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Abstract. Klein and Randić (1985) proposed the concept of forcing number, which has an application in
chemical resonance theory. Let G be a graph with a perfect matching M. The forcing number of M is the
smallest cardinality of a subset of M that is contained only in M. The maximum forcing number of G is the
maximum value of forcing numbers over all perfect matchings of G. Kleinerman (2006) obtained that the
maximum forcing number of 2m× 2n quadriculated torus is mn. By improving Kleinerman’s approach, we
obtain the maximum forcing numbers of all 4-regular quadriculated graphs on torus except one class.

1. Introduction

Let G be a graph with a perfect matching M. A subset S ⊆M is called a forcing set of M if it is contained
in no other perfect matchings of G. The smallest cardinality of a forcing set of M is called the forcing number
of M, denoted by f (G,M). The minimum and maximum forcing number of G, denoted by f (G) and F(G), are
respectively defined as the minimum and maximum values of f (G,M) over all perfect matchings M of G.

The concept of the forcing number of a perfect matching was first introduced by Klein and Randić [4, 11]
in 1985 when they studied the molecular resonance structures, which was called “innate degree of freedom”
in chemical literatures. It was turned out that the perfect matchings with the maximum forcing number
contribute more to the stability of molecule [12]. Afshani, Hatami and Mahmoodian [2] pointed out that the
computational complexity of the maximum forcing number of a graph is still an open problem. Xu, Bian
and Zhang [15] obtained that maximum forcing numbers of hexagonal systems are equal to the resonant
numbers. The same result also holds for polyominoes [8, 16] and BN-fullerene graphs [13]. Abeledo and
Atkinson [1] had already obtained that resonant numbers of 2-connected plane bipartite graphs can be
computed in polynomial time. Thus, the maximum forcing numbers of such three classes of graphs can be
solved in polynomial time.
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The Cartesian product of graphs G and H, denoted by G□H, is the graph with vertex set

V(G)□V(H) = {(1, h) | 1 ∈ V(G), h ∈ V(H)},

and two vertices (11, h1) and (12, h2) are adjacent if and only if

11 = 12 and h1h2 ∈ E(H) or 1112 ∈ E(G) and h1 = h2.

The maximum forcing numbers of Cartesian product of some special graphs, such as paths and cycles,
have been obtained. Let Pn and Cn denote a path and a cycle with n vertices, respectively. Pachter and Kim
[10], Lam and Pachter [6] obtained that F(P2n□P2n) = n2 using different methods. In general, Afshani et
al. [2] proved that F(Pm□Pn) = ⌊m

2 ⌋ · ⌊
n
2 ⌋ for even mn. Besides, they [2] obtained that F(P2m□C2n) = mn and

F(P2m+1□C2n) = mn+ 1, and asked such a question: what is the maximum forcing number of a non-bipartite
cylinder P2m□C2n+1? Jiang and Zhang [3] solved this problem and obtained that F(P2m□C2n+1) = m(n + 1).
By a method of marking independent sets, Kleinerman [5] obtained that F(C2m□C2n) = mn. Obviously,
C2m□C2n is a special type of 4-regular quadriculated graphs on torus.

As early as 1991, Thomassen [14] classified all 4-regular quadriculated graphs on torus (abbreviated to
“quadriculated tori”) into two classes, which were reduced into one class by Li [7]. For n ≥ 1 and m ≥ 2, a
quadriculated torus T(n,m, r) is obtained from an n × m chessboard (n rows, each consists of m squares) by
sticking the left and right sides together and then identifying the top and bottom sides with a torsion of r
squares where 1 ≤ r ≤ m (see Fig. 1). Obviously, T(n,m,m) is isomorphic to Cn□Cm. Based on the parity of
the three parameters, quadriculated tori with perfect matchings can be divided into six classes T(2n, 2m, 2r),
T(2n, 2m, 2r − 1), T(2n + 1, 2m, 2r), T(2n + 1, 2m, 2r − 1), T(2n, 2m + 1, 2r) and T(2n, 2m + 1, 2r − 1).

0 1 2 3 4 5 6 7

0 1 2 3 45 6 7

0

4

Fig. 1: Quadriculated torus T(3, 8, 4).

In this paper, we obtain a simple expression for the maximum forcing numbers of all quadriculated
tori except for T(2n + 1, 2m, 2r − 1). In Section 2, we give some notations and terminologies, and prove
some crucial lemmas. In Section 3, we prove that F(T(2n, 2m + 1, t)) = n(m + 1) for 1 ≤ t ≤ 2m + 1 by
choosing a fixed independent set. In Section 4, we obtain that F(T(2n, 2m, r)) = mn + 1 if (r, 2m) = 2,
and F(T(2n, 2m, r)) = mn otherwise, where (r, 2m) represents the greatest common factor of r and 2m, and
1 ≤ r ≤ 2m. In Section 5, by another representation of the quadriculated torus, we obtain the maximum
forcing number of T(2n + 1, 2m, 2r) for 1 ≤ r ≤ m.

