbers with (p, 4)-numbers, and
the product of earlier Gaussian numbers with bivariate polynomials.

1. Introduction and main results

Many modern sciences depend in their research and theories on sequences. However, they are employed
in the fields of mathematics and physics, one such sequence is the Fibonacci sequence, which is regarded as
one of the most well-known sequences and has been examined by several scholars for many decades due to
its significance. Ithasbeen used extensively in many different fields and sciences (physics, biology, computer
science, engineering, mathematics, etc.) for many centuries by numerous researchers and scientists. Many
authors have made various generalizations about these numbers [5]. Some have preserved the recursive
relationship while changing the initial conditions, while others have generalized this sequence by keeping
the initial conditions after making a small adjustment to the recursive relationship.

In this study, we are interested in sequences of numbers defined by third-order recurrences relations
such as Gaussian Pell Padovan and Gaussian Perrin which are defined respectively by [11, 23]

GR, =2GR,» + GR,,_3, n >3,
GRy=1-4GR;1=1+iGRy =1+1,
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and

Gr,=Gryo+Gry,_3, n=3,
Gro=-1+23i;Gry = 3;,Gry, = 2i.

There are many studies on these two kinds of sequences. For examples, Kartal in [11] defined and
studied the Gaussian Padovan and Gaussian Perrin numbers, Bhoi and Ray in [3] explored Perrin numbers
expressed as sums of two base representations. Moreover, Zerroug in [25] worked on Gaussian Padovan,
Gaussian Pell-Padovan numbers, and new generating functions for certain numbers and polynomials.

The (p, q)-Pell and (p, g)-Pell Lucas numbers were recently defined by Gulec and Taskara in [9]. They
demonstrated the matrix sequences and examined their properties. Regarding the (p, q)-Fibonacci num-
bers, Suvarnamani and Tatong in [22] explored several findings utilizing the well-known Binet’s formula.
Moreover, Suvarnamani in [21] derived useful characteristics of the (p, g4)-Lucas numbers and introduced
innovative identities for the (p, g)-Fibonacci numbers using matrix techniques in a follow-up study. In
our work, we focus on the application of certain (p, g)-numbers, such as (p, g)-Fibonacci, (p, q)-Lucas and
(p, 9)-Pell Lucas numbers, as defined respectively by

{ Fpgn = PFpgn1+qFpgn2, n2z2
Fp,q,O = O; Fp,q,l = 1

{ LP,q,n = pr,q,n—l + qu,q,n—Z/ n>2
Lpgo=2Lpg1 =p

and

Qpa0=2Qpg1 =2p

On the other hand, Alves in [2] introduced the notion of bivariate Mersenne polynomials, then in
[15] the bivariate Mersenne Lucas polynomials are defined by the same recurrence as bivariate Mersenne
polynomials but with different initial terms which are defined by

{ Qp,q,n = szp,q,n—l + qu,q,n—Zr n>2

mu(x, y) = 3ymu-1(x, y) — 2xmy_(x,y), n=2 1)
mo(x,y) = 2;mi(x,y) = 3y ’

Additionally, Catalani defined the bivariate Fibonacci and bivariate Lucas polynomials in [8] by

Fu(x,y) = xFy1(x, y) + yFra(x,y), n=2 %)
Fo(x,y) =0; Fi(x,y) = 1 ’
Lu(x,y) = xLy1(x,v) + yLu—a(x,y), n>2 3)
Lo(x,y) =2, Li(x,y)=x '

In [24], Zorcelik and Uygun introduced sequences called bivariate Jacobsthal and bivariate Jacobsthal
Lucas polynomial sequences as follows

Jn(, y) = xyJu-1(x, y) + 2yJua(x,y), n>2 N
Jot, ¥) =0, Jix,y) =1 ,

Ja(,y) = xyju1(x, y) + 2yjua(x,y), n>2 5)
jO(x/ y) = 2/ jl(x/ y) =Xy '

Lastly, in [20], H.Serpil and A.Zeynep defined the bivariate Pell polynomials as follows

Pu(x,y) = 2xyP,_1(x, y) + yPpo(x,y), n=2 ©)
Po(x,y) =0, Pi(x,y)=1 '
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Remark 1.1. Ifwe set y =1 in Egs. (1)-(6), we obtain the recurrence relations of Mersenne Lucas, Fibonacci, Lucas,
Jacobsthal, Jacobsthal Lucas and Pell polynomials, respectively.

Remark 1.2. Ifwe put x=y =1 in Egs. (1)-(6), we get the recurrence relations of Mersenne Lucas, Fibonacci, Lucas,
Jaocobsthal, Jacobsthal Lucas and Pell numbers, respectively.

