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Abstract. Motivated by the Hanin inequality, in this paper we study a class of reversed power mean
inequalities that does not depend on a weight function. We first give the reverse of the basic power
mean inequality describing the monotonic behavior of means. Then, we establish the scaled, i.e. two-
parametric versions of the obtained inequalities. By scaling, we develop a new method for improving the
starting reversed power mean inequalities. More precisely, we impose conditions under which the scaled
inequality is sharper than the corresponding original power mean inequality. Some particular examples
are also discussed. Finally, our results are compared with some previously known from the literature.

1. Introduction

A function f : I € R — R, where I is an interval, is convex if

fAx+ (1 =A)y) < Af(x) + 1 - D)f(y)

holds for all x,y € [ and A € [0,1]. The most important inequality for a convex function f : I — R, the
famous Jensen inequality, asserts that

f( Z wiﬂi) < Z wif(a), 1)
i=1 i=1
holdsforallay,ay, ..

.4y € landwy, wy, ..., wy, € [0,1], provided that ).\, w; = 1. Inequality (1) is extensively
used in almost all fields of mathematics, especially in mathematical analysis and statistics.
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In 2012, Krni¢ et al. [8] (see also [6] and [7]), established the following mutual bounds for the difference
between the right-hand side and the left-hand side of the Jensen inequality:

nmaxw;l,(f,a) > Zw]-f(aj) —f(ijaj) > nlrnsjigwjfn(f,a). (2)

1<j<n - -
j=1 j=1

Here, 1, stands for the corresponding non-weighted form of the Jensen functional, i.e.

L= Y. o= (G 2)

It should be noticed here that inequalities in (2) have been established as a consequence of the so called
superadditivity of the Jensen functional, established by Dragomir et al. [3] (see also [4]). Obviously, the
left inequality in (2) is the reverse, while the right inequality sign represents the refinement of the Jensen
inequality. Based on (2), numerous inequalities such as the Young inequality, the Holder inequality, power
mean inequalities, etc. have been refined (see, e.g. [6, 8] and the references cited therein). In addition, for
a comprehensive overview of the old and new results in connection to the Jensen inequality, the reader is
referred to monographs [5, 10, 11] and the references cited therein.

One of the most interesting consequences of the Jensen inequality are power mean inequalities. Recall
that a power mean is defined by

1
r

M; (a,w) ={ (Ciny wiai")", :fo,

H:’:l aiwil 0/
where a = (a1, 4y, ..., a,) stands for a non-negative n-tuple and w = (w1, wy, . .., wy,) is a non-negative n-tuple
such that )/, w; = 1. Further, the case of w; = w, = --- = w, = % yields the corresponding non-weighted
mean

1

lyn )"
mr(a):{ (n%zzl”ll) , %0,
(Hizl ai)n ’ r = O.

Recall that M_; (a,w), My (a,w), M (a,w), M;(a, w) provide the harmonic, geometric, arithmetic and
quadratic means, respectively. Moreover, M_ (a,w) = min;<j<,a; and M (a, w) = maxi<j<,a;. The
basic power mean inequality, describing monotonic behavior of means, asserts that if r < s, then

M, (a,w) < M (a,w). 3)

This follows by putting f(t) = ' in (1) and by replacing n-tuple a = (a1, 4z, ...,4,) with a" = (a}, 45, ..., a;),
provided that s,r # 0 (for more details, including the cases when one of the parameters 7, s is equal to zero
the reader is referred to [10, 11]). In this setting, relation (2) reduces to

1 max w; (m3 (a) —mj (a)) = M (a,w) — M; (a,w) = n 1m‘in w; (mg (a) — m; (a)), 4)
<j<n <j<n

providing the reverse and refinement of the basic power mean inequality (3). However, inequalities in (4)
provide reverse and refinement of the weighted power means in terms of the corresponding non-weighted
means. It is important to note that that the above relations do not improve the non-weighted power mean
inequalities.