2. Preliminaries

In this section, we give some notations and terminologies, and prove some important lemmas.
Let T(n,m, r) be a quadriculated tori. According to positions of vertices in the chessboard, we label the

vertices of T(n,m, r) as {vi, j|i ∈ Zn, j ∈ Zm} (see Fig. 2), where Zm := {0, 1, . . . ,m − 1}. Hence vi,0 is adjacent to
vi,m−1 for i ∈ Zn, and v0, j is adjacent to vn−1,m−r+ j for j ∈ Zm.

For j ∈ Zm, let v0, jv1, j · · · vn−1, j be a path called j-column, and v0, j and vn−1, j are initial and terminal of
j-column. For convenience, we call j-column a column for j ∈ Zm. If initial v0, j2 of j2-column is adjacent to
terminal vn−1, j1 of j1-column, that is, j2 ≡ j1 + r (mod m), then j2-column is the successor of j1-column. Let
j0-, j1-, . . . , j1−1-columns be pairwise different such that jk+1-column is the successor of jk-column for each
k ∈ Z1. Then these 1 columns form a cycle, called a I-cycle. In [9], we had proved the following lemma.
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Fig. 2: Labels of the vertices in T(4, 8, 2).

Lemma 2.1. [9] T(n,m, r) has (r,m) I-cycles and each I-cycle contains m
(r,m) columns. Moreover, any consecu-

tive (r,m) columns lie on different I-cycles.

Intuitively, we call vi, jvi, j+1 a horizontal edge and vi, jvi+1, j a vertical edge for i ∈ Zn and j ∈ Zm. Obviously,
all vertical edges form (r,m) I-cycles, and all horizontal edges form n II-cycles (consisting of all vertices and
edges on a row). Preserving the horizontal and vertical edges, we can obtain another representation of this
quadriculated tori, denoted by T∗(n,m, r), in which all vertices of a I-cycle of T(n,m, r) lie on a column and
all vertices of a II-cycle of T(n,m, r) are divided into different rows (see Fig. 3). Therefore, I-cycles (resp.
II-cycles) in T(n,m, r) corresponds to II-cycles (resp. I-cycles) in T∗(n,m, r).
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Fig. 3: Quadriculated tori T(3, 12, 8) (left) and T(4, 9, 3) = T∗(3, 12, 8) (right).

For a non-empty subset S ⊆ V(G), the subgraph induced by S, denoted by G[S], is a graph whose vertex
set is S and edge set consists of those edges of G that have both end vertices in S. The induced subgraph
G[V(G)\S] is denoted by G−S. For an edge subset F ⊆ E(G), we use V(F) to denote the set of all end vertices
of edges in F.

For i ∈ Zn, the subgraph of T(n,m, r) induced by all vertices of any consecutive two rows

{vi,0, vi,1, . . . , vi,m−1} ∪ {vi+1,0, vi+1,1, . . . , vi+1,m−1}

is denoted by Ri,i+1. Then Ri,i+1 contains a subgraph isomorphic to Cm□P2. Particularly, Ri,i+1 is isomorphic
to Cm□P2 for n ≥ 2 where i ∈ Zn. Relabeling the vertices of T(n,m, r) according to I-cycle, we can obtain the
following lemma. For details, see Section 2 of ref. [9].

Lemma 2.2. [9] For n ≥ 1, m ≥ 2 and 1 ≤ r ≤ m, T∗(n,m, r) = T((r,m), mn
(r,m) , (

m
(r,m) − k)n), where 0 ≤ k ≤ m

(r,m) − 1
is an integer satisfying the equation (r,m) ≡ rk (mod m). Furthermore, T∗∗(n,m, r) = T(n,m, r).

Let G be a graph with a perfect matching M. We give an independent set T of G called marked vertices of
G. Define MT = {e ∈M | e has an end vertex in T}. Then MT ⊆M and |MT | = |T|. A cycle of G is M-alternating
if its edges appear alternately in M and offM.
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Lemma 2.3. Let G be a graph with a perfect matching M. If the union of all paths of length 2 whose initial and
terminal lie in T contains no M-alternating cycles, then f (G,M) ≤ |M| − |T|.

Proof. We prove that G[V(MT)] contains no M-alternating cycles. Suppose to the contrary that G[V(MT)]
contains an M-alternating cycle C. Then C is also an MT-alternating cycle. Since T is an independent set,
half vertices of C are marked, and marked and unmarked vertices appear alternately. Thus, C can be viewed
as the union of paths of length two whose initial and terminal lie in T, which is a contradiction.

Since G[V(MT)] contains no M-alternating cycles, G[V(MT)] has a unique perfect matching. Thus, M\MT
is a forcing set of M, and f (G,M) ≤ |M \MT | = |M| − |T|.

For convenience, “the union of all paths of length 2 whose initial and terminal are marked vertices” is
defined as “marked subgraph”.

Next we give the concept of 2×2-polyomino, which is a kind of general “marked subgraph”. A polyomino
is a finite connected subgraph in the infinite plane square grid in which every interior face is surrounded
by a square and every edge belongs to at least one square. A 2 × 2-polyomino is also a polyomino which is
obtained by replacing each square in a polyomino by a 2 × 2 chessboard (see Fig. 4).