In this part, we present the preliminary tools and notions necessary for understanding the following
section, we introduce some definitions of the symmetric functions that are needed in this part and will be
utilized throughout the paper.

Definition 1.3. [1] Let A and E be two alphabets. Then S,(A — E) is defined by the following form

[1(1 —et)
__e€E
ZS(A B = TTa—my @)
acA

with the condition S,(A — E) = 0 for n <0.

Corollary 1.4. Taking A = {0} in (7) gives

ZS( E)" = H(l—et) (8)

ecE
X [
n

Thus, we obtain

i Su(A - E)t" = [Z S, (A"
n=0

Remark 1.5. If A =E, so

Z Su(A)" =

ZS(A)

gk

Su(— E)t”].

Il
o

Definition 1.6. [18] Let n be a positive integer and A = {ay, ay} is a set of given variables. Then, the n'" symmetric
function S,(a; + az) is defined by

n+l _ n+l
1 a,

Su(A) = Su(ay + ap) = ———,
a; —az

with
So(A) = Spla; +ap) =1,

S1(A)
52(A)

Si(ar +az) = ay +ay,
So(ay +ap) = a% +aa; + a%,

Definition 1.7. [7] The symmetrizing operator 8~ , is defined by

aaz

4 _ ik
aluzf( 1) = S @)~ f (QZ), forall k € Np.
a, —ap
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Gaussian Pell Padovan numbers GR, = (1 -=1)S,(E)+ (1 +1)S,-1(E) + (-1 + 30)S,,_2(E)
Gaussian Perrin numbers Gry, = (=14 3i)S,(E) + 35,-1(E) + (1 = 1)S,—2(E)
(p, 9)-Fibonacci numbers Fyan = Sn-1(ar + [-a2])
(p, 9)-Pell Lucas numbers Qpgn = 25u(a1 + [—a2] — 2pS,-1(a1 + [—a2])
(p, 9)-Lucas numbers Lygn = 25u(a1 + [—a2] — pSp-1(a1 + [-a2])
bivariate Pell polynomials Pu(x,y) = Sp-1(m + [-a2])
bivariate Mersenne Lucas polynomials mu(x,y) = 25,(a1 + [—a2]) — 3ySy-1(a1 + [—az])
bivariate Fibonacci polynomials Fu(x,y) = Sy—1(a1 + [-az2])
bivariate Lucas polynomials La(x,y) = 25,(a1 + [-a2]) — xSp—1(a1 + [-a2])
bivariate Jacobsthal polynomials Su(a1 + [—a2])
bivariate Jacobsthal-Lucas polynomials jn(x, y) = 25,(a1 + [-a2]) — xyS,—1(a1 + [-a2])

Proposition 1.8. [14, 17, 19] Let’s consider n € IN, the symmetric functions of Gaussian Pell Padovan, Gaussian
Perrin, (p, q)-Fibonacci, (p,q)-Pell Lucas, (p, q)-Lucas numbers, bivariate Pell, bivariate Mersenne Lucas, bivariate
Fibonacci and Lucas polynomials, bivariate Jacobsthal and Jacobsthal Lucas polynomials are respectively given by

In this paper, we proved a new main theorem using the operator &5 /*1. From this theorem, we obtained
novel generating functions of numbers and polynomials.

Theorem 1.9. Let E = {e1, es,e3} and A = {ay, a,} be two alphabets that we have

Y Su(B) S (A) 2" =
n=0

Sk-1 (A) + S1(=E)a1a2Sk-1-1(A)z + So(=E)a2a3Si_1_2(A)z? — a1l M2 7 S, 100 (<E) Sy (A) 2"

n=0

(o) 00 4 (9)
( Y. S, (-E) ai’z") ( Y. S, (-E) agz”)
n=0 n=0

foralln, ke Noand k,1€{0,1,2,3,4,5}.

The rest of the paper is organized as follows: The proof of the theorem is provided in Section 2. In section
3, we derive new generating functions for the products of Gaussian numbers with (p, g)-Fibonacci, (p, 9)-
Lucas, (p, q)-Pell Lucas numbers, bivariate Mersenne-Lucas polynomials, bivariate Fibonacci and bivariate

Lucas polynomials, bivariate Pell polynomials, and bivariate Jacobsthal and Jacobsthal-Lucas polynomials.
In the final section, Section 4, we present an application in signal processing.

