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Abstract. Motivated by the Hanin inequality, in this paper we study a class of reversed power mean
inequalities that does not depend on a weight function. We first give the reverse of the basic power
mean inequality describing the monotonic behavior of means. Then, we establish the scaled, i.e. two-
parametric versions of the obtained inequalities. By scaling, we develop a new method for improving the
starting reversed power mean inequalities. More precisely, we impose conditions under which the scaled
inequality is sharper than the corresponding original power mean inequality. Some particular examples
are also discussed. Finally, our results are compared with some previously known from the literature.

1. Introduction

A function f : I ⊆ R→ R, where I is an interval, is convex if

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)

holds for all x, y ∈ I and λ ∈ [0, 1]. The most important inequality for a convex function f : I → R, the
famous Jensen inequality, asserts that

f
( n∑

i=1

wiai

)
≤

n∑
i=1

wi f (ai), (1)

holds for all a1, a2, . . . , an ∈ I and w1,w2, . . . ,wn ∈ [0, 1], provided that
∑n

i=1 wi = 1. Inequality (1) is extensively
used in almost all fields of mathematics, especially in mathematical analysis and statistics.

2020 Mathematics Subject Classification. Primary 26D15.
Keywords. power mean, power mean inequality, reverse, Jensen inequality, Hanin inequality.
Received: 01 July 2024; Accepted: 21 July 2025
Communicated by Miodrag Spalević
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In 2012, Krnić et al. [8] (see also [6] and [7]), established the following mutual bounds for the difference
between the right-hand side and the left-hand side of the Jensen inequality:

n max
1≤ j≤n

w jIn( f , a) ≥
n∑

j=1

w j f (a j) − f
( n∑

j=1

w ja j

)
≥ n min

1≤ j≤n
w jIn( f , a). (2)

Here, In stands for the corresponding non-weighted form of the Jensen functional, i.e.

In( f , x) =
1
n

m∑
j=1

f (x j) − f
(1
n

m∑
j=1

x j

)
.

It should be noticed here that inequalities in (2) have been established as a consequence of the so called
superadditivity of the Jensen functional, established by Dragomir et al. [3] (see also [4]). Obviously, the
left inequality in (2) is the reverse, while the right inequality sign represents the refinement of the Jensen
inequality. Based on (2), numerous inequalities such as the Young inequality, the Hölder inequality, power
mean inequalities, etc. have been refined (see, e.g. [6, 8] and the references cited therein). In addition, for
a comprehensive overview of the old and new results in connection to the Jensen inequality, the reader is
referred to monographs [5, 10, 11] and the references cited therein.

One of the most interesting consequences of the Jensen inequality are power mean inequalities. Recall
that a power mean is defined by

Mr (a,w) =
{ (∑n

i=1 wiai
r) 1

r , r , 0,∏n
i=1 ai

wi , r = 0,

where a = (a1, a2, . . . , an) stands for a non-negative n-tuple and w = (w1,w2, . . . ,wn) is a non-negative n-tuple
such that

∑n
i=1 wi = 1. Further, the case of w1 = w2 = · · · = wn =

1
n yields the corresponding non-weighted

mean

mr (a) =


(

1
n
∑n

i=1 ai
r
) 1

r , r , 0,(∏n
i=1 ai

) 1
n , r = 0.

Recall that M−1 (a,w), M0 (a,w), M1 (a,w), M2 (a,w) provide the harmonic, geometric, arithmetic and
quadratic means, respectively. Moreover, M−∞ (a,w) = min1≤ j≤n a j and M∞ (a,w) = max1≤ j≤n a j. The
basic power mean inequality, describing monotonic behavior of means, asserts that if r < s, then

Mr (a,w) ≤Ms (a,w) . (3)

This follows by putting f (t) = t
s
r in (1) and by replacing n-tuple a = (a1, a2, . . . , an) with ar = (ar

1, a
r
2, . . . , a

r
n),

provided that s, r , 0 (for more details, including the cases when one of the parameters r, s is equal to zero
the reader is referred to [10, 11]). In this setting, relation (2) reduces to

n max
1≤ j≤n

w j
(
ms

s (a) −ms
r (a)

)
≥Ms

s (a,w) −Ms
r (a,w) ≥ n min

1≤ j≤n
w j

(
ms

s (a) −ms
r (a)

)
, (4)

providing the reverse and refinement of the basic power mean inequality (3). However, inequalities in (4)
provide reverse and refinement of the weighted power means in terms of the corresponding non-weighted
means. It is important to note that that the above relations do not improve the non-weighted power mean
inequalities.