Fig. 4: A polyomino and its corresponding 2 × 2-polyomino.

An interior vertex of a plane graph is a vertex which is not on the boundary of the unbounded face. For
a polyomino, an interior vertex means a vertex of degree 4. By the proof of Theorem 3.2 in [3], Jiang and
Zhang obtained the following result.

Lemma 2.4. [3] A 2 × 2-polyomino has an odd number of interior vertices.

3. The maximum forcing number of T(2n, 2m + 1, r) for 1 ≤ r ≤ 2m + 1

In this section, we will obtain the maximum forcing number of T(2n, 2m+1, r) by the method of marking
independent sets for 1 ≤ r ≤ 2m + 1.

For T(2n,m, r), we define some subsets of vertices and edges. For i ∈ Zn, let

Xi = {vi,2k|k ∈ Z⌊ m
2 ⌋
} and Yi = {vi,2k+1|k ∈ Z⌊ m

2 ⌋
}.

For j ∈ Zm, let W j = {v2k, jv2k+1, j|k ∈ Zn},

W1
j = {v4k+2, jv4k+3, j|k ∈ Z⌊ n

2 ⌋
} and W2

j = {v4k, jv4k+1, j|k ∈ Z
⌊

n+1
2 ⌋
}

be two subsets of W j.

Theorem 3.1. For n,m ≥ 1 and 1 ≤ r ≤ 2m + 1, F(T(2n, 2m + 1, r)) = (m + 1)n.

Proof. Let M1 =W0 ∪W1 ∪ · · · ∪W2m be a perfect matching of T(2n, 2m + 1, r) (see Fig. 5(a)). We will prove
that f (T(2n, 2m+ 1, r),M1) = (m+ 1)n. For i ∈ Zn, since R2i,2i+1 contains a subgraph isomorphic to C2m+1□P2,
any forcing set of M1 ∩ E(R2i,2i+1) has size at least m + 1. Thus, M1 has the forcing number at least n(m + 1).
Let S =W0 ∪W1

1 ∪W2
2 ∪W1

3 ∪W2
4 ∪ · · · ∪W1

2m−1 ∪W2
2m be a subset of M1 shown as red lines in Fig. 5(b), so



Q. Liu et al. / Filomat 39:25 (2025), 8887–8899 8891

0 1 2 3 4 5 6

0 1 2

0 1 2 3 4 5 6 0

2 3 4 65

0 1 2 3 4 5 6

0 1 2

0 1 2 3 4 5 6 0

2 3 4 65

( )a ( )b

Fig. 5: The perfect matching M1 of T(4, 7, 5), and a forcing set of M1 shown in red lines.

that exactly m + 1 edges of R2i,2i+1 are chosen to belong to S. Obviously, S is a forcing set of M1 with size
n(m + 1). Hence, we obtain that f (T(2n, 2m + 1, r),M1) = n(m + 1).

For any perfect matching M of T(2n, 2m+ 1, r), we will choose an independent set T of size mn such that
“marked subgraph” contains no M-alternating cycles. By Lemma 2.3, we have

f (T(2n, 2m + 1, r),M) ≤ |M| − |T| = (2m + 1)n −mn = (m + 1)n.

By the arbitrariness of M, we have F(T(2n, 2m + 1, r)) ≤ (m + 1)n.
To achieve this goal, we will take m appropriate vertices on 1, 3, . . . , 2n−1 rows. Let X′i = (Xi−{vi,0})∪{vi,2m}

for i ∈ Z2n−1 and
X∗ = {v2n−1,2m+1−r} ∪ {v2n−1,2m+1−r+ j| j = 3, 5, . . . , 2m − 1}.

Take marked vertices T = X′1 ∪X′3 ∪ · · · ∪X′2n−3 ∪X∗ shown as Fig. 6, where marked vertices are represented
by cycles.

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 65

00

6 7 8 96 7 8 9 10

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5

00

6 7 8 96 7 8 9 105

Fig. 6: Marked vertices of T(6, 11, 5) and T(6, 11, 6).

From left to right, we choose 1’st, 4’th, 6’th, . . . , (2m)’th vertices in the first row and 3’th, 5’th, . . . ,
(2m+1)’th vertices in the third row as marked vertices. Hence, all edges incident with v0, j are not contained
in “marked subgraph” for 0 ≤ j ≤ 2m. Thus such 2m + 1 vertices are not contained in “marked subgraph”,
and “marked subgraph” is a plane graph. The “marked subgraph” formed by all paths of length two whose
initial and terminal are in X′1 ∪ X′3 ∪ · · · ∪ X′2n−3 is a 2 × 2-polyomino corresponding to a (n − 2) × (m − 1)
chessboard, and the “marked subgraph” formed by all paths of length two whose initial and terminal are
in X′2n−3 ∪ X∗ is a 2 × 2-polyomino corresponding to some 1 × t (0 ≤ t ≤ m − 1) chessboard attaching a path.
Thus, “marked subgraph” is a 2 × 2-polyomino attaching a path.