2. Proof of Theorem

Applying the operator 6% 1 to the series f (a12) = Y, S, (E)al'z", we get
n=0

ak-+1 Zo Su (E)aliz" — a5+ ):0 Su (E)ajz"
n=

k—1+1 _ n=
Ot fmz) = —
00 un+k—l+1 _ an+k—l+1
= )s, (E)( S— )z” (10)
n=0 1 2

= ) 80 (B)Sucr(A)2"
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Alternatively, by using the operation &f71

. 1
may  to the series f(a12) = —

, we get
Y Su(=E)az"
n=0

k—1+1 k—1+1
4 4,

Y. Sy (=E)ajz"  }. S,(=E)ajz"
k—1+1 n=0 n=0
Onar f (€12)

a1 —az

0 k I+1-n _ ak—l+1—n
2
Y., S, (=E)a"a" f z"
_ n=0 172 ay —ap

(f S, (=E)a" z”)(f Sy (—E)agz”) .
n=0 n=0

Equivalently,

Y. Su(=E)a}aySi-1-n (A) 2"
n=0
Syt f (a12)

( E, Sy (_E) arllzn) ( OZO‘ S, (—E) ag’z”)
n=0 n=0

ZS (=E)ajai Sy, (A) 2" + Z

n=k—I1+2

(Z S, (=E)a" z")(Z S, (—E)agz”)
n=0 n=0
Sk-1(A) + S1(—=E)a1a2Sx-1-1(A)z + Sy(—E)a3a3S_1-»(A)z*
an —k+1-1 _ n—k+l—1
_ Z Sn ( E)ak I+1kl+1( 4 ]Z"

Sn (—E)aia Sk (A) 2"

n=k—I+2 a —ap

(f 5, (—E)a’fz”)(z Sy (—E)a z")
n=0

Sk-1(A) + S1(=E)a1a2Sk-1-1(A)z + Sy (=E)aja3S-i-2(A)z*

—a’{‘l“ag_l“ Y S,(=E).S,_ks1-2(A)Z"
_ n=k—I1+2
(Z Sn(—E)ﬂ'fZ”)(Z S, (=E)a’ zn)
n=0
which also gives

Sk-1(A) + S1(=E)m1a2Sx-1-1(A)z + Sy(—E)aasSy—1-»(A)z*

]I 1 lﬁ Frlgk-lv2 Z Sn—k+l+2 (_E) Sn (A) z"
6k I+1f (1112) — n=0

(f 5 (—E)a?zﬂ)(z S, (~E)as zﬂ)
n=0

3. Lemmas

In this section, according to Theorem 1.9, we provide some lemmas
e ForA = {ay,a},E = {e1,ere3}and k, 1 € {0,1, 2, 3,4, 5} in Theorem 1.9, we deduce the following lemmas
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Lemma 3.1. [12] Considering that E = {eq, ez e3} and A = {ay, a2} are two alphabets, we are given

— ma,S2(—E)z* — ayaz(ay + a2)S3(—E)z°

( ) Sn(—E)a’;z") ( » Sn(—E)agzn)
n=0 n=0

Y Su(E)S (A" = -
n=0

Corollary 3.2. Relationship (11) allows us to get
— 110:82(=E)2® — maz (a1 + a2)S3(~E)z*

(f sn(—E)a';zn)( y sn(—E)agzn)
n=0 0

n=

Y S (B)Sua(A)z" = -
n=0

Lemma 3.3. [12] Provided that E = {eq, e, e3} and A = {a1,a,} are two alphabets, we are given

—S1(—E)z — (a1 + 22)S2(—E)z* — (a1 + a2)* — a1a2)S3(~E)2°

( ¥ s,,(—E)a';zn) ( ¥ sn(—E)a;zn)
n=0 n=0

Y SuB)Sa(A)" =
n=0

Using the relationship (13), we obtain
~S1(=E)z* = (a1 + @2)S2(=E)2’ = (a1 + 42)* — ma2)S3(~E)z*

(f sn(—E)agzn) ( ¥ s,,(—E)a;zn)
n=0 n=0

Y Sua(B)Sya(A)" =
n=0

Lemma 3.4. [12] Assuming that E = {e1, s e3} and A = {ay, ay} are two alphabets, we obtain

(a1 + a2) + S1(E)arapz — a3a3S3(—E)z?

(f Sn(—E)a’fz”) ( y s,,(—E)agzn)
n=0 n=0

Z Su(E)Sys1(A)2" =
n=0

According to relationship (15), we obtain

(a1 + a2)z + S1(=E)aa22* — a3a3S3(—E)z°

( ¥ sn(—E)a';zn) ( y Sn(—E)ugz”)
n=0 n=0

D Sim(B)S, ()" =
n=0

According to relationship (16), we obtain

(a1 + a2)z* + S1(—=E)marz® — a2a353(~E)z*

Y Sua(E)S,a ()2 = -
n=0 ( Y Sn(—E)u'fz”) ( Y Sn(—E)QZZ")
n=0 n=0

Lemma 3.5. [12] Assuming that E = {e1, ep e3} and A = {ay,a,}, are two alphabets, then we are given

[(a1 + a2)* — m1a2] + S1(=E)araz(ay + a2)z + a2a35,(~E)z?

