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Abstract. In this paper, we study the nonlinear elliptic problem

−div(w(x)|∇u|N−2
∇u) = f (x,u), u ∈W1,N

0 (B,w) (P)

where B is the unit ball of RN, N ≥ 2 and w(x) =
(

log e
|x|

)N−1
is the singular logarithm weight with the

limiting exponent N− 1 in the Trudinger-Moser embedding. We consider the problem (P) when the nonlin-
earity is sub-critical and critical with respect to a maximal growth of double exponent type and we prove
the existence of positive solution by using Mountain Pass theorem without the Ambrosetti-Rabionowitz
condition. When the nonlinearity is critical, we prove that the associated energy satisfies the Palais-Smale
condition only to a given limit level and we prove that the min-max level is less than this limit.

1. Introduction and Main results

In this paper, we consider the following elliptic nonlinear problem:
LN,w = −div(w(x)|∇u|N−2

∇u) = f (x,u) in B
u > 0 in B
u = 0 on ∂B,

(1)

where B = B(0, 1) is the unit open ball in RN, N > 2, f (x, t) is a radial function with respect to x and the
weight w(x) is given by

w(x) =
(

log
e
|x|

)N−1
. (2)

Since 1970, when Moser gives the famous result about the Trudinger-Moser inequality many applications
take place as in conformal deformation theory on manifolds, the study of the prescribed Gauss curvature
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and mean field equations.
After that, a logarithmic Trudinger-Moser inequality was used in crucial way in [23] to study the Liouville
equation of the form −∆u = λ eu∫

Ω
eu in Ω

u = 0 on ∂Ω,
(3)

where Ω is an open domain of RN, N ≥ 2 and λ is a positive parameter.
The equation (3) has a long history and has been derived in the study of multiple condensate solution in
the Chern-Simons-Higgs theory [27, 28] and also, it appeared in the study of Euler Flow [7, 8, 15, 19].
Later, the Trudinger-Moser inequality was improved to a weighted inequalities [2, 10, 11, 14]. The influence
of the weight in the Sobolev norm was studied as the compact embedding in [20].
When the weight is of logarithmic type, Calanchi and Ruf [12] extend the Trudinger-Moser inequality and
give some applications when N = 2 and for prescribed nonlinearities. After that, Calanchi et al. [13]
considered a more general nonlinearities and proved the existence of radial solutions.
In this paper, we investigate the case N > 2 and use Trudinger-Moser inequality to study and prove the
existence of solutions to the problem (1) without use of the Ambrosetti-Rabionowitz condition.

Let Ω ⊂ RN, N > 2 be a bounded domain and w ∈ L1(Ω) be a nonnegative function, the weighted
Sobolev space is defined as

W1,N
0 (Ω,w) = cl{u ∈ C∞0 (Ω)/

∫
B
|∇u|

N
w(x)dx < ∞}.

We will restrict our attention to radial functions and then consider the subspace

E =W1,N
0,rad(B,w) = cl{u ∈ C∞0,rad(B)/

∫
B
|∇u|

N
w(x)dx < ∞} (4)

endowed with the norm

∥u∥ =
( ∫

B
|∇u|Nw(x)dx

) 1
N .

The choice of the weight and the space W1,N
0,rad(B,w) are motivated by the following double exponential

inequalities.

Theorem 1.1. [11] Let w given by (2), then∫
B

exp(e|u|
N

N−1 )dx < +∞, ∀ u ∈W1,N
0,rad(B,w), (5)

and

sup
u∈W1,N

0,rad(B,w)
∥u∥w≤1

∫
B

exp(βeω
1

N−1
N−1 |u|

N
N−1 )dx < +∞ ⇔ β ≤ N. (6)

where ωN−1 is the area of the unit sphere SN−1 in RN.

Let N′ be the Hölder conjugate of N that is N′ = N
N−1 · In view of inequality (6), we say that f has subcritical

growth at +∞ if

lim
s→+∞

| f (x, s)|

exp(NeαsN′ )
= 0, for all α > 0 (7)
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and f has critical growth at +∞ if there exists some α0 > 0 such that

lim
s→+∞

| f (x, s)|

exp(NeαsN′ )
= 0, ∀ α > α0 and lim

s→+∞

| f (x, s)|

exp(NeαsN′ )
= +∞, ∀ α < α0. (8)

As mentioned in [13] for N = 2, if there exist α0 > 0 and β0 > 0 such that

lim
s→+∞

| f (x, s)|

exp(β0eαsN′ )
= 0, ∀ α > α0 and lim

s→+∞

| f (x, s)|

exp(β0eαsN′ )
= +∞, ∀ α < α0,

then for all β > 0, we have

lim
s→+∞

| f (x, s)|

exp(βeαsN′ )
= 0, ∀ α > α0 and lim

s→+∞

| f (x, s)|

exp(βeαsN′ )
= +∞, ∀ α < α0

and so in (8), we choose β = N by convenience.