Suppose to the contrary that C is an M-alternating cycle contained in “marked subgraph”. Then Int[C]
(the subgraph of T(2n, 2m + 1, r) induced by the vertices of C and its interior) is a 2 × 2-polyomino. By
Lemma 2.4, Int[C] has an odd number of interior vertices, which contradicts that C is M-alternating. Thus,
“marked subgraph” contains no M-alternating cycles.
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4. The maximum forcing number of T(2n, 2m, r) for 1 ≤ r ≤ 2m

In this section, we are to obtain the maximum forcing number of T(2n, 2m, r) for 1 ≤ r ≤ 2m.
In the proof of Theorem 3.1, we fix mn marked vertices to prove that “marked subgraph” contains no

M-alternating cycles for any perfect matching M of T(2n, 2m + 1, r), where 1 ≤ r ≤ 2m + 1. But for a perfect
matching M of T(2n, 2m, r), “marked subgraph” contains an M-alternating cycle no matter which sets with
size mn we mark. For the case that each II-cycle is not M-alternating, we can prove the following result.

Lemma 4.1. For n,m ≥ 2 and 1 ≤ r ≤ 2m, assume that M is a perfect matching of T(2n, 2m, r) and each II-cycle is
not M-alternating. Then we can mark mn vertices so that “marked subgraph” contains no M-alternating cycles.

Proof. First we choose an independent set T of T(2n, 2m, r) with size mn as marked vertices. If n is odd, then
take

T = {Y4k+1|k = 0, 1, 2, . . . ,
n − 1

2
}

⋃
{X4k+3|k = 0, 1, 2, . . . ,

n − 3
2
}.

Otherwise, take

T = {Y4k+1|k = 0, 1, 2, . . . ,
n − 2

2
}

⋃
{X4k+3|k = 0, 1, 2, . . . ,

n − 2
2
}.

See two examples in Fig. 7, where marked vertices are represented by cycles. If r is odd (resp. even), then

0 1 2 3 45 56 7

( )b

0 1 2 3 4 5 6 7 0

0 1 2 3 45 56 7

( )a

0 1 2 3 4 5 6 7 0

Fig. 7: Marked vertices and “marked subgraph” of T(6, 8, 3) and T(8, 8, 3).

marked vertices on the first and last rows are located at different (resp. same) columns. For the case that
r and n have the same parity, “marked subgraph” consists of n II-cycles. By the assumption, each II-cycle
is not M-alternating. Thus, “marked subgraph” contains no M-alternating cycles, and T is the marked
vertices we require. It suffices to consider the case that r and n have different parity.

In the sequel, we only prove the lemma for the case that r is odd and n is even, and the proof is similar
for the other case. Now marked vertices on the first and third rows are located at the same columns. Thus
“marked subgraph” consists of m paths of length two {v2n−1,2m−r+ jv0, jv1, j| j = 1, 3, . . . , 2m − 1} and n II-cycles
shown as red lines in Fig. 7(b).

By the assumption, each II-cycle is not M-alternating. Hence, each M-alternating cycle (if exists) of
“marked subgraph” is contained in the subgraph induced by all vertices of the first three rows, and
contains at least two vertices on the second row. By Lemma 2.4, an M-alternating cycle cannot form the
boundary of a 2 × 2-polyomino which corresponds to a 1 × l chessboard for 1 ≤ l ≤ m − 1. Therefore, any
M-alternating cycle of “marked subgraph” has the following form: it starts with a II-cycle in the first row
and moves to the third row and backs at specified intervals shown as green lines in Fig. 8(a). Notice that
each such cycle contains exactly 2m horizontal edges, divided in some way between the two rows.

Translating the marked vertices down by one row shown as Fig. 8(b), where new marked vertices are
represented by squares, we also have an M-alternating cycle lying on the subgraph induced by the vertices
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Fig. 8: M-alternating cycle of “marked subgraph”.

of the second, third and fourth rows (otherwise, new marked vertices we obtained is what we want). We
will demonstrate that the new M-alternating cycle has more horizontal edges in the bottom (i.e., the fourth)
row than the first one does. Consider the set of horizontal edges in the bottom row of the first M-alternating
cycle, which is partitioned into subsets naturally by proximity: there is a set of horizontal edges, then a
cross-over, then perhaps a cross-back, then another set of horizontal edges, and so forth. Consider one of
these sets, say {v1,1v1,2, v1,2v1,3, · · · , v1,2tv1,2t+1} shown as green lines on the third row of Fig. 9(a), where t ≥ 1.
By the form of M-alternating cycles, edges of {v1,1v0,1, v0,1v2n−1,2m−r+1} and {v1,2t+1v0,2t+1, v0,2t+1v2n−1,2m−r+2t+1}

are contained in the first M-alternating cycle. It suffices to prove that the set of edges

{v2,0v2,1, v2,1v2,2, v2,2v2,3, · · · , v2,2tv2,2t+1} or {v2,1v2,2, v2,2v2,3, · · · , v2,2tv2,2t+1, v2,2t+1v2,2t+2}

is contained in the bottom row of the new M-alternating cycle.

( )a ( )b
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Fig. 9: Part of the two M-alternating cycles lying in corresponding “marked subgraphs”.