()o:o Sn(—E)aQ’zn)(f sn(—E)agzn)
n=0 n=0

Y SuE)Swa(A)e" =
n=0

Using the relationship (18), we get

[(a1 + a2)* — ma2]2% + araz(ay + a2)S1(=E)2> + a2a3Sy(—E)z*

(f sn(—E)aqzn) ( y sn(—E)agzn)
n=0 n=0

Y Sua(B)Su(A)z" =
n=0

8874

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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e For the case where A = {a1, —a,} and E = {e;, €5, €3}, by replacing a, with (—a) in equations (11), (12),
(13), (14), (16), (17) and (19), we have

gsn<g>sn<al s eal)z = L %((P)H((l SR, 0)
;’;sn_l<E>s,,_1<al teal) = 2 al“2Ej_)z;j;ﬁg;—;;;f3<-E>Z“, e
gsn@sm [l = 2Bz ﬁf;ﬂ-f;j;ﬁgf;z; roa)S(E)Z @)
gsn_msn_m +[ra])er = —2O7 @ - ﬁﬁ{;’jj ig;; 2552; +am)S (B 3)
S 05 + o = “E}ff@ﬁl’?ﬁi _mhehe, o
g 5y (B a(as + [ = ui&;ls_l:fz)f E:(Zf ::5:3)53(_E)ZS, (25)
io 8, 2 (E)S. 1 + [oaa]e = 7 ) + alazjgz:(l—jl;zl(;z)égz)iif + afa%Sz(—E)z3’ o6

[Ja-emn[[a+emz) = 1+ @ -a)Siu-E)z+ @1 - 2:)*$5(~E) - max(SH(—E) — 25,(~E)) Iz

ecE ecE
+[(a1 — 22)S3(—E) — araz(a1 — a2)(S1(—E)Sa(~E) — 3S3(~E))]2°
—[a1a5(a1 — a2)*S3(—E)S1(~E) — aja3(S3(—E) — 2S3(—E)S1(~E))z*
+a§a§(a1 - az)Sg,(—E)Sz(—E)z5a?a§S§(—E)z6.

4. Generating functions of the products of Gaussians numbers with (p, q)-numbers

In this section, we derive new generating functions of the products of Gaussians Pell Padovan and
Gaussian Perrin numbers with (p, g)-Fibonacci, (p, g)-Lucas and (p, g)-Pell-Lucas.

Theorem 4.1. The novel generating function of the product of (p,q)-Lucas numbers and Gaussian Pell Padovan
numbers for n € IN is provided by

3 G
Y GRuLpgut" = 2, (27)
n=0 , Dl
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where

Gi = 2(1—1i)+p(1+i)t+ [(=3p* — 6p) + (5p* + 10g)ilt* + [(—p° — pq + (p° + 5pq)ilt> + [(p*q + 64%)
+(p*q — 10pq)ilt* — pg*(—1 + 3i)F°,

and
Dy=1- (2;92 + 4:11)1?2 - (p3 + 3;:Jq)t3 + 4q2t4 + 2pq2t5 - q3t6.
Proof. By referred to [6] and [14], we have
GR, = (1 =)Sy(E) + (1 +1)S;1(E) + (=1 + 3i)S,2(E) and L, 5., = 25,(a1 + [~a2] — pSu-1(a1 + [—-az]).

We see that

Z GRuLpgut" = Z (1= DSu(E) + L+ )Su-1(E) + (=1 + 30)S,—2(E)) (2Su(a1 + [—a2] — pSu-1(a1 + [—a2])t"
n=0

n=0

= 21-0) ) SuB)Su(ar + [~a D" = p(1 =) ) Su(E)S,-1(ar + [~aa])t"

=0 n=0
+20+0) ) Sua(B)Sy@r + [ = p(+1) ) Sua(B)Sym1(ar + [-aa)
n=0 n=0
#2(=1+30) ) Sy a(E)Su(ar + [-aDt" = p(=1+3) Y Sua(E)Sur(ar + [-aa)t",
n=0 n=0
we obtain
- o 20 =) -297 —pgt*)  p(L - )Cpt + (" +9)F)
Y GRuLpgat" = D - D
n=0 ! !
21+ i)(pt + PH)  p(1 + i)t — 298 — pgt?)
* [)1 - l)l
2(=1+3i)((p? + )2 = 24%*)  p(=1 +3i)(pt* + ¢*F°)
N _ .
[)1 [)1

So, the proof is completed. [

Theorem 4.2. The novel generating function of the product of (p, q)-Lucas numbers and Gaussian Perrin numbers
for n € N is supplied by

o] . G2
nZ:O GryLygut" = D,’ (28)
where
Gy = =2+6i+3pt+[29+(=6q—2pN)ilt* + [(p° + 2p* + 6pq + 29) + (=3p° — 2p* — Ipq — 29)i]

+[(49% + 3p°q) + 24%11t* — pg* (1 —i)P°,
and
D,=1- (p2 + 2q)t‘2 - (p3 + 3pq)t3 + q2t4 + pq2t5 - q3t6.