In this paper, we consider the problem (1) with subcritical and critical growth nonlinearities f (x, t). Fur-
thermore, we suppose that f (x, t) satisfies the following hypothesis:

(H1) f : B ×R→ R is continuous, positive, radial in x, and f (x, t) = 0 for t ≤ 0
(H2) There exist t0 > 0 and M > 0 such that for all t > t0 and for all x ∈ B we have

0 < F(x, t) ≤M f (x, t),

where

F(x, t) =
∫ t

0
f (x, s)ds.

(H3) 0 < F(x, t) ≤
1
N

f (x, t)t, ∀t > 0,∀x ∈ B.

Before announcing our first result, for the weight function w(x) given by (2), we denote

λ1 = inf
u∈W1,N

0,rad(B,w)
u,0

∫
B |∇u|Nw(x)dx∫

B |u|
Ndx

·

the first eigenvalue of (LN,w,W1,N
0,rad(B,w)). It is well known that λ1 is isolated simple positive eigenvalue and

has a positive bounded associated eigenfunction, [17]. We will prove the following results.

Theorem 1.2. Let f (x, t) be a function that has a subcritical growth at +∞ and satisfies (H1), (H2) and (H3). In
addition, suppose that f (x, t) verifies the condition

(H4) lim sup
t→0

NF(x, t)
tN < λ1 uniformly in x,

then problem (1) has a non trivial radial solution.

For a critical growth nonlinearity, the following result holds.

Theorem 1.3. Assume that f (x, t) has a critical growth at+∞ for someα0 and satisfies the conditions (H1), (H2), (H3)
and (H4). If in addition f (x, t) satisfies the asymptotic condition

(H5) lim
t→∞

f (x, t)t

exp(Neα0tN′ )
≥ γ0 uniformly in x, with γ0 >

1
αN−1

0 eN
,

then the problem (1) has a nontrivial solution.
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We give an example of such non-linearity f . Let f (t) = F′(t) with F(t) = tN+1

N+1 + tτ exp(Neα0tN′ ), with τ > N+1.
A simple calculation shows that f verifies the conditions (H1), (H2), (H3) ,(H4) and (H5).
Remark 1.1 The authors in [16, 30] proved that there is a non-trivial solution to this problem using the Mountain
Pass Theorem . The authors used the following condition:

(F3) There is a constant θ > N such that for all x ∈ B and t > 0,

0 < θF(x, t) ≤ t f (x, t),

which is weaker than our hypothesis (H3).

Zhang added in [30] another assumption (F6), namely:

(F6)
f (t)
t

is increasing for all t > 0

to obtain a ground state solution.
The geometric requirements of the mountain Pass Theorem follow from the assumptions on the nonlinear
reaction term f but the difficulty is in the proof of the compactness condition. We will prove that when f
has subcritical growth, the functional J satisfies the compactness condition as required in the Ambrosetti-
Rabionowitz Theorem [3], but in the critical growth case, the compactness is lost and we follows the schemas
of [13, 18] and find a logarithmic concentrating sequence (Moser sequence ) to avoid this non-compactness
level.

We point out that the special case N = 2, i.e the following problem
L2,w := −div(w(x)∇u) = f (x,u) in B

u > 0 in B
u = 0 on ∂B,

was studied in [13].
Also, the problems (1) without weight (w=const.) has been extensively studied by several authors, see
[1, 14, 21, 24, 29] for example and references therein.
Finally, the problem (1) is important and has several applications as in non-Newtonian fluids, reaction
diffusion problem, turbulent flows in porous media and image treatment [4, 5, 25, 26]. In this work, the
constant C may change from line to another and sometimes we index the constants in order to show how
they changes.

2. Preliminaries and Variational formulation

Let B the unit ball in RN, N > 2 and throughout this paper we denote

∥u∥p =
( ∫

B
|u|pdx

) 1
p

the standard norm in the Lebesgue space Lp(B), for 1 ≤ p < ∞.
We set E =W1,N

0,rad(B,w) equipped with norm

∥u∥ =
( ∫

B
|∇u|Nw(x) dx

) 1
N

where w(x) is given by

w(x) =
(

log
e
|x|

)N−1
.

We will consider the following definition of solutions.
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Definition 2.1. We say that a function u ∈ E is a solution of the problem (1) if∫
B
|∇u|N−2

∇u.∇φ w(x)dx =
∫

B
f (x,u)φdx, ∀ φ ∈ E. (9)

Let J : E→ R be the functional given by

J(u) =
1
N

∫
B
|∇u|Nw(x)dx −

∫
B

F(x,u)dx, (10)

where

F(x, t) =
∫ t

0
f (x, s)ds.