Since all horizontal edges of the first M-alternating cycle lie on the first and third rows, and these of the
new M-alternating cycle lie on the second and fourth rows, only vertical edges of two M-alternating cycles
in {v0,2k+1v1,2k+1|k = 0, 1, . . . ,m−1}may be intersected. If v0,1v1,1 belongs to the new M-alternating cycle, then
v0,1v1,1 ∈M, and v1,1v2,1 is contained in the new M-alternating cycle. We claim that v0,0v0,1 is contained in the
new M-alternating cycle. Otherwise, v0,1v0,2 and v0,2v0,3 ∈ M are contained in the new M-alternating cycle.
Since v1,2v1,3 ∈M, v0,3v1,3 does not lie on the new M-alternating cycle. Hence the path v0,1v0,2v0,3 · · · v0,2tv0,2t+1
lies on the new M-alternating cycle (see Fig. 9(a)). Note that v0,2tv0,2t+1 ∈ M, which contradicts that
v2n−1,2m−r+2t+1v0,2t+1 and v0,2t+1v1,2t+1 belong to the first M-alternating cycle. Now we prove the claim. Thus,
v0,0v0,1 and v1,1v2,1 lie on the new M-alternating cycle (see Fig. 9(b)). Since v1,1v1,2v1,3 · · · v1,2tv1,2t+1 is on
the first M-alternating cycle, we can obtain that the path v2,1v2,2v2,3 · · · v2,2tv2,2t+1v2,2t+2 lies on the second
M-alternating cycle by a simple argument. If v0,2t+1v1,2t+1 belongs to the new M-alternating cycle, then, by
a similar argument, we can obtain that

v0,2t+2v0,2t+1v1,2t+1v2,2t+1v2,2t · · · v2,2v2,1v2,0

lies on the second M-alternating cycle. If neither v0,1v1,1 nor v0,2t+1v1,2t+1 belongs to the new M-alternating
cycle (see Fig. 10), then, by the form of M-alternating cycles, such two M-alternating cycles have no common
edges in this area, and the result holds naturally. This means that all horizontal edges in the bottom row
of the first M-alternating cycle give rise to abutting horizontal edges in the bottom row of the second one.
Because the intersected vertical edges cannot overlap, there is at least one more horizontal edge in the
bottom row of the second M-alternating cycle.

Each time we translate the marked vertices down by one row, we obtain an abutting M-alternating cycle
which contains more horizontal edges in the bottom row than the first one does. Since any M-alternating
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0,1
v 0,2t

v
0,2

v

1,1
v 1,2

v
1,2t

v

Fig. 10: Part of the two M-alternating cycles lying in corresponding “marked subgraphs”.

cycle contains no more than 2m horizontal edges on its bottom row, there is a placement of marked vertices
such that “marked subgraph” contains no M-alternating cycles.

4.1. The maximum forcing number of T(2n, 2m, 2r) for 1 ≤ r ≤ m

By Lemma 2.1, T(n,m, r) contains (r,m) I-cycles, and each I-cycle contains mn
(r,m) vertices. For (r,m) ≥ 2 and

j ∈ Z(r,m), the subgraph induced by all vertices of the two I-cycles containing j-column and ( j + 1)-column
contains a subgraph isomorphic to C mn

(r,m)
□P2, denoted by C j, j+1. Particularly, C j, j+1 is isomorphic to C mn

(r,m)
□P2

for (r,m) ≥ 3 where j ∈ Z(r,m).

Theorem 4.2. For n,m ≥ 2 and 1 ≤ r ≤ m, we have

F(T(2n, 2m, 2r)) =

mn + 1, i f (r,m) = 1;
mn, otherwise.

Proof. First we prove the case that (r,m) , 1. Let M1 = E0 ∪ E2 ∪ · · · ∪ E2m−2 be a perfect matching of
T(2n, 2m, 2r) shown as Fig. 11(a), where E j = {vi, jvi, j+1|i ∈ Z2n}. Then C2 j,2 j+1 contains a subgraph isomorphic
to C 2mn

(r,m)
□P2 for j ∈ Z(r,m) and contains mn

(r,m) disjoint M1-alternating cycles. Hence, T(2n, 2m, 2r) contains mn
disjoint M1-alternating cycles and f (T(2n, 2m, 2r),M1) ≥ mn. Form a forcing set of size mn so that half
horizontal edges of C2 j,2 j+1 are chosen for j ∈ Z(r,m). Precisely, from top to bottom we choose 1’th, 3’th, . . . ,
( 2mn

(r,m) − 1)′th horizontal edges of C4 j,4 j+1 for j ∈ ⌈ (r,m)
2 ⌉ and 2’th, 4’th, . . . , 2mn

(r,m) ’th horizontal edges of C4 j+2,4 j+3

for j ∈ ⌊ (r,m)
2 ⌋ (red lines of T∗(2n, 2m, 2r) in Fig. 11(b) and that of T(2n, 2m, 2r) in Fig. 11(c) form a forcing set).

Hence, f (T(2n, 2m, 2r),M1) = mn.