On the other hand, Hanin [2], established the following reverse of the non-weighted arithmetic-quadratic
mean inequality

2

MT +m3(a) > m3(a), )
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where M = maxi<j<, a;. The proof of the above inequality is extremely easy and reads as follows (see also

[9D:

(% - ml(a))z T Miny(a) - m(a) = (%4 - ml(a))z N % Y aiM-a)>0.
=1

In addition, Hanin [2], also gave the following extension of the above inequality by noting that
M- (a,w) < M¥ (a, w) + (k — DkTT M, (6)

provided that k > 1. Clearly, relation (6) represents the reverse of the power mean inequality M (a, w) >

M (a,w), k > 1. It is important to note that the above reversed relation (6) does not depend on weight

w. This means that (6) also holds when w = (l L

Ry %) Roughly speaking, this fact provides theoretical
advantage of inequality (6) compared to the first inequality in (4).

The main focus in this article is a further study of the reversed mean inequality (6). For the reader’s
convenience, inequalities related to (6) will also be referred to as the Hanin-type inequalities. The outline
of this article is as follows: after this introductory part, in Section 2 we extend inequality (6) to hold for
all real parameters k. As an application, we obtain the reverse of the power mean inequality (3) that does
not depend on weight w. The obtained results are also compared with some related results, known from
the literature. In Section 3 we establish scaled versions of the Hanin-type inequalities derived in Section 2.
By scaled inequalities we mean two-parametric extensions of the corresponding Hanin-type inequalities.
In such a way, in Section 4 we discuss efficiency of the established scaled inequalities. More precisely, we
develop a new method for improving the reversed mean inequalities of Hanin-type by imposing conditions
under which the scaled inequality is sharper than the corresponding original inequality. As an application,
we study some particular examples.

Conventions

In order to summarize our further discussion, we present the following notations. Throughout this
paper a = (a1,4ay,...,4,) € R} stands for a non-negative n-tuple. In addition, if a is included in a mean
My (a, w), where k < 0, then all coordinates in a are assumed to be strictly positive. By a weight w, we
mean a non-negative n-tuple w = (wy, wy, ..., w,) € R”? such that )", w ; = 1. For brevity, the limit means
M_ (a,w) = mini<j<, a; and M (a, w) = maxi<j<, 4, will be denoted by m and M respectively, i.e.

m=mina; and M = maxa;.
1<j<n 1<j<n

2. Main results

Here, our main focus is an extension of inequality (6) for all real parameters k. The first step in our study
is an extension of (6) for an arbitrary non-negative parameter k. For completeness, we also give the proof
when k > 1.

Theorem 2.1. If k > 1, then holds the inequality
M-(a, w) < MK (a, w) + (k - 1)kT7 M. 7)
Further, if 0 < k < 1, then the sign of inequality (7) is reversed, i.e.

M-(a, w) = Mt (@, w) + (k - 1)kT7 M. (8)
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Proof. Letk > 1. Since a’;fl <M1, j=1,2,...,n,we have that

n n
M@, w) = Z wjat < M Z wja; = M My (a, w), (9)
=1 =

which means that
M’,i(a, w) — M'l‘(a, w) < MM (a, w) — M’{(a, w). (10)

Now, consider the function f : [0,0) — R defined by f(t) = Mt — t*. We have that f'(t) = M1 — k<1,
so f'(to) = 0 if and only if M*! = kt’(‘)_l, that is, if to = Mk™. Moreover, f'(t) > 0if and only if t < ¢y, while
f'(t) < 0if and only if > ty. This means that f has a global maximum at the point t = ¢, i.e.

k

F(to) = M IMKTE — MAKTE = (k — 1)k MF, (11)
Now, combining (10) and (11), we arrive at the relation
k k £ gk
M (a,w) — Mj(a,w) < (k — 1)k M,

that is, we obtain (7).

It remains to consider the case of 0 < k < 1. Then, similarly as above, it follows that M’;(a, w) >
M*1M;(a, w), so it holds the reversed inequality in (10). Moreover, the above function f(t) = Mt — ¥ is
monotonically decreasing on interval (0, {p), and monotonically increasing on (t, o), which means that f
attains global minimum at f, = Mk, which is equal to (k — 1)kt M. This yields the reversed inequality
8). O

Remark 2.2. Both relations (7) and (8) represent the corresponding reverses of the power mean inequalities between
Mi(a, w) and Mi(a, w), respectively. In particular, if k = 2, then relation (7) reduces to

2 2 M?
M;(a, w) < Mj(a,w) + T (12)

which represents the weighted form of the original Hanin inequality (5). Similarly, if k = %, relation (8) yields the
inequality

(a,w) > Ml% (a,w) — @, (13)

M 4

[T

which represents the reverse of the power mean inequality M (a, w) < Mi(a, w).