The functional J is well defined and of class C1 since there exist a, C > 0 positive constants and there exists
t1 > 1 such for that

| f (x, t)| ≤ C exp(Nea tN′

), ∀|t| > t1, (11)

whenever the nonlinearity f (x, t) is critical or subcritical at +∞.
In such cases, in order to prove the existence of nontrivial solution to the problem (1), we will prove
the existence of nonzero critical point of the functional J by using the following theorem introduced by
Ambrosetti and Rabionowitz in [3] (Mountain Pass Theorem).

Definition 2.2. Let (un) be a sequence in a Banach space E and J ∈ C1(E,R) and let c ∈ R. We say that the sequence
(un) is a Palais-Smale sequence at level c ( or (PS)c sequence ) for the functional J if

J(un)→ c in R, as n→ +∞

and
J′(un)→ 0 in E′, as n→ +∞.

We say that the functional J satisfies the Palais-Smale condition (PS)c at the level c if every (PS)c sequence (un) is
relatively compact in E.

Theorem 2.3. [3] Let E be a Banach space and J : E→ R a C1 functional satisfying J(0) = 0. Suppose that

(i) There exist ρ, β > 0 such that ∀u ∈ ∂B(0, ρ), J(u) ≥ β;
(ii) There exists x1 ∈ E such that ∥x1∥ > ρ and J(x1) < 0;

(iii) J satisfies the Palais-Smale condition (PS), that is for all sequence (un) in E satisfying

J(un)→ d as n→ +∞ (12)

for some d ∈ R and

∥J′(un)∥∗ → 0 as n→ +∞, (13)

the sequence (un) is relatively compact.

Then, J has a critical point u and the critical value c = J(u) verifies

c := inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

where Γ := {γ ∈ C([0, 1],X) such that γ(0) = 0 and γ(1) = x1} and c ≥ β.

Remark 2.4. In [16, 30] the authors used the following Theorem without the Palais-Smale condition.
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Theorem 2.5. [3] Let E be a Banach space and I : E → R a C1 functional satisfying I(0) = 0. Suppose that there
exist ρ, β̄0 > 0 and e ∈ E with ∥e∥ > ρ such that

inf
∥u∥=ρ

I(u) ≥ β̄0 and J(e) ≤ 0.

Then there is a sequence (un) ⊂ E such
I(un)→ c̄ and I′(un)→ 0,

where
c̄ := inf

γ∈Γ
max
t∈[0,1]

I(γ(t)) ≥ β̄0

and
Γ := {γ ∈ C([0, 1],E) such that γ(0) = 0 and γ(1) = e}.

The number c̄ is called mountain pass level or minimax level of the functional I.

Before starting the proof of the geometric properties for the functional J, we recall the following radial
Lemma introduced in [11].

Lemma 2.6. [11] Let u be a radially symmetric function in C1
0(B). Then, we have

|u(x)| ≤
1

ω
1
N
N−1

log
1

N′ (log(
e
|x|

))∥u∥,

where ωN−1 is the area of the unit sphere SN−1 ∈ RN.

Now, since the function log(log( e
|x| )) is in W1,N(B) and the embedding W1,N(B) ↪→ Lq(B) is continuous for all

q ≥ 1, there exists a constant C > 0 such that ∥u∥qN′ ≤ c∥u∥, for all u ∈ E.
In the next Lemma, we prove that the functional J satisfies the first geometric property.

Lemma 2.7. Suppose that (H1)− (H4) hold. Then, there exist ρ, β > 0 such that J(u) ≥ β for all u ∈ E with ∥u∥ = ρ.

Proof. It follows from the hypothesis (H4) that there exists t0 > 0 and there exists ε ∈ (0, 1) such that

F(x, t) ≤
1
N
λ1(1 − ε0)|t|N, for |t| < t0. (14)

From (H3) and (11) and for all q > N, there exist a constant C > 0 such that

F(x, t) ≤ C|t|qexp(Nea tN′

), ∀ |t| > t1. (15)

and so

F(x, t) ≤
1
N
λ1(1 − ε0)|t|N + C|t|qexp(Nea tN′

), for t ∈ R. (16)

Since

J(u) =
1
N
∥u∥N −

∫
B

F(x,u)dx,

we get

J(u) ≥
1
N
∥u∥N −

1
N
λ1(1 − ε0)|t|N − C

∫
B
|u|qexp(ea uN′

) dx.

But λ1∥u∥NN ≤ ∥u∥
N and from the Hölder inequality, we obtain

J(u) ≥
ε0

N
∥u∥N − C(

∫
B

exp(Nea |u|N′ )dx
) 1

N
∥u∥qqN′ (17)
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From the Theorem 1.1, if we choose u ∈ E such that

a∥u∥N
′

≤ ω
1

N−1
N−1, (18)

we get ∫
B

exp(Nea |u|N′ )dx =
∫

B
exp(Nea ∥u∥N′ ( |u|

∥u∥ )
N′

)dx < +∞.