0 1 2 3 4 5 6 7

0 1 2 3 44 5 6 7

0 1 2 3 4 5 6 7 0 0 1 2 3 4 5 6 7

0 1 2 3 44 5 6 7

0 1 2 3 4 5 6 7 0

( )a ( )c

0 1 2 3

4 5 6 7

4 5 6 7

0 1 2 3

4 5 6 7 0
( )b

4

0

4

Fig. 11: The perfect matching M1 of T(4, 8, 4), where red lines form a forcing set of M1.

Let M be any perfect matching of T(2n, 2m, 2r). It suffices to prove that

f (T(2n, 2m, 2r),M) ≤ mn.
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If none of II-cycles is M-alternating, then we can mark mn vertices so that “marked subgraph” contains no
M-alternating cycles by Lemma 4.1. Otherwise, there is an M-alternating II-cycle. Then each I-cycle is not
M-alternating. By Lemma 2.2, T(2n, 2m, 2r) has another representation

T∗(2n, 2m, 2r) = T(2(r,m),
2nm
(r,m)

, 2n(
m

(r,m)
− k)),

in which each II-cycle is not M-alternating. By Lemma 4.1, we can mark mn vertices so that “marked
subgraph” contains no M-alternating cycles. By Lemma 2.3,

f (T(2n, 2m, 2r),M) = f (T∗(2n, 2m, 2r),M) ≤ |M| − |T| = mn.

By the arbitrariness of M, we have F(T(2n, 2m, 2r)) ≤ mn.
Next we prove the case that (r,m) = 1. By Lemma 2.1, T(2n, 2m, 2r) has exactly two I-cycles. Let

M1 = E0 ∪ E2 ∪ · · · ∪ E2m−2 be a perfect matching of T(2n, 2m, 2r) shown as bold lines in Fig. 12(a). Since

0 1 2 3 4 5 6 7 8 9 0

0 1 2 3 46 7 8 9 5

0 1 2 3 4 5 6 7 8 9 0

6

( )a

0

1

3

2

4

6

7

89

5

( )b

Fig. 12: The perfect matching M1 of T(4, 10, 4), and red lines cannot form a forcing set of M1.

C0,1 contains a subgraph isomorphic to C2nm□P2, T(2n, 2m, 2r) contains mn disjoint M1-alternating cycles.
Since a forcing set of M1 contains at least one edge from each M1-alternating cycle, any forcing set of M1
has size at least mn. To find a forcing set of size mn, we need to choose one of the horizontal edges in any
two consecutive ones of C0,1. In C0,1, starting with the two consecutive edges v0,0v0,1 and v1,0v1,1, in which
the latter are chosen, we choose a set of horizontal edges with size mn shown as red lines in Fig. 12(b),
where each E2 j for j ∈ Zm has n edges {v2i+1,2 jv2i+1,2 j+1|i ∈ Zn} being chosen. But the chosen mn edges cannot
form a forcing set of M1 for there are still n II-cycles being not intersected with such mn edges (see red lines
in Fig. 12(a)). Hence, f (T(2n, 2m, 2r),M1) ≥ mn + 1. It’s easy to find a forcing set of size mn + 1. Thus
f (T(2n, 2m, 2r),M1) = mn + 1.

For any perfect matching M of T(2n, 2m, 2r), we are to prove that

f (T(2n, 2m, 2r),M) ≤ mn + 1.

By Lemma 2.3, it suffices to prove that we can mark at least mn−1 vertices in T(2n, 2m, 2r) such that “marked
subgraph” contains no M-alternating cycles. If each II-cycle is not M-alternating, then we can mark mn
vertices so that “marked subgraph” contains no M-alternating cycles by Lemma 4.1. Otherwise, assume
that v2n−1,0v2n−1,1 · · · v2n−1,2m−1v2n−1,0 is an M-alternating cycle, and {v2n−1,2 jv2n−1,2 j+1| j ∈ Zm} ⊆M. Let

X∗ = {v0,1, v0,3, . . . , v0,2r−1, v0,2r+3, v0,2r+5, . . . , v0,2m−1} and Y∗ = {v3,0, v5,0, . . . , v2n−1,0}.

Take T = Y∗ ∪ X∗ ∪ X′2 ∪ X′4 ∪ · · · ∪ X′2n−2 as marked vertices shown as Fig. 13, where X′i = Xi − {vi,0} for
i ∈ Z2n, and marked vertices are represented by cycles. Then all vertices on the third row don’t lie on the
“marked subgraph”, and “marked subgraph” is a plane graph shown as red lines in Fig. 13.