Proof. The same technique described in Theorem 4.1 can be applied to prove the result. [J
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Theorem 4.3. For n € IN, when Gaussian Pell Padovan numbers are multiplied by (p, q)-Fibonacci numbers, the
new generating function is

- Gs
n __
;:0 GR,Fpgut" = . (29)

with
Gz = (1 + i)t +p(1 + )t + [(p* — q) + (=p* = 39)i]t> — pg(1 + i)t* + g*(—=1 + 3i)t°.

Proof. We see that

Y GREygut" = Y (1= D)Su(E) + (1 +DS,ca(E) + (1 +30S,-2(E)) (Syma (@1 + [-a)"
n=0 n=0

(1=0) Y Su(B)Su-a(ar + [=al)t" + (1+1) ) S (E)Sua (@ + [—a2)F"
n=0 n=0

+H(=1+3) ) Sua(E)Sua(ar + [-at";
n=0

we obtain

- o A=D2pP+ P>+ ) A+t -2q8 —pgt!) (=1 +3i)(pt + 3°F)
;O GR,Fpgut ol + B + D .

So, the proof is completed. 0O

Theorem 4.4. The novel generating function of the product of (p,q)-Fibonacci numbers and Gaussian Perrin numbers
for n € N is provided by

o] . G4
;O GraFpgnt" = Dy (30)

with
G = 3t + 2pit? + [(p* — 29) + (=3p* - 3q)ilt> - 3pgt* + ¢*(1 — i)¥°.
Proof. The same technique described in Theorem 4.3 can be applied to prove the result. [

Theorem 4.5. The novel generating function of the product of (p, q)-Pell Lucas numbers and Gaussian Pell Padovan
numbers for n € IN is provided by

Z GR, Qp,q,nt = D_5 ’ (3 1)
n=0 3

where

Gs = 2(1—1i)+2p(1 + i)t + [(—4p* — 6q — 8p) + i(12p* + 10 + 8p)]t* + [(=8p> — 2pq) + i(8p® + 10pq)]*
+[(4p2q + 6q2) + i(4p2q - 10112)]t4 - quz(—l + 3i)t5,

and

D;=1- (p2 + 4q)t2 - (8;73 + 6pq)t3 + 4q2t4 + 4pq2t5 - q3t6.
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Proof. We see that

Y i~ N[ (= DEUE) + A+ S, (B) + (-1 +30)S,2(E))
2 CRuGpant” = Z(;( (25, 01+ L) ~ 2954 a1 + [-02]) )t
= 201-1) ) SuE)Sular + [=aDF" = 2p(1 =) Y Su(E)Sy-1(ar + [-a)F"
n=0 n=0
#2(1+1) Y St (B)Su(ar + [ =2p(1 +1) Y Su1(E)Spea(@r + [-aa D"
n=0 n=0
#2(=1+30) ) Sua(E)Su(ar + [-aD)t" = 2p(=1+30) ) Sua(E)S,-1(ar + [~aa])t";
n=0 n=0
we obtain
u . 2(1 —i)(1 — 2912 = 2pgt*)  2p(1 — i)(@dpf? + (4p? + 9)3)
Y CRuQpat" = S -
n=0
(2+20)(2pt + ¢*tY)  2p(1 +i)(t — 2qt° — 2pgt*)
+ a—
[)3 [)3
2(=1 + 3i)((4p> + @) — 24°%)  2p(=1 + 3i)(2pt + ¢215)
+ D; - D; .

So, the proof is completed. [

Theorem 4.6. The novel generating function of the product of (p,q)-Pell Lucas numbers and Gaussian Perrin
numbers for n € IN is provided by

. G
Y CriQunt" = 5 (32)
n=0 4

with

Ge = (=2+60)+6pt+ [(8p* +4q) + i(=16p* — 89)1* + [(8p° + 12pq) + i(—24p> — 18pq)]*
+[(12p%q + 4¢%) + i1t — 2pg*(1 - i),

and
Dy =1- (4p* +29)* — 8p® + 6pq)t> + g*t* + 2pg*t> — g*t°.