On the other hand ∥u∥N′q ≤ C∥u∥ (Lemma 2.6), so

J(u) ≥
ε0

N
∥u∥N − C∥u∥q,

for all u ∈ E satisfying (18). Since N < q, we can choose ρ = ∥u∥ small enough such that then there exists
β > 0 small such that J(u) ≥ β > 0. □

By the following Lemma, we prove the second geometric property for the functional J.

Lemma 2.8. Suppose that (H1) and (H2) hold. Let φ1 be a normalized eigenfunction associated to λ1 in E. Then,
J(tφ1)→ −∞, as t→ +∞.

Proof. It follows from the condition (H2) that

f (x, t) =
∂
∂t

F(x, t) ≥
1
M

F(x, t)

for all t ≥ t0. So

F(x, t) ≥ C e
t

M , ∀ t ≥ t0. (19)

It follows that, there exist b > λ1 and C > 0 such that F(x, t) ≥ b
N tN + C for all t > 0.

J(tφ1) ≤
tN

N
∥φ1∥

N
−

b
N

tN
∥φ1∥

N
N − C|B|,

where |B| = mes(B) = Vol(B). Then, from the definition of λ1, we get

J(tφ1) ≤ tN λ1 − b
N
∥φ1∥

N
N < 0, ∀t > 0.

So, the Lemma 2.8 follows. □

3. Proof of Theorem 1.2

In the Theorem 1.2, we suppose that the function f (x, t) is subcritical, that is satisfies the condition (7)
for all α0 > 0. In order to prove that the functional J satisfies the (PS) condition, we use the same idea as in
lions’ Lemma [22].

Lemma 3.1. Let {uk}k be a sequence in E. Suppose that ∥uk∥ = 1, uk ⇀ u weakly in E, ∇uk → ∇u, uk(x) →
u(x) a.e x ∈ B and u . 0. Then

sup
k

∫
B

exp
(
Nepω

1
N−1
N−1 |uk |

N′ )
dx < +∞

for all 1 < p < U where U is given by:

U =
{

(1 − ∥u∥N)
−1

N−1 if ∥u∥ < 1
+∞ if ∥u∥ = 1.
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Proof. For a, b ∈ R, q > 1. If q′ its conjugate i.e. 1
q +

1
q′ = 1 we have, by young inequality, that

ea+b
≤

1
q

eqa +
1
q′

eq′b

and so,

exp(Nea+b) ≤ exp(
N
q

eqa +
N
q′

eq′b)·

Therefore,

exp(Nea+b) ≤
1
q

exp(Neqa) +
1
q′

exp(Neq′b). (20)

Also, we have

(1 + a)q
≤ (1 + ε)aq + (1 −

1

(1 + ε)
1

q−1

)1−q, ∀a ≥ 0, ∀ε > 0 ∀q > 1. (21)

So, we get
|uk|

N′ = |uk − u + u|N′

≤ (|uk − u| + u|)N′

≤ (1 + ε)|uk − u|N′ +
(
1 − 1

(1+ε)N−1

) −1
N−1
|u|N′ .

which implies that∫
B

exp
(
Nepω

1
N−1
N−1 |uk |

N′ )
dx ≤

1
q

∫
B

exp(Nepqω
1

N−1
N−1 (1+ε)|uk−u|N′ )dx

+
1
q′

∫
B

exp(Nepq′ω
1

N−1
N−1 (1− 1

(1+ε)N−1 )
−1

N−1 )|u|N′ )dx,

for any p > 1.
From (5), the last integral is finite. To complete the proof we have to prove that for every p such that
1 < p < U,

sup
k

∫
B

exp(Nepqω
1

N−1
N−1 (1+ε)|uk−u|N′ )dx < +∞, (22)

for some ε > 0 and q > 1.
In the following, we suppose that ∥u∥ < 1, and in the case of ∥u∥ = 1, the proof is similar.
When

∥u∥ < 1

and
p <

1

(1 − ∥u∥N)
1

N−1

,

there exists ν > 0 such that
p(1 − ∥u∥N)

1
N−1 (1 + ν) < 1.

On the other hand, By Brezis-Lieb’s lemma [6] we have

∥uk − u∥N = ∥uk∥
N
− ∥u∥N + o(1) where o(1)→ 0 as k→ +∞. (23)

Then,
∥uk − u∥N = 1 − ∥u∥N + o(1),
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and so,
lim

k→+∞
∥uk − u∥N = 1 − ∥u∥N

that is,
lim

k→+∞
∥uk − u∥N

′

= (1 − ∥u∥N)
1

N−1 .