On the other hand, Hanin [2], established the following reverse of the non-weighted arithmetic-quadratic
mean inequality

M2

4
+m2

1(a) ≥ m2
2(a), (5)
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where M = max1≤ j≤n a j. The proof of the above inequality is extremely easy and reads as follows (see also
[9]): (M

2
−m1(a)

)2

+Mm1(a) −m2
2(a) =

(M
2
−m1(a)

)2

+
1
n

n∑
j=1

a j(M − a j) ≥ 0.

In addition, Hanin [2], also gave the following extension of the above inequality by noting that

Mk
k (a,w) ≤Mk

1 (a,w) + (k − 1)k
k

1−k Mk, (6)

provided that k > 1. Clearly, relation (6) represents the reverse of the power mean inequality Mk (a,w) ≥
M1 (a,w), k > 1. It is important to note that the above reversed relation (6) does not depend on weight
w. This means that (6) also holds when w =

(
1
n ,

1
n . . . ,

1
n

)
. Roughly speaking, this fact provides theoretical

advantage of inequality (6) compared to the first inequality in (4).
The main focus in this article is a further study of the reversed mean inequality (6). For the reader’s

convenience, inequalities related to (6) will also be referred to as the Hanin-type inequalities. The outline
of this article is as follows: after this introductory part, in Section 2 we extend inequality (6) to hold for
all real parameters k. As an application, we obtain the reverse of the power mean inequality (3) that does
not depend on weight w. The obtained results are also compared with some related results, known from
the literature. In Section 3 we establish scaled versions of the Hanin-type inequalities derived in Section 2.
By scaled inequalities we mean two-parametric extensions of the corresponding Hanin-type inequalities.
In such a way, in Section 4 we discuss efficiency of the established scaled inequalities. More precisely, we
develop a new method for improving the reversed mean inequalities of Hanin-type by imposing conditions
under which the scaled inequality is sharper than the corresponding original inequality. As an application,
we study some particular examples.

Conventions

In order to summarize our further discussion, we present the following notations. Throughout this
paper a = (a1, a2, . . . , an) ∈ Rn

+ stands for a non-negative n-tuple. In addition, if a is included in a mean
Mk (a,w), where k < 0, then all coordinates in a are assumed to be strictly positive. By a weight w, we
mean a non-negative n-tuple w = (w1,w2, . . . ,wn) ∈ Rn

+ such that
∑n

j=1 w j = 1. For brevity, the limit means
M−∞ (a,w) = min1≤ j≤n a j and M∞ (a,w) = max1≤ j≤n a j, will be denoted by m and M respectively, i.e.

m = min
1≤ j≤n

a j and M = max
1≤ j≤n

a j.

2. Main results

Here, our main focus is an extension of inequality (6) for all real parameters k. The first step in our study
is an extension of (6) for an arbitrary non-negative parameter k. For completeness, we also give the proof
when k > 1.

Theorem 2.1. If k > 1, then holds the inequality

Mk
k(a,w) ≤Mk

1(a,w) + (k − 1)k
k

1−k Mk. (7)

Further, if 0 < k < 1, then the sign of inequality (7) is reversed, i.e.

Mk
k(a,w) ≥Mk

1(a,w) + (k − 1)k
k

1−k Mk. (8)
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Proof. Let k > 1. Since ak−1
j ≤Mk−1, j = 1, 2, . . . ,n, we have that

Mk
k(a,w) =

n∑
j=1

w jak
j ≤Mk−1

n∑
j=1

w ja j =Mk−1M1(a,w), (9)

which means that

Mk
k(a,w) −Mk

1(a,w) ≤Mk−1M1(a,w) −Mk
1(a,w). (10)

Now, consider the function f : [0,∞) → R defined by f (t) = Mk−1t − tk. We have that f ′(t) = Mk−1
− ktk−1,

so f ′(t0) = 0 if and only if Mk−1 = ktk−1
0 , that is, if t0 = Mk

1
1−k . Moreover, f ′(t) > 0 if and only if t < t0, while

f ′(t) < 0 if and only if t > t0. This means that f has a global maximum at the point t = t0, i.e.