The “marked subgraph” formed by all paths of length two whose initial and terminal are in X′2∪X′4∪· · ·∪
X′2n−2 is a 2×2-polyomino corresponding to a (n−2)× (m−2) chessboard. Noting that both v2n−1,0 and v0,2r−1
are marked vertices, v2n−1,0v2n−1,2m−1v0,2r−1v0,2rv2n−1,0 is contained in “marked subgraph”, and the “marked
subgraph” formed by all paths of length two whose initial and terminal are in X∗ ∪ Y∗ is a cycle of length 4
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0 1 2 3 4 5 6 7 8 9 0

0 1 2 3 4 66 7 8 9 5

0 1 2 3 4 5 6 7 8 9 00 1 2 3 4 5

0 1 2 3 44 5

0

Fig. 13: Marked vertices and “marked subgraph” of T(8, 6, 2) and T(8, 10, 4).

attaching a path on 2m− 3 vertices and a path on 2n− 3 vertices. Furthermore, “marked subgraph” consists
of a 2×2-polyomino corresponding to a (n−2)× (m−2) chessboard and a 4-cycle attaching a path on 2m−2
vertices and a path on 2n − 3 vertices. Since v2n−1,0v2n−1,1 ∈ M, such 4-cycle v2n−1,0v2n−1,2m−1v0,2r−1v0,2rv2n−1,0
is not M-alternating. By Lemma 2.4, a 2 × 2-polyomino contains no M-alternating cycles. Thus, “marked
subgraph” contains no M-alternating cycles.

By Lemma 2.3, M \ ET is a forcing set of M and

f (T(2n, 2m, 2r),M) ≤ |M| − |T| ≤ 2mn − (mn − 1) = mn + 1.

By the arbitrariness of M, we have F(T(2n, 2m, 2r)) ≤ nm + 1.

4.2. The maximum forcing number of T(2n, 2m, 2r − 1) for 1 ≤ r ≤ m

Next we will obtain the maximum forcing number of T(2n, 2m, 2r − 1) for 1 ≤ r ≤ m.

Theorem 4.3. For n ≥ 1, m ≥ 2 and 1 ≤ r ≤ m, F(T(2n, 2m, 2r − 1)) = mn.

Proof. Let M1 = W0 ∪W1 ∪ · · · ∪W2m−1 be a perfect matching of T(2n, 2m, 2r − 1). Since R2i,2i+1 contains a
subgraph isomorphic to C2m□P2, it contains m disjoint M1-alternating cycles for i ∈ Zn. Thus, any forcing
set of M1 has size at least mn. Clearly, W2

0 ∪W1
1 ∪W2

2 ∪ · · · ∪W2
2m−2 ∪W1

2m−1 shown as red lines in Fig. 14 is
a forcing set of M1 with size mn. Hence, we obtain that f (T(2n, 2m, 2r − 1),M1) = mn.

Fig. 14: Perfect matchings M1 of T(4, 10, 5) and T(6, 10, 5), where red lines form a forcing set.

Let M be any perfect matching of T(2n, 2m, 2r − 1), we are to prove that

f (T(2n, 2m, 2r − 1),M) ≤ mn.
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It suffices to mark mn vertices of T(2n, 2m, 2r − 1) such that “marked subgraph” contains no M-alternating
cycles. If we have done, then by Lemma 2.3, we have

f (T(2n, 2m, 2r − 1),M) ≤ |M| −mn = mn.

By the arbitrariness of M, we have F(T(2n, 2m, 2r − 1)) ≤ mn.
For n ≥ 2, we only suffice to prove the case that there is a II-cycle is M-alternating by Lemma 4.1. For

n = 1, n and 2r − 1 are of the same parity, by the proof of Lemma 4.1, we also need to prove the same case
as n ≥ 2. Without loss of generality, we suppose that v2n−1,0v2n−1,1 · · · v2n−1,2m−1v2n−1,0 is an M-alternating
II-cycle, and {v2n−1,2 jv2n−1,2 j+1| j ∈ Zm} ⊆M. Let T = Y∗ ∪X′0 ∪X′2 ∪ · · · ∪X′2n−2 (see Fig. 15) as marked vertices
which are represented by cycles, where

Y∗ = {v2n−1,2m−2r+1, v1,0, v3,0, . . . , v2n−3,0} and X′i = Xi − {vi,0} for i ∈ Z2n.

Then T is of size mn. Since any vertices of Y∗ and that of X′2i belong to no same rows for i ∈ Zn, any
vertices of {vi,1, vi,2m−1|i ∈ Z2n} are not contained in “marked subgraph”. Furthermore, any vertices of
{v2n−1,2m−2r+1+ j| j = 2, 3, . . . , 2m − 2} are not contained in “marked subgraph”. Thus, “marked subgraph” is a
plane graph shown as red lines in Fig. 15. The “marked subgraph” formed by all paths of length two whose
initial and terminal are in X′0 ∪X′2 ∪X′4 ∪ · · · ∪X′2n−2 is a 2× 2-polyomino corresponding to a (n− 1)× (m− 2)
chessboard, which contains no M-alternating cycles by Lemma 2.4.

0 1 2 3 46 7 8 9 5

0 1 2 3 4 5 6 7 8 9 00 1 2 3 4 5 6 7 8 9 0

5 0

0 1 2 3 4 50 1 2 3 4 5

1

00

2 32 33 4 53 4 5

Fig. 15: Marked vertices and “marked subgraph” of T(6, 10, 5) and T(6, 6, 3).