Therefore, for every ε > 0, there exists kε ≥ 1 such that

∥uk − u∥N
′

≤ (1 + ε)(1 − ∥u∥N)
1

N−1 , ∀ k ≥ kε.

If we take q = 1 + ε with ε = 3√1 + ν − 1, then ∀k ≥ kε, we have

pq(1 + ε)∥uk − u∥N
′

≤ 1.

Consequently, ∫
B

exp(Nepqω
1

N−1
N−1 (1+ε)|uk−u|N′ )dx ≤

∫
B

exp(Ne(1+ε)pqω
1

N−1
N−1 (

|uk−u|
∥uk−u∥ )

N′
∥uk−u∥N′ )dx

≤

∫
B

exp(Neω
1

N−1
N−1 (

|uk−u|
∥uk−u∥ )

N′

)dx

≤ sup
∥u∥≤1

∫
B

exp(Neω
1

N−1
N−1 |u|

N′

)dx < +∞

Now, (22) follows from (6). We complete the proof. □

The next result assures the existence of critical point for the functional J when the nonlinearity is sub-
critical or critical.

Proposition 3.2. Suppose that (H1), (H2) and (H3) hold and the function f (x, t) satisfies the condition (8) for α0 > 0.
Then the functional J satisfies the Palais-Smale condition (PS)c for any

c <
ωN−1

NαN−1
0

,

where ωN−1 is the area of the unit sphere SN−1 in RN.

Proof. Consider a (PS)c sequence in E, for some c ∈ R, that is

J(un) =
1
N
∥un∥

N
−

∫
B

F(x,un)dx→ c, n→ +∞ (24)

and

|⟨J′(un), φ⟩| =
∣∣∣∣ ∫

B
w(x)|∇un|

N−2
∇un.∇φdx −

∫
B

f (x,un)φdx
∣∣∣∣ ≤ εn∥φ∥, (25)

for all φ ∈ E, where εn → 0, when n→ +∞.
Also, inspired by [13], it follows from (H2) that for all ε > 0 there exists tε > 0 such that

F(x, t) ≤ εt f (x, t), for all |t| > tε and uniformly in x ∈ B, (26)

and so, by (24), for all ε > 0 there exists a constant C > 0

1
N
∥un∥

N
≤ C +

∫
B

F(x,un)dx,
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hence
1
N
∥un∥

N
≤ C +

∫
|un |≤tε

F(x,un)dx + ε
∫

B
f (x,un)undx

and so, from (25), we get
1
N
∥un∥

N
≤ C1 + εεn∥un∥ + ε∥un∥

N,

for some constant C1 > 0. Since

(
1
N
− ε)∥un∥

N
≤ C1 + εεn∥un∥, (27)

we deduce that the sequence (un) is bounded in E. As consequence, there exists u ∈ E such that, up to
subsequence, un ⇀ u weakly in E, un → u strongly in Lq(B), for all q ≥ 1 and un(x) → u(x) a.e. in B and so
∇un → ∇u as in [1]. Furthermore, we have from (24) and (25), that

0 <
∫

B
f (x,un)un ≤ C, (28)

and

0 <
∫

B
F(x,un) ≤ C. (29)

Since by Lemma 2.1 in [18], we have

f (x,un)→ f (x,u) in L1(B) as n→ +∞, (30)

then, it follows from (H2) and the generalized Lebesgue dominated convergence theorem that

F(x,un)→ F(x,u) in L1(B) as n→ +∞. (31)

So,

lim
n→+∞

∥un∥
N = N(c +

∫
B

F(x,u)dx). (32)

and using (24), we have

lim
n→+∞

∫
B

f (x,un)undx = N(c +
∫

B
F(x,u)dx). (33)

By the condition (H3),

lim
n→+∞

N
∫

B
F(x,un)dx ≤ N(c +

∫
B

F(x,u)dx)

and so c ≥ 0. Also, it follows from (24) and (24), that u is a weak solution of the problem (1) and if we take
φ = u as a test function, we get ∫

B
|∇u|N2 w(x)dx =

∫
B

f (x,u)udx,

so J(u) ≥ 0 and .
We will finish the proof by considering three cases for the level c.

Case 1. c = 0. In this case
0 ≤ J(u) ≤ lim inf

n→+∞
J(un) = 0.
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So,
J(u) = 0

and then

lim
n→+∞

1
N
∥un∥

N =

∫
B

F(x,u)dx =
1
N
∥u∥N.

Case 2. c > 0 and u = 0. We prove that this case cannot happen.
From (46) and (48) with v = un we have

lim
n→+∞

∥un∥
N = Nc and lim

n→+∞

∫
B

f (x,un)undx = Nc

and by (48), we have also ∣∣∣∥un∥
N
−

∫
B

f (x,un)undx
∣∣∣ ≤ Cεn.