f (t0) =Mk−1Mk
1

1−k −Mkk
k

1−k = (k − 1)k
k

1−k Mk. (11)

Now, combining (10) and (11), we arrive at the relation

Mk
k(a,w) −Mk

1(a,w) ≤ (k − 1)k
k

1−k Mk,

that is, we obtain (7).
It remains to consider the case of 0 < k < 1. Then, similarly as above, it follows that Mk

k(a,w) ≥
Mk−1M1(a,w), so it holds the reversed inequality in (10). Moreover, the above function f (t) = Mk−1t − tk is
monotonically decreasing on interval (0, t0), and monotonically increasing on (t0,∞), which means that f
attains global minimum at t0 = Mk

1
1−k , which is equal to (k − 1)k

k
1−k Mk. This yields the reversed inequality

(8).

Remark 2.2. Both relations (7) and (8) represent the corresponding reverses of the power mean inequalities between
Mk(a,w) and M1(a,w), respectively. In particular, if k = 2, then relation (7) reduces to

M2
2(a,w) ≤M2

1(a,w) +
M2

4
, (12)

which represents the weighted form of the original Hanin inequality (5). Similarly, if k = 1
2 , relation (8) yields the

inequality

M
1
2
1
2
(a,w) ≥M

1
2
1 (a,w) −

√
M
4
, (13)

which represents the reverse of the power mean inequality M 1
2
(a,w) ≤M1(a,w).

The next step in our study is an extension of Theorem 2.1 for the case of negative parameters k. In fact,
we obtain the corresponding reverses between the power mean Mk(a,w), k < 0, and the harmonic mean
M−1(a,w). The corresponding result is an easy consequence of the previous theorem.

Corollary 2.3. If k < −1, then holds the inequality

Mk
k(a,w) ≤Mk

−1(a,w) − (k + 1)(−k)−
k

k+1 mk. (14)

Moreover, if −1 < k < 0, then it holds

Mk
k(a,w) ≥Mk

−1(a,w) − (k + 1)(−k)−
k

k+1 mk. (15)
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Proof. To prove inequalities (14) and (15), we consider relations (7) and (8) with the n-tuple( 1
a1
,

1
a2
, . . . ,

1
an

)
instead of (a1, a2, . . . , an). Then, by noting that

max
1≤ j≤n

1
a j
=

1
m
,

we easily arrive at the both relations.

Remark 2.4. Relations (14) and (15) also represent reverses of the corresponding mean inequalities in the case of
negative parameter k. In particular, if k = −2, then inequality (14) takes form

M−2
−2(a,w) ≤M−2

−1(a,w) +
1

4m2 ,

which represents the reverse of the inequality M−2(a,w) ≤M−1(a,w). On the other hand, if k = − 1
2 , then (15) reads

M−
1
2

−
1
2
(a,w) ≥M−

1
2
−1 (a,w) −

1
4
√

m
,

which is the reverse of the relation M
−

1
2
(a,w) ≥M−1(a,w).

Now, by virtue of our Theorem 2.1, we are able to derive reverse of the basic power mean inequality (3)
in the case when both parameters r and s are positive or negative.

Theorem 2.5. If 0 < r < s, then holds the inequality

Ms
s(a,w) ≤Ms

r(a,w) +
s − r

r

( s
r

) s
r−s Ms. (16)

In addition, if s < r < 0, then it holds

Ms
s(a,w) ≤Ms

r(a,w) +
s − r

r

( s
r

) s
r−s ms. (17)

Proof. To prove (16), we consider (7) with the n-tuple ar = (ar
1, a

r
2, . . . , a

r
n), r > 0, instead of a = (a1, a2, . . . , an).

Then, M1(ar,w) =
∑n

j=1 w jar
j and Mr = max1≤ j≤n ar

j. Furthermore, by putting k = s
r , s > r > 0, we have that

M
s
r
s
r
(ar,w) =Ms

s(a,w) and M
s
r
1 (ar,w) =Ms

r(a,w),

so (16) holds.
To prove (17) we follow the same lines as above, except that we use the fact that mr = max1≤ j≤n ar

j, when
r < 0.