Proof. The method outlined in Theorem 4.5 may also be utilized to demonstrate this result. [J

5. A new generating functions of the products of Gaussian numbers with bivariate polynomials

In this section, we derive new generating functions for the products of Gaussians Pell Padovan and
Gaussian Perrin numbers with bivariate Fibonacci, bivariate Mersenne Lucas, bivariate Pell, bivariate
Jacobsthal, bivariate Jacobsthal Lucas, Lucas polynomials.

Theorem 5.1. The new ordinary generating function of (GR,, F,(x, y)) for every natural n is determined to be

Y GRuFux, y)t" = &, (33)
n=0 Ds
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where
Gr = (1 + it +x(1+ ) + (X = y) —i(x® + 3y)F — xy(1 + )t* + (=1 + 3)°,
and
Ds =1 - (2% + 4y)t* — (& + 3xy)t® + dy?t* + 2x2t° — 210,

Proof. We see that

i GR,Fu(x, t" = i[(l —)Su(E) + (1 + 1)Sy-1(E) + (=1 + 30)S,—2(E] X Sp-1 (a1 + [—a2])t"
n=0 n=0
= (1-9) 2 Sy(E)Sp—1(a1 + [—a )" + (1 + 1) Z Sn-1(E)Sp-1(a1 + [—ax])t"
+(=1 + 3i) 2 Sn-2(E)Su_1(ar + [—a2])t";
we obtain
; GRAFA(x, )" = 1- i)(ZXtZD: (2 +y)P . (1 +0)(t - ;i/t” — xyth) s (-1+ 31')1(;5:%2 + y2t5)‘

So, the proof is completed. [

Theorem 5.2. The new ordinary generating function of (Gry,, F,(x, y)) for every natural n is determined to be
Z GryEp(x, yt" = &, (34)
n=0 D6

such that

Gs = 3t + 2xif* + ((—2* — 4y) + i3 + 3y ~ 3xyt* + (1 - )PP,
and

Dg=1-(x*+ 2y)1§2 -+ 3xy)t3 + y2t4 + xy2t5 - y3t6.

Proof. The same technique described in Theorem 5.1 can be applied to prove the result. [

Theorem 5.3. For n € IN, the new generating function of the product of Gaussian Pell Padovan numbers with
bivariate Mersenne Lucas polynomials is given by

Y GRum, Gt = 2, (3)
n=0 D6

such that
Go = 2(1—i)+3y(l+it+[(12x - 27y?) + (45y> — 200)i| # + (6xy — 27y + i(27y" - 30xy))£*
+ @437 - 18xy?) + (~18xy? — 40:7)i] £* — 12:2y(~1 + 3i)¢°.
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Proof. We see that

Z GRymy(x, Yt" = Z[u —)S(E) + (1 +)Sp1(E) + (=1 + 31)S,_2(E) X (2m)t"
n=0 n=0
= 201-0) ) SuB)Su(ar + [~aDt" = 3y(1 =) Y Su(E)S,m1 (a1 + [-a:)"
n=0 n=0
21+ ) Sua(EYSu(an + =)t =3y(L+ D) ) Sua(B)Sua(a + [~a2])t"
n=0 n=0
2(=1+31) )" Su-2(E)Su(ar + [~a )" = 3y(=1+31) ) S,-2(E)Spo1 (@1 + [-a])t";
n=0 n=0
we obtain
s _ 9y 2 3 g 2 2 _ 3
ZGann(X, Pe = (2 -2i)1 +[4)L:ct + 6xyt°) B 3y(1 1)(6ytD: (9y* —2x)t°)
n=0
(2 + 2@yt + 4x*th)  3y(1 +i)(t + 4xt + 6xyt?)
+ u—
D6 D6
(=2 + 60)((9y* — 20t — 8x*tY)  By(—1 + 3i)(Byt* + 4x°t°)
+ De - De .

After bringing to a common denominator and simplifying, we obtain

o . G9
;OGann(x, ' = Dy’

The proof is completed. [

Theorem 5.4. The new ordinary generating function of (Gr,, my,(x, y)) for every natural n is determined to be

Z Grymy(x, y)t' = @, (36)
n=0 D6

where
Gio = 2(=1+3i)+ 9yt +[(=8x +18y) + (=367 + 16x)i| £ + [-36xy + 27y + i(-81y” + 54xy) | £
+ (162 - 54xy?) + 822 ¢ - 1227 y(1 - i)t°.