First we claim that there exists q > 1 such that∫
B
| f (x,un)|qdx ≤ C (34)

so

∥un∥
N
≤ Cεn +

( ∫
B
| f (x,un)|q

) 1
q dx(
∫

B
|un|

q′
) 1

q′

where q′ is the conjugate of q. Since (un) converge to u = 0 in Lq′ (B),

lim
n→+∞

∥un∥
N = 0

and this is a contradiction with c > 0.

For the proof of the claim, since f has subcritical or critical growth, for every ε > 0 and q > 1 there
exists tε > 0 and C > 0 such that for all |t| ≥ tε, we have

| f (x, t)|q ≤ C exp(Neα0(ε+1)tN′

). (35)

Consequently, ∫
B
| f (x,un)|qdx =

∫
{|un |≤tε

| f (x,un)|qdx +
∫
{|un |>tε}

| f (x,un)|qdx

≤ ωN−1 max
B×[−tε,tε]

| f (x, t)|q + C
∫

B
exp
(
Neα0(ε+1)|un |

N′ )
dx.

Since Nc < ωN−1

αN−1
0

, there exists η ∈ (0, 1
N ) such that Nc = (1 −Nη)

ωN−1

αN−1
0

. On the other hand, ∥un∥
N′
→ (Nc)

1
N−1 ,

so there exists nη > 0 such that for all n ≥ nη, we get ∥un∥
N′
≤ (1 − η)

ω
1

N−1
N−1
α0

. Therefore,

α0(1 + ε)(
|un|

∥un∥
)N′
∥un∥

N′
≤ (1 + ε)(1 − η)ω

1
N−1
N−1·

We choose ε > 0 small enough to get

α0(1 + ε)∥un∥
N′
≤ ω

1
N−1
N−1,
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therefore the second integral is uniformly bounded in view of (5), and the claim is proved.

Case 3. c > 0 and u , 0. In this case, we claim that J(u) = c and therefore we get

lim
n→+∞

∥un∥
N = N

(
c +
∫

B
F(x,u)dx

)
= N
(
J(u) +

∫
B

F(x,u)dx
)
= ∥u∥N.

Now, in order to prove the claim we remark that

J(u) ≤
1
N

lim inf
n+→∞

∥un∥
N
−

∫
B

F(x,u)dx = c.

Suppose that J(u) < c. We have

∥u∥N
′

< (N
(
c +
∫

B
F(x,u)dx

)) 1
N−1 . (36)

Set
vn =

un

∥un∥

and
v =

u

(N
(
c +
∫

B
F(x,u)dx

)
)

1
N

·

We have ∥vn∥ = 1, vn ⇀ v in E, v . 0 and ∥v∥ < 1. So, by Lemma 4.1, we get

sup
n

∫
B

exp
(
Nepω

1
N−1
N−1 |vn |

N′ )
dx < ∞

for 1 < p < (1 − ∥v∥N)
−1

N−1 .

As in the case 2, we are going to estimate
∫

B
| f (x,un)|qdx.

For ε > 0, one has ∫
B
| f (x,un)|qdx =

∫
{|un |≤tε

| f (x,un)|qdx +
∫
{|un |>tε}

| f (x,un)|qdx

≤ ωN−1 max
B×[−tε,tε]

| f (x, t)|q + C
∫

B
exp
(
Neα0(1+ε)|un |

N′ )
dx

≤ Cε + C
∫

B exp
(
Neα0(1+ε)∥un∥

N′
|vn |

N′
)
dx ≤ C

if we have α0(1 + ε)∥un∥
N′
≤ pω

1
N−1
N−1 and 1 < p < (1 − ∥v∥N)

−1
N−1 .

Since

(1 − ∥v∥N)
−1

N−1 =
( N(c +

∫
B F(x,u)dx)

N(c +
∫

B F(x,u)dx) − ∥u∥N)

) 1
N−1
=
(c + ∫B F(x,u)dx

c − J(u)

) 1
N−1

and

lim
n→+∞

∥un∥
N′ = (N

(
c +
∫

B
F(x,u)dx)

) 1
N−1

then,

α0(1 + ε)∥un∥
N′
≤ α0(1 + 2ε)(N

(
c +
∫

B
F(x,u)dx

) 1
N−1 .
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But J(u) ≥ 0 and c <
ωN−1

NαN−1
0

, then if we choose ε > 0 small enough such that

α0

ω
1

N−1
N−1

(1 + 2ε) <
( 1
N(c − J(u))

) 1
N−1

which means

(1 + 2ε)
(
(c − J(u)

) 1
N−1 <

ω
1

N−1
N−1

N
1

N−1α0

and so, the sequence ( f (x,un)) is bounded in Lq, q > 1.
Since ⟨J′(un),un − u⟩ = o(1), we get∫

