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Abstract. In this paper, we study the nonlinear elliptic problem

—div(w(x)|VulN"2Vu) = flx,u), ue Wé’N(B, w) (P)

where B is the unit ball of RN, N > 2 and w(x) = (log l%)N "is the singular logarithm weight with the
limiting exponent N — 1 in the Trudinger-Moser embedding. We consider the problem (P) when the nonlin-
earity is sub-critical and critical with respect to a maximal growth of double exponent type and we prove
the existence of positive solution by using Mountain Pass theorem without the Ambrosetti-Rabionowitz
condition. When the nonlinearity is critical, we prove that the associated energy satisfies the Palais-Smale
condition only to a given limit level and we prove that the min-max level is less than this limit.

1. Introduction and Main results

In this paper, we consider the following elliptic nonlinear problem:

Lyw = —div(w(x)|VuN=2Vu) f(x,u) in B
u > 0 in B 1)
u =0 on 0B,

where B = B(0,1) is the unit open ball in RY, N > 2, f(x,t) is a radial function with respect to x and the
weight w(x) is given by
i)N*l

w(x) = (log =

(2)

Since 1970, when Moser gives the famous result about the Trudinger-Moser inequality many applications
take place as in conformal deformation theory on manifolds, the study of the prescribed Gauss curvature
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and mean field equations.
After that, a logarithmic Trudinger-Moser inequality was used in crucial way in [23] to study the Liouville
equation of the form

Au A~ in Q
Jne 3)
u = 0 on dQ,

where Q is an open domain of RY, N > 2 and A is a positive parameter.

The equation (3) has a long history and has been derived in the study of multiple condensate solution in
the Chern-Simons-Higgs theory [27, 28] and also, it appeared in the study of Euler Flow [7, 8, 15, 19].
Later, the Trudinger-Moser inequality was improved to a weighted inequalities [2, 10, 11, 14]. The influence
of the weight in the Sobolev norm was studied as the compact embedding in [20].

When the weight is of logarithmic type, Calanchi and Ruf [12] extend the Trudinger-Moser inequality and
give some applications when N = 2 and for prescribed nonlinearities. After that, Calanchi et al. [13]
considered a more general nonlinearities and proved the existence of radial solutions.

In this paper, we investigate the case N > 2 and use Trudinger-Moser inequality to study and prove the
existence of solutions to the problem (1) without use of the Ambrosetti-Rabionowitz condition.

Let Q ¢ RN, N > 2 be a bounded domain and w € L'(Q) be a nonnegative function, the weighted
Sobolev space is defined as

WINQ, w) = clju € CP(Q)/ fB IVul w(x)dx < o).
We will restrict our attention to radial functions and then consider the subspace
= Wyn (B,w) = cl{u € Cy,, ,(B)/ f IVul" w(x)dx < oo} (4)

endowed with the norm 1
lull = ( f VulNw(x)dx)" .
B

N

The choice of the weight and the space W1 ad

inequalities.

(B,w) are motivated by the following double exponential

Theorem 1.1. [11] Let w given by (2), then

N_

fexp(e'”' “dx < 400, Y ue WV Nd(B w), 5)

B

and
o,

sup exp(ﬁ v MY iy < 400 & B<N. (6)
l£€Wé:zd (B,w)

[l <1

where wy-1 is the area of the unit sphere SN! in RN,

Let N’ be the Holder conjugate of N that is N’ = - In view of inequality (6), we say that f has subcritical
growth at +oo if

fim Lo foran as 0 @)

s—+e0 exp(News"")
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and f has critical growth at +oo if there exists some @ > 0 such that

m —If(x,s)l =0, Ya>ay and lim —If(x,s)l

- — = +00, Ya<ayp. 8
§+00 exp(NeasN ) 5—+00 eXp(Ne“SN ) 0 8)

As mentioned in [13] for N = 2, if there exist & > 0 and fy > 0 such that

e, 9) =0, Ya>ay and Ilim e, 9)

T N~ - v +00, Ya< Qao,
s—+00 exp(‘BOeas ) s—400 exp(‘BoeaS )

then for all § > 0, we have

m &9l

|0 vasap and lim LI
s—+00 eXp(‘Be“S )

-~ = +o0o, Ya <ap
S—+00 eXp(ﬁeas )

and so in (8), we choose = N by convenience.