Remark 2.6. It should be noticed here that both relations (16) and (17) can be also derived from (8), as well as, from
relations (14) and (15).

Remark 2.7. If r tends to zero, then we have that limr→0
s−r

r

(
s
r

) s
r−s
= 1, so inequalities (16) and (17) respectively

reduce to trivial reverses

Ms
s(a,w) ≤Ms

0(a,w) +Ms, s > 0,

and

Ms
s(a,w) ≤Ms

0(a,w) +ms, s < 0,

between the power mean Ms(a,w) and the geometric mean M0(a,w).
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Remark 2.8. If s = 2r, then (16) and (17) respectively reduce to

M2r
2r(a,w) ≤M2r

r (a,w) +
M2r

4
, r > 0, (18)

and

M2r
2r(a,w) ≤M2r

r (a,w) +
m2r

4
, r < 0. (19)

Clearly, by putting r = 1 in inequality (18), we obtain the basic Hanin inequality (5).

We have already discussed that the advantage of Theorem 2.1, Corollary 2.3 and Theorem 2.5, compared
to relation (4), is that they provide estimates that does not depend on weights. In such a way, they also
provide reverses for the non-weighted power mean inequalities. However, these two methods are generally
not comparable, as it will be discussed in the next remark.

Remark 2.9. Let k = 3 and n = 3. Then, considering (7) with a = (1, 2, 3), we obtain the estimate

M3
3(a,w) −M3

1(a,w) ≤ 6
√

3, (20)

regardless of the weight w. On the other hand, if n = 3, s = 3, r = 1 and a = (1, 2, 3), then the first inequality in (4)
reads

M3
3(a,w) −M3

1(a,w) ≤ 3 max
1≤ j≤3

w j

(
m3

3 (a) −m3
1 (a)

)
= 12 max

1≤ j≤3
w j. (21)

Now, if w =
(

1
6 ,

1
6 ,

2
3

)
, then 12 max1≤ j≤3 w j = 8 < 6

√
3, which means that inequality (21) is more accurate than (20).

On the other hand, if w =
(

1
24 ,

1
24 ,

22
24

)
, then 12 max1≤ j≤3 w j = 11 > 6

√
3. So, in this case relation (20) is sharper than

(21).

As we can see from the previous remark, the results we derived in this section are generally not
comparable to the corresponding results developed in [6] and [8] (see also [5]). However, their advantage
is that we they provide estimates for the non-weighted inequalities.

3. Scaled evolution for the reversed mean inequalities

We aim now to establish scaled versions of the results from the previous section. More precisely, we
are going to extend the corresponding results by introducing two new parameters. In such a way, we will
develop a new method for improving the corresponding reversed mean inequalities. It should be noticed
here that some similar approaches can be found in slightly older papers [1] and [12]. In this regard, our
first result is a scaled version of Theorem 2.1.

Theorem 3.1. If k > 1 and 0 < β ≤ kα, then holds the inequality

βMk
k(a,w) ≤ αkMk

1(a,w) + (k − 1)Mk. (22)

Further, if 0 < k < 1 and 0 < kα ≤ β, then

βMk
k(a,w) ≥ αkMk

1(a,w) + (k − 1)Mk. (23)

Proof. We first consider the case k > 1. We use estimate (9) from the proof of Theorem 2.1. Then, we have
that

βMk
k(a,w) − αkMk

1(a,w) ≤ βMk−1M1(a,w) − αkMk
1(a,w). (24)
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Now, similarly to the proof of Theorem 2.1, we are going to show that the function h : [0,∞) → R defined
by h(t) = βMk−1t− αktk has global maximum on its domain. Namely, since h′(t) = βMk−1

− kαktk−1, it follows
that h has stationary point t0 = k

1
1−kα

k
1−k β

1
k−1 M. Moreover, since h is monotonically increasing on interval

(0, t0), and monotonically decreasing on (t0,∞), it follows that h attains global maximum at t0, equal to

h(t0) =
(
β

α

) k
k−1

k
k

1−k (k − 1)Mk. (25)

In addition, since βα ≤ k by the assumptions, the previous relation yields the estimate

h(t0) ≤ (k − 1)Mk. (26)

Finally, combining (24) and (26), we have that

βMk
k(a,w) − αkMk

1(a,w) ≤ (k − 1)Mk,

as claimed.
It remains to consider the complementary case when 0 < k < 1 and 0 < kα ≤ β. Then, similarly to the

proof of Theorem 2.1, it follows that the sign of inequality (24) is reversed, while the above defined function
h possess global minimum given by (25). Then, h(t0) ≥ (k − 1)Mk, provided that 0 < k < 1 and 0 < kα ≤ β.
Clearly, this yields (23), as claimed.