B
w(x)|∇un|

N−2
∇un.(∇un − ∇u)dx −

∫
B

f (x,un)(un − u)dx = o(1). (37)

On the other hand, since un ⇀ u weakly in E then∫
B

w(x)|∇u|N−2
∇u.(∇un − ∇u)dx = o(1). (38)

Combining (37) and (38), we obtain∫
B

w(x)
(
|∇un|

N−2
∇un − |∇u|N−2

∇u
)
.(∇un − ∇u)dx =

∫
B

f (x,un)(un − u)dx + o(1). (39)

Using the well known inequality

(|x|N−2x − |y|N−2y).(x − y) ≥ 22−N
|x − y|N, ∀ x, y ∈ RN and N ≥ 2 (40)

we obtain

0 ≤ 22−N
∫

B
w(x)|∇un − ∇u|Ndx ≤

∫
B

f (x,un)(un − u)dx + o(1). (41)

By the Hölder inequality, we obtain

22−N
∫

B
w(x)|∇un − ∇u|Ndx ≤

∫
B

f (x,un)(un − u)dx + o(1)

≤

( ∫
B
| f (x,un)|q

) 1
q (
∫

B
|un − u|q

′

)
1
q′ dx + o(1).

(42)

So,
∥un − u∥ → 0 as n→∞.

By Brezis-Lieb’s lemma, up to subsequence, we get

lim
n→+∞

∥un∥
N = N(c +

∫
B

F(x,u)dx) = ∥u∥N

and this contradicts (36).
And this finish the proof of the Proposition 3.2. □

Proof of Theorem 1.2
Since f (x, t) satisfies the condition (7) for all α0 > 0, then by Proposition 3.2, the functional J satisfies the
(PS) condition (at each possible level d). So, by Lemma 2.7 and Lemma 2.8, we deduce that the functional J
has a nonzero critical point u in E. From maximum principle, the solution u of the problem (1) is positive.□
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4. Proof of Theorem 1.3

In the Theorem 1.3, we suppose that the function f (x, t) is critical, that is, it satisfies the condition (8) for
some α0 > 0.
We still can use Theorem 1.1 if we prove that the mountain pass level c in this Theorem 1.1 satisfies

c <
ωN−1

NαN−1
0

·

For this purpose , we will prove that there exists v ∈ E such

max
t≥0

J(tv) <
ωN−1

NαN−1
0

· (43)

As in [13], we consider a Moser-type sequence given by

ψn(t) =


log(1 + t)

log
1
N (1 + n)

if 0 ≤ t ≤ n

log
N−1

N (1 + n) if t ≥ n.
(44)

Let vn(x) the function defined by

ψn(t) = ω
1
N
N−1vn(x), where e−t = |x|. (45)

With this choice of ψn, the sequence (vn) is normalized since

∥vn∥
N =

1
ωN−1

∫
B
|∇ψn|

N
| log(

e
|x|

)|N−1 dx =
∫ +∞

0
|ψ′(t)|N(1 + t)N−1dt = 1.

On the other hand, we have

lim
n→+∞

∫
B

exp
(
Neω

1
N−1
N−1 |vn |

N′ )
dx = lim

n→+∞
ωN−1

∫ +∞

0
exp
(
Ne|ψn |

N′

−Nt
)
dt. (46)

Now, we introduce the following elementary result.

Lemma 4.1. For the sequence ψn induced by (44), we have

lim
n→+∞

∫ +∞

0
exp
(
Ne|ψn |

N′

−Nt
)
dt = (

N + 1
N

)eN. (47)

Proof. If we set s = 1 + t and j = n + 1, we get∫ +∞

0
exp
(
Ne|ψn |

N′

−Nt
)
dt =

eN

N
+

∫ n

0
exp
(
Ne

logN′ (1+t)

log
1

N−1 (1+n) −Nt
)
dt,

where N′ =
N

N − 1
.

And so, ∫ +∞

0
exp
(
Ne|ψn |

N′

−Nt
)
dt =

eN

N
+

∫ j

1
exp
(
Ns( log s

log j )
1

N−1
−N(s − 1)

)
ds.