The next step in our study is an extension of Theorem 2.1 for the case of negative parameters k. In fact,
we obtain the corresponding reverses between the power mean M(a, w), k < 0, and the harmonic mean
M_1(a,w). The corresponding result is an easy consequence of the previous theorem.

Corollary 2.3. Ifk < —1, then holds the inequality
Mﬁ(a, w) < M’il(a, w) — (k+ 1)(—k)_%mk. (14)

Moreover, if =1 < k < O, then it holds

M-(a, w) > M* (a, w) — (k + 1)(=k) "1k, (15)
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Proof. To prove inequalities (14) and (15), we consider relations (7) and (8) with the n-tuple

(l 1 l)
i

instead of (a1,ay, . ..,a,). Then, by noting that

1 1
max — = —,
1<jsn aj m

we easily arrive at the both relations. [
Remark 2.4. Relations (14) and (15) also represent reverses of the corresponding mean inequalities in the case of

negative parameter k. In particular, if k = =2, then inequality (14) takes form

_ _ 1
M_%(a, w) < M_f(a, w) + yPt

which represents the reverse of the inequality M_,(a, w) < M_1(a, w). On the other hand, if k = —%, then (15) reads
_1 _1 1
Mi@aw)>2M (aw)— ——,
@)= M aw) -

which is the reverse of the relation M_% (a,w) > M_q(a, w).

Now, by virtue of our Theorem 2.1, we are able to derive reverse of the basic power mean inequality (3)
in the case when both parameters r and s are positive or negative.

Theorem 2.5. If0 < r < s, then holds the inequality

M:(a,w) < M;(a,w) + S;/G)VTMS (16)

In addition, if s < r <0, then it holds
S—7T/5\is
S < M° 2 s
M;(a,w) < M;(a,w) + — (r> m®. (17)

Proof. To prove (16), we consider (7) with the n-tuple a” = (a1,a5,...,a,), >0, instead of a = (41,42, ..., a).
Then, M (a",w) = Z7=1 w]-a; and M" = maxi<j<y a;. Furthermore, by putting k = £, s > r > 0, we have that

Mi(a’,w) = Mi(a,w) and M; (", w)=M(a,w),

so (16) holds.
To prove (17) we follow the same lines as above, except that we use the fact that m" = max;<j<, a;, when
r<0. O

Remark 2.6. It should be noticed here that both relations (16) and (17) can be also derived from (8), as well as, from
relations (14) and (15).

s

Remark 2.7. If v tends to zero, then we have that lim,_ s;—’(f)'T = 1, so inequalities (16) and (17) respectively
reduce to trivial reverses

Mi(a,w) < Mj(a,w) +M°, s5>0,
and
Mi(a,w) < Mj(a,w) +m’, s<0,

between the power mean M;(a, w) and the geometric mean My(a, w).
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Remark 2.8. Ifs = 2r, then (16) and (17) respectively reduce to
2r

MZ(a,w) < M¥(a,w) + - > 0, (18)

and

2r

Mz (a,w) < M (2, w) +

1 r<0. (19)

Clearly, by putting r = 1 in inequality (18), we obtain the basic Hanin inequality (5).

We have already discussed that the advantage of Theorem 2.1, Corollary 2.3 and Theorem 2.5, compared
to relation (4), is that they provide estimates that does not depend on weights. In such a way, they also
provide reverses for the non-weighted power mean inequalities. However, these two methods are generally
not comparable, as it will be discussed in the next remark.

Remark 2.9. Let k = 3 and n = 3. Then, considering (7) with a = (1,2, 3), we obtain the estimate
Mi(a,w) - M3(a,w) <63, (20)

regardless of the weight w. On the other hand, if n = 3,5 =3, v = 1 and a = (1,2, 3), then the first inequality in (4)
reads

3 A A3 (a) _ 13 _ A
M3(a,w) Ml(a,w)§3{2];as>§w](m3(a) my (a)) 12{2?5);“)]' (21)

Now, ifw = (%, %, %), then 12 maxj<j<3w; = 8 < 6 V3, which means that inequality (21) is more accurate than (20).