In this paper, we consider the problem (1) with subcritical and critical growth nonlinearities f(x,t). Fur-
thermore, we suppose that f(x, t) satisfies the following hypothesis:

(H1) f:B xR — Ris continuous, positive, radial in x, and f(x,t) =0fort <0
(H2) There exist ty > 0 and M > 0 such that for all ¢ > ¢y and for all x € B we have

0 < F(x,t) < Mf(x,t),
where ,
F(x,t) = f f(x,s)ds.
0
(H3) 0 < F(x,t) < %]f(x, Ht, Yt>0,¥x € B.
Before announcing our first result, for the weight function w(x) given by (2), we denote

ﬁa [VuN w(x)dx.

/\1 = m
ueWyN (Bw) fB [ulNdx
u#0
the first eigenvalue of (Lnw, W(l)’z (B, w)). Itis well known that A, is isolated simple positive eigenvalue and

has a positive bounded associated eigenfunction, [17]. We will prove the following results.

Theorem 1.2.  Let f(x,t) be a function that has a subcritical growth at +oco and satisfies (H1), (H2) and (H3). In
addition, suppose that f(x, t) verifies the condition

NF(x,t) <

(H4) limsup N

t—0

A1 uniformly in x,

then problem (1) has a non trivial radial solution.
For a critical growth nonlinearity, the following result holds.

Theorem 1.3. Assumethat f(x, t) has a critical growth at +oco for some oy and satisfies the conditions (H1), (H2), (H3)
and (H4). If in addition f(x,t) satisfies the asymptotic condition
flx, )t 1

H5 im —— > uniformly in x, with > ,
( ) t—o00 eXp(NeaotN ) 7/0 f y 7/0 aé\ffleN

then the problem (1) has a nontrivial solution.
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N+1

We give an example of such non-linearity f. Let f(t) = F/(f) with F(t) = It\] — +t° exp(Neagt\'), witht > N+1.
A simple calculation shows that f verifies the conditions (H1), (H2), (H3) ,(H4) and (H5).

Remark 1.1 The authors in [16, 30] proved that there is a non-trivial solution to this problem using the Mountain
Pass Theorem . The authors used the following condition:

(F3) There is a constant 6 > N such that forall x € Band t > 0,

0 < OF(x,t) < tf(x, 1),
which is weaker than our hypothesis (H3).
Zhang added in [30] another assumption (F6), namely:

f® . . .
(F6) s increasing for all t > 0

to obtain a ground state solution.

The geometric requirements of the mountain Pass Theorem follow from the assumptions on the nonlinear
reaction term f but the difficulty is in the proof of the compactness condition. We will prove that when f
has subcritical growth, the functional | satisfies the compactness condition as required in the Ambrosetti-
Rabionowitz Theorem [3], but in the critical growth case, the compactness is lost and we follows the schemas
of [13, 18] and find a logarithmic concentrating sequence (Moser sequence ) to avoid this non-compactness
level.

We point out that the special case N = 2, i.e the following problem

f(x,u) in B

0 in B

0 on JB,

Ly = =div(w(x)Vu)
u
u

v i

was studied in [13].

Also, the problems (1) without weight (w=const.) has been extensively studied by several authors, see
[1, 14, 21, 24, 29] for example and references therein.

Finally, the problem (1) is important and has several applications as in non-Newtonian fluids, reaction
diffusion problem, turbulent flows in porous media and image treatment [4, 5, 25, 26]. In this work, the
constant C may change from line to another and sometimes we index the constants in order to show how
they changes.