That is, ∫ +∞

0
exp
(
Ne|ψn |

N′

−Nt
)
dt =

eN

N
+ eN

∫ j

1
exp
(
Ns( log s

log j )
1

N−1
−Ns

)
ds.
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We claim that

lim
j→+∞

∫ j

1
exp
(
Ns( log s

log j )
1

N−1
−Ns

)
ds = 1, (48)

and so the formula (47) follows.
The proof of the claim can be omitted since it is technical and it is the same as the case when N = 2 in [13],
Lemma 4.1. □

Lemma 4.2. For the sequence vn identified by (45), there exists n ≥ 1 such that

max
t≥0

J(tvn) <
ωN−1

NαN−1
0

. (49)

Proof. By contradiction, suppose that for all n ≥ 1,

max
t≥0

J(tvn) ≥
ωN−1

NαN−1
0

·

Therefore, for any n ≥ 1, there exists tn > 0 such that

max
t≥0

J(tvn) = J(tnvn) ≥
ωN−1

NαN−1
0

and so,
1
N

tN
n −

∫
B

F(x, tnvn)dx ≥
ωN−1

NαN−1
0

·

Then, by using (H1)

tN
n ≥

ωN−1

αN−1
0

· (50)

On the other hand,
d
dt

J(tvn)
∣∣∣
t=tn
= tN−1

n −

∫
B

f (x, tnvn)vndx = 0,

that is

tN
n =

∫
B

f (x, tnvn)tnvndx. (51)

Now, we claim that the sequence (tn) is bounded in (0,+∞).
Indeed, it follows from (H5) that for all ε > 0, there exists tε > 0 such that

f (x, t)t ≥ (γ0 − ε) exp
(
Neα0tN′ )

∀|t| ≥ tε, uniformly in x ∈ B. (52)

Since

tN
n =

∫
B

f (x, tnvn)tnvkdx ≥ ωN−1

∫ +∞

n
f
(
e−s, tn

ψn

ω
1
N
N−1

)
tn

ψn

ω
1
N
N−1

e−Nsds, (53)

and from (44) and (50), we have

tn
ψn

ω
1
N
N−1

= tn

( log(1 + n)

ω
1

N−1
N−1

) 1
N′
≥

( log(1 + n)
α0

) 1
N′
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then, it follows from (52) that for all ε > 0, there exists n0 such that for all n ≥ n0

tN
n ≥ ωN−1(γ0 − ε)

∫ +∞

n
exp
(
Ne

α0

ω
1

N−1
N−1

(tnψn)N′

−Ns
)
ds, (54)

that is

tN
n ≥

ωN−1

N
(γ0 − ε) exp

(
Ne

α0

ω
1

N−1
N−1

tN′
n log(1+n)

−Nn
)
. (55)

From (55), we obtain for n large enough

1 ≥
ωN−1

N
(γ0 − ε) exp

(
Ne

α0

ω
1

N−1
N−1

tN′
n log(1+n)

−Nn −N log tn

)
.

Therefore (tn) is bounded. Also, we have from the formula (50) that

lim
n→+∞

tN
n ≥

ωN−1

αN−1
0

.

Now, suppose that
lim

n→+∞
tN
n >

ωN−1

αN−1
0

.

For n large enough, tN
n >

ωN−1

αN−1
0

and in this case, the right hand site of the inequality (54) will gives the

unboundedness of the sequence (tn). Since (tn) is bounded, we get

lim
n→+∞

tN
n =

ωN−1

αN−1
0

· (56)

Now, we want to use the expression of tN
n given by (51) and the hypothesis (52). So let

Bn,+ = {x ∈ B; tnvn(x) ≥ tε} and Bn,− = {x ∈ B; tnvn(x) < tε}.

We have

tN
n ≥ (γ0 − ε)

∫
Bn,+

exp
(
Neα0tN′

n vN′
n
)
dx +

∫
Bn,−

f (x, tnvn)tnvndx,

and then

tN
n ≥ (γ0 − ε)

∫
B

exp
(
Neα0tN′

n vN′
n
)
dx − (γ0 − ε)

∫
Bn,−

exp
(
Neα0tN′

n vN′
n
)
dx

+
∫

Bn,−
f (x, tnvn)tnvndx.

(57)

The sequence (vn) converges to 0 in B and χBn,− converges to 1a.e in B. By using the dominated convergence
theorem, we obtain

lim
n→+∞

∫
Bn,−

f (x, tnvn)tnvndx = 0.

Also, we have ∫
Bn,−

exp
(
Neα0tN′

n vN′
n
)
dx ≤

∫
B

exp
(
Neα0tN′

n vN′
n
)
dx.

So,

lim
n→+∞

∫
Bn,−

exp
(
Neα0tN′

n vN′
n
)
dx ≤ lim

n→+∞

∫
B

exp
(
Neα0tN′

n vN′
n
)
dx

≤ eNvol(B).
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From (46) and the Lemma 4.1, we have

lim
n→+∞

∫
B

exp
(
Neα0tN′

n vN′
n
)
dx ≥ lim

n→+∞

∫
B

exp
(
Neω

1
N−1 |vn |N

′

N−1

)
dx

≥ ωN−1( N+1
N )eN

So, it follows from (57) that

ωN−1

αN−1
0

≥ (γ0 − ε)ωN−1eN, (58)

for all ε > 0. So
γ0 ≤

1
αN−1

0 eN

which is with contradiction of the condition on γ0 in (H5). The Theorem 1.3 is proved. □
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