Remark 3.2. Let αk = β, where k > 1. Combining this condition with the assumption 0 < β ≤ kα, it follows that
0 < α ≤ k

1
k−1 . Therefore, in this case relation (22) reduces to

Mk
k(a,w) ≤Mk

1(a,w) +
(k − 1)Mk

αk
, 0 < α ≤ k

1
k−1 .

Of course, the latter inequality is the best possible for α = k
1

k−1 , that is, in the case of the starting Hanin-type inequality
(7). In particular, if k = 2, then α = 2, so the above inequality reduces to relation (12) from Remark 2.2.

A similar conclusion can be drawn for the case of 0 < k < 1. Then, combining αk = β and 0 < kα ≤ β, we also
have that 0 < α ≤ k

1
k−1 , so relation (23) becomes

Mk
k(a,w) ≥Mk

1(a,w) +
(k − 1)Mk

αk
, 0 < α ≤ k

1
k−1 .

Clearly, since k − 1 < 0, the above inequality is the best possible in the case of inequality (8). In particular, if k = 1
2 ,

then, α = 4, so the previous inequality becomes (13).

Similarly to the previous section, our next goal is to extend Theorem 3.1 to hold for negative parameters.
In other words, we give scaled version of Corollary 2.3. More precisely, we obtain the corresponding scaled
reverse between a power mean Mk(a,w), k < 0, and the harmonic mean M−1(a,w).

Corollary 3.3. If k < −1 and 0 < β ≤ −kα, then holds the inequality

βMk
k(a,w) ≤ α−kMk

−1(a,w) − (k + 1)mk. (27)

Further, if −1 < k < 0 and 0 < −kα ≤ β, then it holds

βMk
k(a,w) ≥ α−kMk

−1(a,w) − (k + 1)mk. (28)

Proof. We follow the same procedure as in the proof of Corollary 2.3, except that we use relations (22) and
(23), instead of (7) and (8).
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Remark 3.4. Let α−k = β. Combining this with the assumption 0 < β ≤ −kα, when k < −1, it follows that
0 < α ≤ (−k)−

1
k+1 . Clearly, the limit case α = (−k)−

1
k+1 in (27) yields inequality (14). In the same way, combining

α−k = β and 0 < −kα ≤ β, when −1 < k < 0, we also have that 0 < α ≤ (−k)−
1

k+1 . Consequently, the limit case in
(28) yields (15), as expected.

Finally, by virtue of Theorem 3.1, we will now establish scaled reversed relations that correspond to the
basic power mean inequality (3), when both parameters r, s are positive or negative.

Theorem 3.5. Let α, β > 0. If 0 < r < s and 0 < rβ ≤ sα, then holds the inequality

βMs
s(a,w) ≤ α

s
r Ms

r(a,w) +
s − r

r
Ms. (29)

In addition, if s < r < 0 and sα ≤ rβ < 0, then it holds

βMs
s(a,w) ≤ α

s
r Ms

r(a,w) +
s − r

r
ms. (30)

Proof. We follow the same procedure as in the proof of Theorem 2.5 except that we use scaled inequality
(22) instead of (7). Clearly, the condition 0 < β < kα from Theorem 3.1 is equivalent to 0 < rβ ≤ sα, when
both r, s are positive, i.e. to sα ≤ rβ < 0, when both r, s are negative. The rest of the proof is obvious.

Remark 3.6. Similarly to Remarks 3.2 and 3.4, we aim now to impose conditions under which the scaled relations
(29) and (30) reduce to reversed power mean inequalities (16) and (17). This happens when αs = βr. Combining this
condition with 0 < rβ ≤ sα when both r, s are positive, or with sα ≤ rβ < 0, when both r, s are negative, we have that

0 < α ≤
(

s
r

) r
s−r , i.e. 0 < α

s
r ≤

(
s
r

) s
s−r . Clearly, the maximum value of α yields power mean inequalities (16) and (17).