On the other hand, if w = (i, = %), then 12 maxi<je3 wj = 11 > 6 V3. So, in this case relation (20) is sharper than
(21).

As we can see from the previous remark, the results we derived in this section are generally not
comparable to the corresponding results developed in [6] and [8] (see also [5]). However, their advantage
is that we they provide estimates for the non-weighted inequalities.

3. Scaled evolution for the reversed mean inequalities

We aim now to establish scaled versions of the results from the previous section. More precisely, we
are going to extend the corresponding results by introducing two new parameters. In such a way, we will
develop a new method for improving the corresponding reversed mean inequalities. It should be noticed
here that some similar approaches can be found in slightly older papers [1] and [12]. In this regard, our
first result is a scaled version of Theorem 2.1.

Theorem 3.1. Ifk > 1and 0 < B < ka, then holds the inequality

BMi(a, w) < "M (a, w) + (k — 1))M". (22)
Further, if 0 <k <1and 0 < ka < B, then

BME(a, w) > o M- (a, w) + (k — )MF. (23)

Proof. We first consider the case k > 1. We use estimate (9) from the proof of Theorem 2.1. Then, we have
that

BME(a, w) — "MK (a, w) < BM* M (a, w) — &M% (a, w). (24)
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Now, similarly to the proof of Theorem 2.1, we are going to show that the function # : [0, ) — R defined
by h(t) = M1t — at* has global maximum on its domain. Namely, since /' (t) = BM*! — ka*t*~1, it follows
that i has stationary point ¢y = kT TR ﬁk]?M. Moreover, since h is monotonically increasing on interval
(0, tg), and monotonically decreasing on (ty, o), it follows that & attains global maximum at o, equal to

p

h(to) = (E)“ % (k — 1)MF. (25)

In addition, since g < k by the assumptions, the previous relation yields the estimate
h(to) < (k — 1)MF. (26)
Finally, combining (24) and (26), we have that
BME(a, w) — ofME(a, w) < (k- )M,

as claimed.

It remains to consider the complementary case when 0 < k < 1 and 0 < ka < . Then, similarly to the
proof of Theorem 2.1, it follows that the sign of inequality (24) is reversed, while the above defined function
h possess global minimum given by (25). Then, h(ty) > (k — 1)M*, provided that 0 < k < 1and 0 < ka < f.
Clearly, this yields (23), as claimed. O

Remark 3.2. Let af = B, where k > 1. Combining this condition with the assumption 0 < B < ka, it follows that
0<a<kr. Therefore, in this case relation (22) reduces to

(k — 1)MF
k 7

M’,:(a,w) SM’{(a,w)+ 0<a<ke.

Of course, the latter inequality is the best possible for o = k71, that is, in the case of the starting Hanin-type inequality
(7). In particular, if k = 2, then o = 2, so the above inequality reduces to relation (12) from Remark 2.2.
A similar conclusion can be drawn for the case of 0 < k < 1. Then, combining a* = p and 0 < ka < B, we also

have that 0 < a < kk%l, so relation (23) becomes

(k — 1)M*
e

M2, w) > M¥(a,w) + , O<a<ke.

Clearly, since k — 1 < 0, the above inequality is the best possible in the case of inequality (8). In particular, ifk = %,
then, o = 4, so the previous inequality becomes (13).

Similarly to the previous section, our next goal is to extend Theorem 3.1 to hold for negative parameters.
In other words, we give scaled version of Corollary 2.3. More precisely, we obtain the corresponding scaled
reverse between a power mean M;(a, w), k < 0, and the harmonic mean M_;(a, w).