2. Preliminaries and Variational formulation

Let B the unit ball in RN, N > 2 and throughout this paper we denote

wm=§£ww@5

the standard norm in the Lebesgue space L(B), for 1 < p < 0.
We set E = W (B, w) equipped with norm

0,rad
= ([ Va0

Zl=

where w(x) is given by
e \N-1

w(x) = ( log —

(@ = (log 1)

We will consider the following definition of solutions.
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Definition 2.1. We say that a function u € E is a solution of the problem (1) if

fIVuIN‘ZVu.V(p w(x)dx = ff(x,u)(pdx, V¢ €eE. 9)
B B
Let | : E — R be the functional given by
J(u) = 1 f [VulNw(x)dx — f F(x, u)dx, (10)
N Jp B
where

¢
F(x,t):j;f(x,s)ds.

The functional ] is well defined and of class C! since there exist 4, C > 0 positive constants and there exists
t1 > 1 such for that

If(x, )] < Cexp(Ne" ™), VIt > £, 11)

whenever the nonlinearity f(x, t) is critical or subcritical at +co.

In such cases, in order to prove the existence of nontrivial solution to the problem (1), we will prove
the existence of nonzero critical point of the functional | by using the following theorem introduced by
Ambrosetti and Rabionowitz in [3] (Mountain Pass Theorem).

Definition 2.2. Let (u,) be a sequence in a Banach space E and | € C}(E,R) and let c € R. We say that the sequence
(1) is a Palais-Smale sequence at level c ( or (PS). sequence ) for the functional | if

Jw,) - cin R, as n - +co

and
J'(uy) = 0 in E’, as n — +oo.

We say that the functional ] satisfies the Palais-Smale condition (PS). at the level c if every (PS). sequence (u,) is
relatively compact in E.

Theorem 2.3. [3] Let E be a Banach space and | : E — R a C* functional satisfying J(0) = 0. Suppose that

(i) There exist p, B> 0such that Vu € dB(0, p), J(u) > B;
(ii) There exists x1 € E such that ||x1|| > p and ]J(x1) <O0;
(ii) | satisfies the Palais-Smale condition (PS), that is for all sequence (u,) in E satisfying

J(u,) > d as n— +oo (12)
for some d € R and
I (unlle =0 as n— +oo, (13)

the sequence (u,) is relatively compact.

Then, | has a critical point u and the critical value ¢ = J(u) verifies

c:= ;2%2}3{‘]’ (r(®)

where I' := {y € C([0, 1], X) such that y(0) =0 and y(1) =x1}andc > p.

Remark 2.4. In [16, 30] the authors used the following Theorem without the Palais-Smale condition.



B. Dridi, R. Jaidane / Filomat 39:25 (2025), 8651-8668 8656

Theorem 2.5. [3] Let E be a Banach space and I : E — R a C' functional satisfying I(0) = 0. Suppose that there
exist p, Bo > 0and e € E with |le]| > p such that

”iﬁ\f I(u) = Bo and J(e) < 0.
ull=p

Then there is a sequence (u,) C E such
I(u,) = ¢ and I'(u,) = 0,
where
¢ := infmaxI(y(t)) > B
¢ := infmaxI(y(t)) = fo

and
I':={y eC([0,1],E) such that y(0)=0 and y(1) =e}.

The number € is called mountain pass level or minimax level of the functional I.

Before starting the proof of the geometric properties for the functional |, we recall the following radial
Lemma introduced in [11].

Lemma 2.6. [11] Let u be a radially symmetric function in Cy(B). Then, we have

1 1
[u(x)| < — logN’(log(ﬁl))llull,

N
where wn-1 is the area of the unit sphere Sn—1 € RN,

Now, since the function log(log(ﬁ)) is in W'N(B) and the embedding W'V (B) < L(B) is continuous for all
g > 1, there exists a constant C > 0 such that ||u|;n < cllul|, for all u € E.
In the next Lemma, we prove that the functional | satisfies the first geometric property.