Since v2n−1,2m−2r+1, v2n−2,2m−2r and v2n−2,2m−2r+2 are marked vertices, four paths of length two v2n−2,2m−2r
v2n−1,2m−2rv2n−1,2m−2r+1, v2n−2,2m−2rv2n−2,2m−2r+1v2n−1,2m−2r+1, v2n−2,2m−2r+1v2n−2,2m−2r+2v2n−1,2m−2r+2 and v2n−2,2m−2r+1
v2n−1,2m−2r+1v2n−1,2m−2r+2 are contained in “marked subgraph”. Let C be an M-alternating cycle of “marked
subgraph”. Then C contains the vertex v2n−1,2m−2r+1. Since C is M-alternating, it also contains three edges
v2n−1,2m−2rv2n−2,2m−2r, v2n−1,2m−2rv2n−1,2m−2r+1 and v2n−1,2m−2r+1v2n−2,2m−2r+1, and such four vertices v2n−1,2m−2r,
v2n−1,2m−2r+1, v2n−2,2m−2r and v2n−2,2m−2r+1 are on the boundary of Int[C]. Next, we prove that C contains
exactly such four vertices. If C contains at least six vertices, then Int[C] and Int[C]−{v2n−1,2m−2r, v2n−1,2m−2r+1}

have the same number of interior vertices. Since Int[C] − {v2n−1,2m−2r, v2n−1,2m−2r+1} is a 2 × 2-polyomino, it
has an odd number of interior vertices by Lemma 2.4. Thus, Int[C] has an odd number of interior vertices,
which contradicts that C is M-alternating. Thus

C = v2n−1,2m−2rv2n−1,2m−2r+1v2n−2,2m−2r+1v2n−2,2m−2rv2n−1,2m−2r.

If v2n−2,2m−2rv2n−2,2m−2r+1 < M, then C is not M-alternating. Hence none of cycles in “marked subgraph”
is M-alternating. So we assume that v2n−2,2m−2rv2n−2,2m−2r+1 ∈ M. Translating marked vertices right by
two columns, by a similar argument, we suffice to consider the case that v2n−2,2m−2r+2v2n−2,2m−2r+3 ∈ M.
Proceeding like this, it suffices to consider the case that M has the same matching form on the last 2n rows,
i.e., {vi,2 jvi,2 j+1| j ∈ Zm} ⊆ M for 0 ≤ i ≤ 2n − 1. Since the torsion is 2r − 1, M has different matching form on
the first two rows. By the previous argument, we have done.
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5. Discussion of the maximum forcing number of T(2n + 1, 2m, r) for 1 ≤ r ≤ 2m

By Theorems 3.1 and 4.3, we obtain the maximum forcing number of T(2n + 1, 2m, 2r) for 1 ≤ r ≤ m.

Theorem 5.1. For n ≥ 1, m ≥ 2 and 1 ≤ r ≤ m, we have

F(T(2n + 1, 2m, 2r)) =

m(2n+1)+(r,m)
2 , i f m

(r,m) is odd;
m(2n+1)

2 , otherwise.

Proof. By Lemma 2.2, T(2n + 1, 2m, 2r) has another representation

T∗(2n + 1, 2m, 2r) = T(2(r,m),
m(2n + 1)

(r,m)
, (2n + 1)(

m
(r,m)

− k))

where 0 ≤ k ≤ m
(r,m) − 1 satisfies the equation (2r, 2m) ≡ 2rk (mod 2m).

If m
(r,m) is even, then 2rk − (2r, 2m) = 2mp for some non-negative integer p. That is, rk − (r,m) = mp. Thus

r
(r,m) k =

m
(r,m) p + 1. Since m

(r,m) is even and m
(r,m) p + 1 is odd, we obtain that k is an odd number. Hence m

(r,m) − k

and (2n+ 1)( m
(r,m) − k) are also odd numbers. Let n′ = (r,m), m′ = m(2n+1)

2(r,m) and 2r′ − 1 = (2n+ 1)( m
(r,m) − k). Then

T∗(2n + 1, 2m, 2r) = T(2n′, 2m′, 2r′ − 1). Since 0 ≤ k ≤ m
(r,m) − 1, we have 2n + 1 ≤ 2r′ − 1 ≤ (2n + 1) m

(r,m) = 2m′.
Thus n + 1 ≤ r′ < m′. By Theorem 4.3, we have

F(T(2n + 1, 2m, 2r)) = F(T(2n′, 2m′, 2r′ − 1)) = m′n′ =
m(2n + 1)

2
.

If m
(r,m) is odd, then 2(r,m) is even, m(2n+1)

(r,m) is odd. Let n′ = (r,m), 2m′+1 = m(2n+1)
(r,m) and r′ = (2n+1)( m

(r,m) −k).
Since 0 ≤ k ≤ m

(r,m) − 1, we have 2n + 1 ≤ r′ ≤ (2n + 1) m
(r,m) = 2m′ + 1. By Theorem 3.1, we have

F(T(2n + 1, 2m, 2r)) = F(T(2n′, 2m′ + 1, r′)) = (m′ + 1)n′ =
m(2n + 1) + (r,m)

2
.

Now we finish the proof.

For T(2n + 1, 2m, 2r − 1), we have not been able to obtain a general expression for the maximum forcing
number for 1 ≤ r ≤ m. Therefore, computing the maximum forcing number of T(2n + 1, 2m, 2r − 1) is an
open problem.
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