In Remarks 3.2, 3.4 and 3.6, we have obtained reversed mean inequalities from Section 2, from the
corresponding scaled relations, when parameter α took the maximum value. For all smaller values of
parameter α the obtained inequalities were weaker in the corresponding setting. However, the scaled
relations can also be utilized in refining reversed mean inequalities from Section 2. That is the main topic
of the next section.

4. Efficiency discussion for the scaled Hanin-type inequalities

Our main goal in this section is to discuss efficiency of scaled Hanin-type inequalities from the previous
section. More precisely, we aim here to impose some general conditions under which the scaled Hanin-
type inequalities are more accurate than the original inequalities from Section 2. The starting point in our
discussion is efficiency of inequality (22). In order to summarize our further discussion, we define the
quantity

ck =
Mk

1(a,w)

Mk
1(a,w) + (k − 1)k

k
1−k Mk

, k > 1. (31)

It should be noticed here that the above parameter is always positive provided that a , (0, 0, . . . , 0), although
it can be sufficiently small. For example, if a = (1, 0, 0, . . . , 0) and w =

(
1
n ,

1
n , . . . ,

1
n

)
, then

ck =
1

1 + (k − 1)k
k

1−k nk
,

and consequently, limn→∞ ck = 0. On the other hand, since M1(a,w) ≤M, it follows that ck ≤ (1 + (k − 1)k
k

1−k )−1,
i.e. ck ∈

(
0, (1 + (k − 1)k

k
1−k )−1

]
. In particular, if k = 2, then c2 ∈

(
0, 4

5

]
, while for k = 3 we have that

c3 ∈
(
0, 27−6

√
3

23

]
.

Now, we are able to establish conditions under which inequality (22) is more accurate than inequality
(7).
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Theorem 4.1. Let k > 1 and let

Dk(ck) = {(u, v) ∈ R2
+; v ≤ ku, v ≥ ckuk + k

k
k−1 (1 − ck)},

where ck is defined by (31). If (α, β) ∈ Dk(ck), then inequality (22) is sharper than (7).

Proof. If (α, β) ∈ Dk(ck), then β ≤ kα and

β ≥ ckα
k + k

k
k−1 (1 − ck) =

αkMk
1(a,w) + (k − 1)Mk

Mk
1(a,w) + (k − 1)k

k
1−k Mk

,

which is equivalent to

Mk
1(a,w) + (k − 1)k

k
1−k Mk

≥
αkMk

1(a,w) + (k − 1)Mk

β
.

Obviously, the last inequality shows that inequality (22) is more accurate than (7) in this setting.

Remark 4.2. The set Dk(ck), k > 1, defined in the previous theorem, is a region in the first quadrant of the uv-plane
bounded by the line v = ku and a curve v = ckuk + k

k
k−1 (1 − ck). In particular, if k = 2, then the line v = 2u and

parabola v = c2u2 + 4(1 − c2) intersect at the points with coordinates (2, 4) and
(

2
c2
− 2, 4

c2
− 4

)
. It should be noticed

here that both intersection points belong to the first quadrant. In particular, if c2 =
1
4 , we have the region D2

(
1
4

)
which

represents better accuracy of inequality (22) in comparison to (7):

Further, if k = 3, then the line v = 3u and a cubical parabola v = c3u3 + 3
√

3(1 − c3) intersect at three points with

u-coordinates u1 =
√

3 and u2,3 =
−c3
√

3±
√

3c3(4−3c3)
2c3

. It is easy to see that two intersection points belong to the first
quadrant, while the remaining one is in the third quadrant. In particular, if c3 =

1
2 , then the intersection points with

u-coordinates u1 =
√

3 and u2 =
−
√

3+
√

15
2 belong to the first quadrant, providing the region D3

(
1
2

)
of efficiency of

inequality (22):
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Generally, it is easy to see that the one of intersection points of the line v = ku and a curve v = ckuk + k
k

k−1 (1− ck) has
coordinates

(
k

1
k−1 , k

k
k−1

)
.