Proof. This result can be derived by adopting the same strategy as in Theorem 5.3. [J

Theorem 5.5. The new ordinary generating function of (GR,, L,(x, y)) for every natural n is determined to be

Y GRuLu(x, y)t" = Gu, (37)
n=0 De

with

Gu = 2(1—1i)+x(1+i)t+ [(-3x* — 6y) + i(5x* + 10y)]£* + [(=x° — xy) + i(x> + 3xy)]*
+[(6]/2 + xzy) + z'(xzy - 10]/2)]t4 - xyz(—l +30)E°.
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Proof. We see that

Y GRuLuG, )" = Y [(1=)Su(E) + (1 + Sy 1(E) + (=1 +30)S,-2(E)]
n=0

n=0
X[25,(a1 + [-az]) — xS;-1(ay + [—a2])]t"

= 2(1-1i) Zs (E)Su(a1 + [-aa])t" — x(1 —z)ZS (E)Su_1(ar + [~aa])t"

n=0
+2(1+ 1) Z Sua(B)Su(ar + [~a])t" = x(1+ 1) Z Sia(B)Sua(ar + [~aa])t"
n=0
+2(=1+3i) Z Su2(E)Su(ar + [~a )" - x(=1 + 3i) Z Sua(B)Sua(ar + [~aa])t";
n=0 n=0
we obtain
0 Y2 T, YT . o 2 2 3
Z GRuLa(x, )t = 2(1 —i)(1 DZéyt xyt”) _ x(1 z)(2xtD-6|- (x* + y)t°)
n=0
201+ i)(xt + 2t x(1+ i)t — 2yt — xyt?)
* De - De
2(=1+3i)((x* + 2 = 274 x(=1 + 3i)(xt? + y*P)
+ De - De .

So, the proof is completed. [

Theorem 5.6. Let n denote a natural number, the new generating function of the product of Gaussian Perrin numbers
with bivariate Lucas polynomials is given by

Y GrlLux ' = 22, (3)
n=0 D6

where
Gra = 2(=1+3i)+3xt + [(2x%4y) +i(~422 = 7y)| 2 + [(* + 6xy) + i(=3x° — 9xy) | £
+[@xy + 42 + i) - P - D).
Proof. The method outlined in Theorem 5.5 may also be utilized to demonstrate this result. [

Theorem 5.7. Let n denote a natural number, the novel ordinary generating function of (GR,j.(x; y)) is given as

Y GR,juG i = 22, (39)

where

Giz = 21-0)+xy(l+it+ ((-12y - 3x2y2) + 120y + 5x2y2))i‘2 + [(—Jc?’y3 - 2xy2))
+i(10xy? + 22 + )8 + ((8y* + 2x%y%) + i(8y? + 2x°y®))t* — dxyP(—1 + 3i)t,

and

D; =1 - (2¢%y* + 8y)t? — (°y° + 6xy*)° + 16y°t* + 8xy°t° — 81°1°.
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Proof. We see that

(o)

Z GRuju(x, y)t" = Z[(l = 1)Su(E) + (1 +1)S,-1(E) + (=1 + 31)S,2(E)]
n=0 n=0
X[2S,(a1 + [~az2]) — xySu-1(a1 + [-ax])t"

= 201-i0) ) SuB)Su(@r + [~aDt" = xy(1 =) Y Su(E)Sua(a1 + [-aa)F"
n=0 n=0

#2(1+1) ) Sua(B)Su(ar + =) = xy(1+1) ) S,1(E)Sua (a1 + [~a2])F"

n=0 n=0

+2(=1430) ) Su-a(E)Su(ar + [~a)t" = xy(=1+30) ) $,-2(E)Sus (a1 + [-a2)F",
n=0 n=0

we obtain
= ) " 2(1 =1 =4y = 2x1*3)  xy(1 = Dxyt? + (x*y* + 2y)3)
Y GRujux, )t = =Y T
e 7 7
Jr2(1 + i)yt + 424 xy(1 + )t — 4yt — 2xy?th)
D7 D7
Jr2(—1 +30)((2Y% + 2y)2 = 82 xy(—1 + 3i)(xyt? + 4y*t)
D7 D7 .

So, the proof is completed. [

Theorem 5.8. For n € IN, the new generating function of the product of Gaussian Perrin numbers with bivariate
Jacobsthal Lucas polynomials is given by:

Y. Grajutx, it = %174, (40)
n=0

with

Gy = 2(=1+3i)+3xyt+ ((8y — 2x2y2) +i(-16y — 4xzy2))t2 + [(x3y3 + 12xy2) + i(—3x3y3 - 18xy2)]t3
+(16y> + 6x°y° + 812t — dxyP(1 - i)t

Proof. This result can be proven using the same technique as in Theorem 5.7. (O

Theorem 5.9. Considering n € IN, the new generating function that emerges from multiplying Jacobsthal polyno-
mials by Gaussian Pell Padovan numbers is