Corollary 3.3. Ifk < =1 and 0 < < —ka, then holds the inequality

BML(a, w) < a*M" (a, w) — (k + 1)m". (27)
Further, if =1 <k < 0and 0 < —ka < B, then it holds

BMi(a, w) > a*M" (a,w) — (k + 1)m". (28)

Proof. We follow the same procedure as in the proof of Corollary 2.3, except that we use relations (22) and
(23), instead of (7) and (8). O
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Remark 3.4. Let a™* = B. Combining this with the assumption 0 < B < —ka, when k < =1, it follows that
0 < a < (=k)"F1. Clearly, the limit case a = (—=k)"®1 in (27) yields inequality (14). In the same way, combining
a®=pBand 0 < —ka < B, when —1 < k < 0, we also have that 0 < a < (—k)F. Consequently, the limit case in
(28) yields (15), as expected.

Finally, by virtue of Theorem 3.1, we will now establish scaled reversed relations that correspond to the
basic power mean inequality (3), when both parameters r, s are positive or negative.

Theorem 3.5. Let o, f > 0. If 0 < v < sand 0 < 1B < sa, then holds the inequality

BM:(a,w) < arM(a,w) + ;MS. (29)
In addition, if s <r < 0and sae < vf <0, then it holds

BM:(a, w) < a7 MS(a, w) + S%’ms. (30)

Proof. We follow the same procedure as in the proof of Theorem 2.5 except that we use scaled inequality
(22) instead of (7). Clearly, the condition 0 < < ka from Theorem 3.1 is equivalent to 0 < 7§ < sa, when
both 7, s are positive, i.e. to sa < rf < 0, when both 7, s are negative. The rest of the proof is obvious. [J

Remark 3.6. Similarly to Remarks 3.2 and 3.4, we aim now to impose conditions under which the scaled relations
(29) and (30) reduce to reversed power mean inequalities (16) and (17). This happens when o® = . Combining this
condition with 0 < rf < sa when both r, s are positive, or with sae < v < 0, when both r, s are negative, we have that

0<acx< (E)T, ie.0<ar < (f)T Clearly, the maximum value of o yields power mean inequalities (16) and (17).

In Remarks 3.2, 3.4 and 3.6, we have obtained reversed mean inequalities from Section 2, from the
corresponding scaled relations, when parameter a took the maximum value. For all smaller values of
parameter o the obtained inequalities were weaker in the corresponding setting. However, the scaled
relations can also be utilized in refining reversed mean inequalities from Section 2. That is the main topic
of the next section.

4. Efficiency discussion for the scaled Hanin-type inequalities

Our main goal in this section is to discuss efficiency of scaled Hanin-type inequalities from the previous
section. More precisely, we aim here to impose some general conditions under which the scaled Hanin-
type inequalities are more accurate than the original inequalities from Section 2. The starting point in our
discussion is efficiency of inequality (22). In order to summarize our further discussion, we define the
quantity

Mt(a,w)
Ck = 7
M- (a, w) + (k — Dkrr MF

k>1. (31)

It should be noticed here that the above parameter is always positive provided thata # (0,0, ..., 0), although

it can be sufficiently small. For example, ifa = (1,0,0,...,0) and w = (%, %, o, %), then

1

Ck=—"T"""—"—F,
1+ (k- Dkmrnk

and consequently, lim,, . cx = 0. On the other hand, since M;(a, w) < M, it follows thatc, < (1 + (k - 1)kﬁ)‘1,
ie. ¢ € (0, 1+ k- 1)kﬁ)‘1]. In particular, if k = 2, then ¢, € (O, %], while for k = 3 we have that

o e (0,255

Now, we are able to establish conditions under which inequality (22) is more accurate than inequality

@).
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Theorem 4.1. Let k > 1 and let
Di(c) = {(u,v) € R%; 0 < ku, v > ce* + kP1(1 = ¢},

where cy is defined by (31). If (a, B) € Di(ck), then inequality (22) is sharper than (7).

Proof. If (o, B) € Di(ck), then p < ka and

a*Mk(a, w) + (k — 1)MF
& 7
M’l‘(a, w) + (k — Dktx Mk

B= ckak+k%(1 —cx) =

which is equivalent to

a*Mk(a,w) + (k - 1)M*
; .