Our next step is to discuss the case 0 < k < 1. In other words, we discuss efficiency of the scaled
relation (23), which is, in some way, complementary to (22). It should be noticed here that if 0 < k < 1,
then the value ck, defined by (31), can take negative values. For example, if n = 25, k = 1

2 , a = (1, 0, . . . , 0),
w =

(
1

25 ,
1

25 , . . . ,
1

25

)
, then the denominator of c 1

2
is equal to

√
M1(a,w) −

√
M
4
= −

1
20
< 0.

Therefore, to establish efficiency of (23), we will utilize somewhat different approach. We define

ck =
Mk

k(a,w) + (1 − k)k
k

1−k Mk

Mk
k(a,w)

, 0 < k < 1. (32)

Now, ck is always positive, moreover since Mk(a,w) ≤ M, it follows that ck ≥ 1 + (1 − k)k
k

1−k . On the other
hand, if a = (1, 0, . . . , 0), w =

(
1
n ,

1
n , . . . ,

1
n

)
, we have that ck = 1+ (1− k)k

k
1−k nk, so ck tends to infinity, as n tends

to infinity. In particular, if k = 1
2 , then c 1

2
∈

[
5
4 ,∞

)
.

The following result provides conditions under which the scaled relation (23) is more accurate than (8).

Theorem 4.3. Let 0 < k < 1 and let

Dk(ck) = {(u, v) ∈ R2
+; v ≥ ku, v ≤ ckuk

− k
k

k−1 (ck − 1)},

where ck is defined by (32). If (α, β) ∈ Dk(ck), then inequality (23) is sharper than (8).

Proof. If (α, β) ∈ Dk(ck), then β ≥ kα and

β ≤ ckα
k
− k

k
k−1 (ck − 1) =

(
Mk

k(a,w) + (1 − k)k
k

1−k Mk
)
αk
− (1 − k)Mk

Mk
k(a,w)

,

which is equivalent to

Mk
k(a,w) + (1 − k)k

k
1−k Mk

≥
βMk

k(a,w) + (1 − k)Mk

αk
.

Clearly, this shows better precision of inequality (23) in comparison to (8).
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Remark 4.4. Similarly to our discussion in Remark 4.2, the set Dk(ck) is a region bounded by the line v = ku and
the curve v = ckuk

− k
k

k−1 (ck − 1), 0 < k < 1. Let us consider the previous theorem for k = 1
2 . Then, D1/2(c1/2) is

a region in the first quadrant of uv-plane bounded by the line v = u
2 and the curve v = c1/2

√
u − 2(c1/2 − 1). By

a straightforward computation, it follows that the line and curve intersect at the points with coordinates (4, 2) and(
4(c1/2 − 1)2, 2(c1/2 − 1)2

)
. In particular, if c1/2 =

3
2 , we deal with the curve v = 3

2

√
u − 1, which yields the region

D1/2

(
3
2

)
for which inequality (23) achieves better accuracy compared to inequality (8):

Now, it remains to consider the setting with negative parameters. According to our discussion from the
previous two sections, it turns our that these negative cases are, in some way, symmetric to the corresponding
positive cases. First, we consider the case when k < −1. Then, we define

sk =
Mk
−1(a,w)

Mk
−1(a,w) − (k + 1)(−k)−

k
k+1 mk

, k < −1. (33)

Clearly, sk is always positive. Moreover, since M−1(a,w) ≥ m, it follows that sk ≤
(
1 − (k + 1)(−k)−

k
k+1

)−1
. On

the other hand, if a = (1,n, . . . ,n) and w =
(

1
n ,

1
n , . . . ,

1
n

)
, we have that limn→∞ sk = 0. In particular, if k = −2,

then s−2 ∈
(
0, 4

5

]
.

The corresponding result that provides conditions under which (27) is more accurate than (14) reads as
follows:

Corollary 4.5. Let k < −1 and let

Dk(sk) = {(u, v) ∈ R2
+; v ≤ −ku, v ≥ sku−k

− (−k)
k

k+1 (sk − 1)},

where sk is defined by (33). If (α, β) ∈ Dk(sk), then inequality (27) is sharper than (14).

Proof. The proof follows the lines of the proof of Theorem 4.1, except that we deal with inequalities (27)
and (14) instead of (22) and (7).