Z GRyJu(x, pt" = %, (41)
n=0 D7

with

Gis = (Q+dt+xy(l+ i)t2 + [(ny2 -2y)) + i(—xzy2 - 6y))]t3 - 2xy2(1 + i)if4 + 4]/2(—1 + 3i)t5.
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Proof. We see that

Y GRL Gy = Y [0 =DSu(E) + (1+ DSy a(E) + (=1 + 308, 2(E)] X Sya(ar + [-a]t”
n=0 n=0
= (=1 SuB)Sua(ar + [=aDt" + (1 +) Y Sur(E)Spa(ar + [-a )"
n=0 n=0
+H(=1+30) Y Sua(E)Sur(ar + [-a]t";
n=0
we obtain

- 1 - )xyt? 292 4+ 2)3 1+ i)t — 4y — 2x12t4 =1+ 3)(xyt? + 41280
Y GRuJuCo, )" = A -yt + (Cy” +2y)F) A+ -4yt - 2oy t) (=1 +3)yt” +4yP)
n=0 D7 Dy Dy

That is what we want to happen. [

Theorem 5.10. Let’s consider n € IN, the new generating function that results from multiplying Gaussian Perrin
numbers by Jacobsthal polynomials is

Y Gralutx e = 28, @)
n=0 D8

where

Gie = 3t + 2xyit® + [(—22y? — 8y) +i(3x*y* + 6y)]° — 6xy*t* + 4y°(1 — i),
and

Dg =1 - (P12 +4y)t* — (Cy° + 6xy)F + 4yt + 4y°xt° — 81210,

Proof. This result can be proven using the same technique as in Theorem 5.9. O

6. Application in Signal Processing: Noise Reduction Example

Signal processing is a field that involves the analysis, modification, and synthesis of signals, typically
to improve the quality or clarity of information being transmitted [10, 13]. One common task in signal
processing is noise reduction, which aims to minimize or eliminate unwanted interference from a signal,
thereby enhancing the original information [4].

The Gaussian Pell Padovan and (p, 4)-Lucas sequences, due to their complex structure and recurrence
properties, can be applied in signal processing tasks such as noise reduction, pattern recognition, and signal
modulation. In this work, we demonstrate the application of the Gaussian Pell Padovan sequence in an
adaptive filtering technique for noise reduction.

6.1. Gaussian Pell Padovan Sequence for Noise Reduction

The Gaussian Pell Padovan sequence can be used to simulate structured noise patterns. This sequence,
defined by the recurrence relation:

GR,, = 2GR,,_, + GR,_3, withinitial terms GRg=1—-i, GR1 =1+1i, GR, =1+,

produces complex values that offer unique characteristics suitable for signal processing. To simplify, we
use only the real parts of the sequence for our noise pattern. Calculating the first few terms, we get:
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e GRp=1-1,
e GRy=1+1,
e GRy =1+1,
e GR3; =3+,
o GRy =3+3i,
o GR; =7+ 34,
o GRs =9 +7i.

Thus, the real parts form the following noise pattern:

Noise Pattern = [1,1,1,3,3,7,9].

6.2. Simulating a Noisy Signal

To illustrate the noise reduction process, we construct a sine wave signal and add the Gaussian Pell
Padovan noise pattern to simulate interference.

e Original Signal: A sine wave sampled at 10 points over the interval [0, 37t/2], represented as S = sin(x).
¢ Noisy Signal: The original signal with added noise, Syoisy = S + Noise Pattern.
The signals are as follows:

$=1[0,0.5,0.87,1,0.87,0.5,0,-0.5, -0.87, 1],

Snoisy = [1,1.5,1.87,4,3.87,7.5,9,2.5,3.13, 8].

6.3. Noise Reduction Using Adaptive Filtering

To reduce the noise, we apply a simple adaptive filter by subtracting the noise pattern from the noisy
signal:

Siltered = Snoisy — Noise Pattern.

This filtering step allows us to approximate the original signal by removing the structured noise. The
results are illustrated in the following plots:
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Figure 1: Original Signal: A clean sine wave representing the signal without interference.

This example demonstrates the effectiveness of Gaussian Pell Padovan sequences in signal processing for
noisereduction. By leveraging the unique structure of these sequences, it is possible to design adaptive filters
that can effectively cancel structured noise, enhancing the clarity of the original signal. This application
highlights the potential of Gaussian sequences for practical tasks in signal processing.

7. Conclusion

In conclusion, in this study, we propose a novel theorem. By using this theorem, we were able through
this paper to find generating function for the products of some Gaussians numbers of the third order,
(p, g)-numbers and bivariate polynomials of the second order.
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