Lemma 2.7. Suppose that (H1) — (H4) hold. Then, there exist p, B > 0 such that J(u) > B for all u € Ewith |lu]| = p.

Proof. 1t follows from the hypothesis (H4) that there exists o > 0 and there exists ¢ € (0,1) such that
1
F(x,t) < NAl(l —e)ltN,  for |t < t,. (14)

From (H3) and (11) and for all g4 > N, there exist a constant C > 0 such that

F(x, ) < Cltfexp(Ne" ™), V|t > t. (15)
and so
F(x,t) < I\l])\l(l —eo)ltN + Clt|%exp(Ne* & ), for telR. (16)
Since .
I = ol = | e s
we get

1 1 ’
J0) > Tl = 22(1 = ol - C [ uepe )
B

But Aq[[ul[§ < |lu[N and from the Holder inequality, we obtain

3 o N N
I > Sl = C( [ exper ) 17)
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From the Theorem 1.1, if we choose u € E such that

N’ N
allull™ < 0l (18)

we get

ul

fexp(Ne” |”'NI)dx = fexp(Ne” ”””N’(W)N/)dx < 400,
B B

On the other hand |u||n/y < Cllul| (Lemma 2.6), so
Jw) = Sl - Clul,

for all u € E satisfying (18). Since N < g, we can choose p = [|u|| small enough such that then there exists
B > 0 small such that J(u) > § > 0. O

By the following Lemma, we prove the second geometric property for the functional J.

Lemma 2.8. Suppose that (H1) and (H2) hold. Let @1 be a normalized eigenfunction associated to A1 in E. Then,
J(tp1) — —o0, as t — +oo.

Proof. It follows from the condition (H2) that

d 1
== > —
flx, 1) 8tF(x't) > MF(x,t)
forall t > ty. So
F(x,t) > CeM, ¥ t > t,. (19)

It follows that, there exist b > A; and C > 0 such that F(x, t) > %tN +Cforallt>0.

tN N_box N
< - — _
J(tp1) < el = 5 lleally = CIBI,
where |B| = mes(B) = Vol(B). Then, from the definition of A;, we get

A—b
N

So, the Lemma 2.8 follows. O

J(tpr) <tV 1IN <0, Vt> 0.

3. Proof of Theorem 1.2

In the Theorem 1.2, we suppose that the function f(x, t) is subcritical, that is satisfies the condition (7)
for all ag > 0. In order to prove that the functional | satisfies the (PS) condition, we use the same idea as in
lions” Lemma [22].

Lemma 3.1. Let {uyly be a sequence in E. Suppose that ||lurl| = 1, ux — u weakly in E, Vur, — Vu, u(x) —
u(x) aex € Bandu £ 0. Then

o ’
sup f exp (Ne”wzy—_ll ™ )dx < +00
k JB
forall1 < p < U where U is given by:

god  @=ludMT il <1
+00 if llull = 1.
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Proof. Fora, b e R, g > 1. If g’ its conjugate i.e. % + ql =1 we have, by young inequality, that

elH—h < leqﬂ + leq’h

q q
and so,
exp(Ne™?) < exp(Neq“ + ge‘ﬂ’)‘
q q
Therefore,
a+b 1 a 1 'b
exp(Ne™’) < 6exp(Ne’7 )+ ?exp(Neq ). (20)

Also, we have

1

(I+a) <A +e)al+(1-———), Va>0, Ve>0 ¥Yg>1. (21)
(1+e)t
So, we get
™ = g —u+uY
< (e —ul +uN’
=

< (+ ) —uN + (1 - W)N% ™",

which implies that

1
N=

1 , ,
fexp (Nepwﬁ’:f [ [N )dx < 1 fexp(Nep"“’Nll (1+&)|ug—ulN )dx
B qJs
1 Tl (o)
+ ? exp(Nep N=1 T (e NT )dx,
B

forany p > 1.
From (5), the last integral is finite. To complete the proof we have to prove that for every p such that
1<p<U,

. ’
sup fexp(Nepqu]\]_ll (L+&)ue—ulN )dx < 400, (22)
k B

for some € > 0and g > 1.
In the following, we suppose that ||u|| < 1, and in the case of ||u|| = 1, the proof is similar.
When

[l < 1

and
1

p<-——""""7
(1 = [lul¥) v

there exists v > 0 such that :
p(1 - llM)™1 (1 +v) < 1.