M (a,w) + (k - DkTrM* >

Obviously, the last inequality shows that inequality (22) is more accurate than (7) in this setting. [

Remark 4.2. The set Di(ck), k > 1, defined in the previous theorem, is a region in the first quadrant of the uv-plane
bounded by the line v = ku and a curve v = cxu* + ket (1—cp). In particular, if k = 2, then the line v = 2u and
parabola v = cou® + 4(1 — cp) intersect at the points with coordinates (2,4) and (% -2,% 4). It should be noticed

2
here that both intersection points belong to the first quadrant. In particular, if c; = §, we have the region Dz(i) which
represents better accuracy of inequality (22) in comparison to (7):

1 2 3 4 5

. Dy(0.25)

Further, if k = 3, then the line v = 3u and a cubical parabola v = c3u® + 3V3(1 — c3) intersect at three points with

—c3 V3+ \f3c5(4-3c3)

2C3
quadrant, while the remaining one is in the third quadrant. In particular, if c3 = %, then the intersection points with

u-coordinates u; = V3 and uy = M belong to the first quadrant, providing the region D3(%) of efficiency of
inequality (22):

u-coordinates uy = V3 and uy3 = . 1t is easy to see that two intersection points belong to the first
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/ Dy(0.5)

Generally, it is easy to see that the one of intersection points of the line v = ku and a curve v = cyu* + k71 (1 — c) has
coordinates (kﬁ,k% )
Our next step is to discuss the case 0 < k < 1. In other words, we discuss efficiency of the scaled

relation (23), which is, in some way, complementary to (22). It should be noticed here that if 0 < k < 1,
then the value ¢, defined by (31), can take negative values. For example, if n = 25, k = %, a=(10,...,0),

(L1 1 ~ :
w= (25, -1 38 ), then the denominator of ¢ 1is equal to

——— VM _ 1
Ml(a,W) - T = —% <0.

Therefore, to establish efficiency of (23), we will utilize somewhat different approach. We define

_ M@w)+(1-kkriMF

Cr - , O0<k<l. (32)
M@, w)

Now, ¢k is always positive, moreover since Mi(a, w) < M, it follows that ¢, > 1+ (1 - k)kﬁ. On the other

hand, ifa = (1,0,...,0),w = (%, %, e, %), we have thatc, =1+ (1 - k)kffk n¥, so ¢, tends to infinity, as n tends

to infinity. In particular, if k = %, then ¢ 1€ [%, oo).
The following result provides conditions under which the scaled relation (23) is more accurate than (8).

Theorem 4.3. Let 0 < k < 1 and let
Di(@) = {(u,0) € R%; v > ku, v < Gt — kP71 (G — 1)),

where ¢y is defined by (32). If (o, B) € Di(ck), then inequality (23) is sharper than (8).
Proof. If (o, B) € Di(ck), then B > ka and

) (M@, w) + (1 = kT M)k — (1 - k)M*
B <t — ki1 (g —1) = - ,
Mi(a, w)

which is equivalent to
BM:(a, w) + (1 — k)M*

ak

M@, w) + (1 — kTT M >

Clearly, this shows better precision of inequality (23) in comparison to (8). O
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Remark 4.4. Similarly to our discussion in Remark 4.2, the set Dy(cx) is a region bounded by the line v = ku and
the curve v = ¢k — kﬁ(Ek —1),0 < k < 1. Let us consider the previous theorem for k = % Then, D1/x(c1)2) is
a region in the first quadrant of uo-plane bounded by the line v = % and the curve v = ¢y Vuu — 2(¢12 — 1). By
a straightforward computation, it follows that the line and curve intersect at the points with coordinates (4,2) and
(4(51/2 - 1)%,2(c1)2 — 1)2). In particular, if ¢1pp = 3, we deal with the curve v = 3 \Ju — 1, which yields the region

Dy /2(%) for which inequality (23) achieves better accuracy compared to inequality (8):

[}

Dy5(1.5)

Now, it remains to consider the setting with negative parameters. According to our discussion from the
previous two sections, it turns our that these negative cases are, in some way, symmetric to the corresponding
positive cases. First, we consider the case when k < —1. Then, we define

M- (a,w)
Sp = ,
M (@ w) — (k+ (k)

< -1 (33)

-1
Clearly, si is always positive. Moreover, since M_;(a, w) > m, it follows that s; < (1 —(k+ 1)(—k)’%) . On
the other hand, ifa = (1,n,...,n) and w = (%, 1 %), we have that lim, . s¢ = 0. In particular, if k = -2,
thens_, € (O, %]

The corresponding result that provides conditions under which (27) is more accurate than (14) reads as
follows:

Corollary 4.5. Let k < —1 and let
Di(sx) = {(u,0) € R%; 0 < ki, v > su™ = (=k)#1 (s, — 1)),
where sy is defined by (33). If (a, B) € Di(sx), then inequality (27) is sharper than (14).