To conclude the above discussion, we discuss the case when −1 < k < 0. Then, following the lines as in the
corresponding positive case, we define

sk =
Mk

k(a,w) + (k + 1)(−k)−
k

k+1 mk

Mk
k(a,w)

, −1 < k < 0. (34)

Similarly to the case when 0 < k < 1, it follows that sk ∈
[
1+ (k+ 1)(−k)−

k
k+1 ,∞

)
. Namely, the left endpoint of

the interval is established by using the fact that Mk(a,w) ≥ m, while for a = (1,n, . . . ,n) and w =
(

1
n ,

1
n , . . . ,

1
n

)
,

we have that limn→∞ sk = ∞. In particular, for k = − 1
2 , we have that s

−
1
2
∈

[
5
4 ,∞

)
.
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Then, comparing inequalities (15) and (28), as in the proof of Theorem 4.3, we arrive at efficiency
conditions for the scaled relation (28).

Corollary 4.6. Let −1 < k < 0 and let

Dk(sk) = {(u, v) ∈ R2
+; v ≥ −ku, v ≤ sku−k

− (−k)
k

k+1 (sk − 1)},

where sk is defined by (34). If (α, β) ∈ Dk(sk), then inequality (28) is sharper than (15).

Remark 4.7. We have already discussed that the positive cases of parameter k, i.e. k > 1 and 0 < k < 1, are, in some
way, symmetric with respect to the corresponding negative cases k < −1 and −1 < k < 0. Clearly, in the negative
case, the role of the arithmetic mean is taken over by the harmonic mean. One might think that the cases k and −k,
k > 0 are completely identical. However, this is not true. For example, if a = (1, 2, 3) and w =

(
1
3 ,

1
3 ,

1
3

)
, we have that

M1(a,w) = 2, M−1(a,w) = 18
11 , and consequently, c2 =

16
25 , s−2 =

121
202 . This shows that the sets

D2(c2) =
{
(u, v) ∈ R2

+; v ≤ 2u, v ≥
16
25

u2 +
36
25

}
and

D−2(s−2) =
{
(u, v) ∈ R2

+; v ≤ 2u, v ≥
121
202

u2 +
162
101

}
,

describing efficiency of relations (22) and (27), are not the same. Of course, if a = (a1, a2, . . . , an) and w =
(w1,w2, . . . ,wn) are chosen such that ck = s−k, k > 1, then

D−k(s−k) = {(u, v) ∈ R2
+; v ≤ ku, v ≥ s−kuk + k

k
k−1 (1 − s−k)} = Dk(ck).

In particular, this means that the sets D−2

(
1
4

)
and D−3

(
1
2

)
represents the same regions as D2

(
1
4

)
and D3

(
1
2

)
, respectively,

as it has been discussed in Remark 4.2. Clearly, the similar conclusion can be drawn for the cases 0 < k < 1 and
−1 < k < 0.

Finally, to conclude this section, we impose conditions under which the scaled relations (29) and (30)
are more precise than the reversed power mean inequalities (16) and (17). Clearly, the conclusion follows
directly from Theorem 4.1.

Corollary 4.8. Let s
r > 1 and

D s
r
(c s

r
) = {(u, v) ∈ R2

+; v ≤
s
r

u, v ≥ c s
r
u

s
r +

( s
r

) s
s−r

(1 − c s
r
)},

where c s
r

is defined by (31). If 0 < r < s and (α, β) ∈ D(c s
r
), then inequality (29) is more accurate than (16). In

addition, if s < r < 0, then (30) is sharper than (17).

Remark 4.9. As an application of Corollary 4.8, we consider the scaled power mean inequalities (29) and (30) when
s = 2r. Then, (29) and (30) reduce respectively to

βM2r
2r(a,w) ≤ α2M2r

r (a,w) +M2r, r > 0, (35)

and

βM2r
2r(a,w) ≤ α2M2r

r (a,w) +m2r, r < 0. (36)

Now, according to Corollary 4.8, if

(α, β) ∈ D2(c2) = {(u, v) ∈ R2
+; v ≤ 2u, v ≥ c2u2 + 4(1 − c2)},

then inequality (35) is sharper than (18), while (36) is more accurate than (19). The region of efficiency of inequalities
(35) and (36) is described in Remark 4.2.
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