On the other hand, By Brezis-Lieb’s lemma [6] we have
g — ull™Y = NN = [ullN + o(1) where o(1) — 0 as k — +co. (23)

Then,
e —ull™ =1 = [lul™ + o(1),
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and so,
: N N
im [l —u|]™ =1 = [ul|
k—+00

that is, 1
im = ul = (1= ).

Therefore, for every ¢ > 0, there exists k. > 1 such that
g = ull¥ < (1+ )1~ ™)™, V k> k..
If wetakeg =1+ ¢ with e = V1 +v -1, then Yk > k., we have

pa(1 + &)lluy — uV < 1.

Consequently,
1 7, =l N7 ’
fexp(Nepqu{fv-ll (1+S)|MrM|N/)dx < feXp(N6(1+8)pquI\]_ll(“lt”)N (ot —ual [N )dx
B B
(‘)ﬁ( Iuk—u\ )N’
< exp(Ne N1 =l ydy
B
<= ’
< sup f exp(Ne“n-1 ™ )dx < +00
llull<1 VB
Now, (22) follows from (6). We complete the proof. m|

The next result assures the existence of critical point for the functional | when the nonlinearity is sub-
critical or critical.

Proposition 3.2. Suppose that (H1), (H2) and (H3) hold and the function f(x, t) satisfies the condition (8) for ag > 0.
Then the functional | satisfies the Palais-Smale condition (PS). for any

WN-1

7
Na)-!

c<

where wn-1 is the area of the unit sphere Sn-1 in RN,

Proof. Consider a (PS). sequence in E, for some c € R, that is

Ju) = ol = [ Fx x> ¢, n = 4oo 4)
and

K @) )l = | fB WOV ity N2Vt Veped — fB f u)pd| < eullpl, (25)

for all ¢ € E, where ¢, = 0, whenn — +co.
Also, inspired by [13], it follows from (H2) that for all ¢ > 0 there exists f. > 0 such that

F(x,t) < etf(x,t), forall |{|>t, and uniformlyin x € B, (26)

and so, by (24), for all ¢ > 0 there exists a constant C > 0

1
—lualN < C+ f F(x, u,)dx,
N B
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hence

1
—lun N < C+ f F(x, u,)dx + ¢ f F(x, tn)udx
N i |<te B

and so, from (25), we get

1
ﬁ”un”N < Cr + eullull + ellual™,
for some constant C; > 0. Since
1 N
(N = Olunll™ < Cy + eepllunll, (27)
we deduce that the sequence (u,) is bounded in E. As consequence, there exists # € E such that, up to

subsequence, u, — u weakly in E, u,, — u strongly in L7(B), for all 4 > 1 and u,(x) — u(x) a.e. in B and so
Vu,, — Vu as in [1]. Furthermore, we have from (24) and (25), that

0< ff(x, U u, <C, (28)
B
and
0< fF(x, u,) <C. (29)
B

Since by Lemma 2.1 in [18], we have
f(x,uy) = f(x,u) in LYB) as n — +oo, (30)

then, it follows from (H2) and the generalized Lebesgue dominated convergence theorem that

F(x,u,) = F(x,u) in LY(B) as n — +co. (31)
So,

Lim |Ju,N = N(c + f F(x, u)dx). (32)

n—+oo B

and using (24), we have

lim f fx, up)uydx = N(c + f F(x, u)dx). (33)
B B

n—+oo
By the condition (H3),

n—+oo

Iim N | F(x,u,)dx < N(c+ fF(x, u)dx)
B B

and so ¢ > 0. Also, it follows from (24) and (24), that u is a weak solution of the problem (1) and if we take
@ = u as a test function, we get
f IVulN? w(x)dx = ff(x, u)udx,
B B
so J(u) > 0 and .