Proof. The proof follows the lines of the proof of Theorem 4.1, except that we deal with inequalities (27)
and (14) instead of (22) and (7). O

To conclude the above discussion, we discuss the case when —1 < k < 0. Then, following the lines as in the
corresponding positive case, we define

_ M@ w) + (k+ 1)(-R)wTmt

Sk m

, —1<k<O. (34)

Similarly to the case when 0 < k < 1, it follows that 5; € [1 + (k+ 1)(—k)‘ﬁ, oo). Namely, the left endpoint of

the interval is established by using the fact that My(a, w) > m, whilefora = (1,n,...,n)and w = ( 11 L ),

Wnr
1

we have that lim,, s¢ = co. In particular, for k = —5, we have that 5_% € [%, 00).
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Then, comparing inequalities (15) and (28), as in the proof of Theorem 4.3, we arrive at efficiency
conditions for the scaled relation (28).
Corollary 4.6. Let =1 < k < 0 and let
Di(r) = {(w,v) € R?; v > —ku, v < 5u™* - (—k)ﬁ(Ek - 1)},
where sy is defined by (34). If (o, B) € Di(5¢), then inequality (28) is sharper than (15).
Remark 4.7. We have already discussed that the positive cases of parameter k, i.e. k > 1 and 0 < k < 1, are, in some

way, symmetric with respect to the corresponding negative cases k < =1 and =1 < k < 0. Clearly, in the negative

case, the role of the arithmetic mean is taken over by the harmonic mean. One might think that the cases k and —k,
k > 0 are completely identical However, this is not true. For example, ifa = (1,2,3) and w = (%, %, %), we have that
Mi(a,w) =2, M_1(a,w) = 13, and consequently, c, = 22, s, = 3. This shows that the sets

16 36
Ds(cp) = {(u,v) € IR v<2u,v>—u’+ —}

~ 25 25
and 121 , 162
D_s(s_») {(u, v) €RL; 0<2u, v > ;T 101}

describing efficiency of relations (22) and (27), are not the same. Of course, if a = (ay,ay,...,a,) and W =
(w1, wa, ..., wy) are chosen such that ¢y = s_g, k > 1, then

D_i(s_¢) = {(1,0) € R2; v <ku, v > s_gti* + k#1(1 — s_t)} = Di(cy).

In particular, this means that the sets D_2<;i) and D_3(%) represents the same regions as D2<}I) and D3(%), respectively,
as it has been discussed in Remark 4.2. Clearly, the similar conclusion can be drawn for the cases 0 < k < 1 and
-1<k<0.

Finally, to conclude this section, we impose conditions under which the scaled relations (29) and (30)
are more precise than the reversed power mean inequalities (16) and (17). Clearly, the conclusion follows
directly from Theorem 4.1.

Corollary 4.8. Let 3 > 1 and

D:(cs) ={(u,v) € R?; v < éu, V> c;uf + (;)H(l —cs)l,

where c: is defined by (31). If 0 < r < s and (a,f) € D(c:), then inequality (29) is more accurate than (16). In
addition, if s < r < 0, then (30) is sharper than (17).

Remark 4.9. As an application of Corollary 4.8, we consider the scaled power mean inequalities (29) and (30) when
s = 2r. Then, (29) and (30) reduce respectively to

M3 (a, W) < a’M¥(a,w) + M*, r>0, (35)
and
BM3(a, w) < a’MZ (a,w) +m¥, r<0. (36)
Now, according to Corollary 4.8, if
(a, B) € Da(c2) = {(u,0) € ]Ri,‘ v<2u, v>cul+ 4(1 - )},

then inequality (35) is sharper than (18), while (36) is more accurate than (19). The region of efficiency of inequalities
(35) and (36) is described in Remark 4.2.
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