We will finish the proof by considering three cases for the level c.

Case 1. ¢ = 0. In this case
0<J(u)< limjnf](un) =0.
n—+o00
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So,
Ju) =0

and then
: 1 N _ — 1 N
Jim Sl = fB F(x, wydx = 5 ul”.

Case 2. ¢ > 0 and u = 0. We prove that this case cannot happen.
From (46) and (48) with v = u,, we have

lirp [N = N¢ and lirP ff(x, uy)u,dx = Nc
n—+oo n—+oo B
and by (48), we have also

leealIN - f £, wy)undx| < Cey.
B

First we claim that there exists g > 1 such that

fBIf(x, u,)dx < C (34)

SO
ot < Ce+ [ 1) e [ )"
B B

where ¢’ is the conjugate of g. Since (u,) converge to u = 0 in L7 (B),
lim [N =0
n—+oo
and this is a contradiction with c > 0.

For the proof of the claim, since f has subcritical or critical growth, for every ¢ > 0 and g > 1 there
exists t. > 0 and C > 0 such that for all |{| > t., we have

£ (x, )7 < Cexp(Ne®E DIy, (35)

Consequently,

f G w)lidx = f 1f G )il + f 1, y)lTdx
B {lunl<te {lu >t}

wWN-1 Mmax If(x/ t)|q +C fexp (Nea0(8+1)|u11|N/ )dx.
BX[_ttrtE] B

IA

Since Nc < %4, there exists 1] € (0, 37) such that Nc = (1 — N7) wll\\;:ll . On the other hand, [|u,||N' — (Nc)¥1,
0 o
0

1
-1
—1

[

, N
so there exists 1, > 0 such that for all n > n,, we get lua N < (1-17) ZU . Therefore,

Up| N , =
ao(l + s)(I:u :|>N lealY' < (1+ )(1 = o,

We choose ¢ > 0 small enough to get

) 1
a1+ &)llulV < w7,
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therefore the second integral is uniformly bounded in view of (5), and the claim is proved.

Case 3. ¢ > 0and u # 0. In this case, we claim that J(#) = c and therefore we get

lim [N :N(c+ f F(x, u)dx) = N(J(u) + f F(x, u)dx) = Jul[M.
n—+oo B B

Now, in order to prove the claim we remark that

J(u) < l liminf [[u,||N — | F(x, u)dx = c.
N n+-—-oo B

Suppose that J(u) < c. We have

N i
¥ < (N(c + fB F(x, u)dx))™". (36)
Set
R
" gl
and
u
o= .
(N(c+ f F(x, u)dx))¥
B

We have ||[v,]l =1,v, = vin E, v # 0 and ||v]| < 1. So, by Lemma 4.1, we get

i ’
sup f exp (Ne”“’fvvfll foul¥ )dx <o
B

n

for1 <p < (1—|joN)~.
As in the case 2, we are going to estimate f |f (x, up)|"dx.
B

For ¢ > 0, one has

f £ )l
B

f 1f G )l + f G, )lTdx
{Juy|<t, {lunl>t}

< wn-1 max f(x )T+ C | exp (Ne“(’(“g)'”"'w )dx
BX[_tt rtz]

B
< Cé. + le; exp (Nea0(1+5)|‘”r1|‘N [oa N )dx < C

1 —
if we have ag(1 + &)|[u,||N" < poyiand 1 <p < (1- ||v||N)Nfll.

Since
N Flx, u)d o F(x, u)dx, 1
(- iyt = (RO ct oy,
N(e+ [, F(x, u)dx) = [lull) ¢~ I
and |
li n N’ = (N| F : d N-1
n_lf_{lmllu I ( (C+f3 (x, 1) x))
then,

ao(1 + )llunlIN < (1 + 26)(N(c + f F(x, u)dx)ﬁ.
B
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But J(u) >0and c < Na NN , then if we choose ¢ > 0 small enough such that
%
—(1+2¢) < ! )fT
o N(c— ()
N-1
which means :
W On
(1+28)((c - Jw) ™" < ==
NN*I &p

and so, the sequence (f(x, u,)) is bounded in L9, g > 1.
Since (J'(uy), uy — u) = o(1), we get

fw(x)qu,,IN‘ZVun.(Vun — Vu)dx - ff(x,u,,)(un —u)dx = o0(1).
B B
On the other hand, since u,, — u weakly in E then
fw(x)qulN_ZVu.(Vun — Vu)dx = o(1).
B

Combining (37) and (38), we obtain

f w()(IVitn N2V, = [VulN2V11).(Vi, = Var)dx = f £, 1)ty — wydx + 0(1).
B B

Using the well known inequality
(N2 = [yN2y)(x - y) 222 Nx—yN, V x,yeRY and N=>2
we obtain

0<2%N fw(x)IVun — VulNdx < ff(x, 1)y, — w)dx + o(1).
B B

By the Holder inequality, we obtain

IN

227N fw(x)qu,1 — Vu|Ndx ff(x un)(u, — u)dx + o(1)
B

flf(x Uy) |q d flu —ulT) dx+o(1)

[lu, —ull >0 as n— oo.

IN

So,
By Brezis-Lieb’s lemma, up to subsequence, we get

lim 14N =N(C+fF(x,M)dX) = llull™
n—+00 B

and this contradicts (36).
And this finish the proof of the Proposition 3.2.

Proof of Theorem 1.2

8663

(37)

(38)

(39)

(40)

(41)

(42)

Since f(x,t) satisfies the condition (7) for all ag > 0, then by Proposition 3.2, the functional | satisfies the
(PS) condition (at each possible level d). So, by Lemma 2.7 and Lemma 2.8, we deduce that the functional |
has a nonzero critical point # in E. From maximum principle, the solution u of the problem (1) is positive.0
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4. Proof of Theorem 1.3

In the Theorem 1.3, we suppose that the function f(x, t) is critical, that is, it satisfies the condition (8) for
some agp > 0.
We still can use Theorem 1.1 if we prove that the mountain pass level ¢ in this Theorem 1.1 satisfies

WN-1

c< NaN_l'
0

For this purpose , we will prove that there exists v € E such

max J(tv) < ON-1 (43)
Na}"

As in [13], we consider a Moser-type sequence given by

log(1 + ¢
w if 0 <t<n
Yn(t) = logNﬁl(l + 1) (44)
log ™ (1+n) if t>n.

Let v,,(x) the function defined by

t

Pul) = ) 04(x),  where ¢ = Jx]. (45)

With this choice of 1, the sequence (v,) is normalized since

+00
ol = —— f VM og(-S )N dx = f O+ N = 1.
WN-1 JB |x] 0

On the other hand, we have

+00
. mN Lo, N —_ 13 [ |N, _
nllrpoo exp (Ne )dx = nlirpoo WN-1 fo exp (Ne N t)dt. (46)
Now, we introduce the following elementary result.

Lemma 4.1. For the sequence 1, induced by (44), we have

e N+1
3 w’nl —
nEIIlo | exp (Ne N t)d ( N

). (47)

Proof. If wesets=1+tand j=n+1, we get

logN’(Ht)

+00 , N 1
exp (Ne¥ " —Nt)dt = S + | exp (News¥ram — Nt d,
o OF N P

N

here N’ = .
where N-1

And so,
eN ] (lo 9) 71
f exp Ne'lp" Nt)dt =N +f exp (Ns g —N(s— 1)) s.
0 1

That is,

N ] logs
f exp e'w”l - Nt)dt N te f exp (Ns('ogf)N - Ns)ds.
0 1



B. Dridi, R. Jaidane / Filomat 39:25 (2025), 8651-8668

We claim that

] logs \ -
lim exp (NS(WE/ o Ns)ds =1,

j—+oo 1

and so the formula (47) follows.

8665

(48)

The proof of the claim can be omitted since it is technical and it is the same as the case when N = 2 in [13],

Lemma 4.1.
Lemma 4.2. For the sequence v, identified by (45), there exists n > 1 such that

WN-1

Irt;%x J(tv,) < Nag"l .

Proof. By contradiction, suppose that foralln > 1,

max J(tv,) 2 I\%
Therefore, for any n > 1, there exists t, > 0 such that
maxJ(on) = J(:0) 2 0
and so,
%tﬁ,\’ - fB F(x, byon)dx > I\‘]";’é;_ll-
Then, by using (H1)
B > Zgj
On the other hand,
e, =67 = [ g toods=o
that is

tﬁ’:ff(x,tnvn)tnvndx.
B

Now, we claim that the sequence (t,) is bounded in (0, +0).
Indeed, it follows from (H5) that for all € > 0, there exists f. > 0 such that

flx, Bt = (yo — €)exp (Ne“(’tN’) V|| > t;, uniformlyin x € B.

Since

[m]

(49)

(50)

(51)

(52)

(53)
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then, it follows from (52) that for all ¢ > 0, there exists 1y such that for all n > ng

+00 0 (b)Y’
tN > wn-1(Yo — €) f exp (Ne “N-t - Ns)ds, (54)
n
that is
w ”i N log(1+n)
N > ﬂ(yo —é&)exp (Ne“‘ryfl] - Nn). (55)
N
From (55), we obtain for n large enough
ﬂ[l’ t,h,” log(1+n)

1> %()}0 — g) exp (Ne“’z\l}]:ll — Nn- NlOg tn).

Therefore (t,) is bounded. Also, we have from the formula (50) that

. WN-
lim £ > 1,
n—+oo aN_l
0

Now, suppose that

. WN-1
lim £ > .
n—+oo aN_l

0

WN-1
a1

For n large enough, # > and in this case, the right hand site of the inequality (54) will gives the
0
unboundedness of the sequence (t,). Since (t,) is bounded, we get

. N _ WN-1
B (56)
0

Now, we want to use the expression of ) given by (51) and the hypothesis (52). So let

B+ ={x€B; tyu,(x) >t} and B, - ={x € B; t,0,(x) < t}.

We have
bz 00 g)f P (Neaowlvyl )dx - f f(x, tyvp)tyvndx,
Bn,+ Brz,—
and then
o O_S)fex Ne@wt o )t — ( o—E)f exp (Ne®h = \dy
v0-¢) | exp( Jdx = (v . p( ) .
+ [, ton)tyvdx.

The sequence (v,) converges to 0 in B and xp,_ converges to la.e in B. By using the dominated convergence
theorem, we obtain

lim f fx, tyo,)t,vdx = 0.
B,

n—+oo

Also, we have
f exp (Ne"‘ot"N,”y/ )dx < f exp (Ne“‘)ty/”ﬁﬂ )dx.
By, B

So,
lim exp (N gaots o )dx lim [ exp (N ety ®’ )dx

n—+oo B, n—-+eo Jp

< eNool(B).

IA

A
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From (46) and the Lemma 4.1, we have

NG %\PH\NI
lim [ exp (Ne“‘)tﬁv o )dx > lim f exp (Ne“’ry—11 )dx
n—+oo Jp n—+0o ]\P
> wn-1(BF)eN
So, it follows from (57) that
WN-1
N-1 = ()/() - e)a)N,leN, (58)
0
for all € > 0. So 1
0 7%
v ah~teN
which is with contradiction of the condition on g in (H5). The Theorem 1.3 is proved. m]
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