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Abstract. In this paper, we propose a generalized second order iterative algorithm for computing the
Moore-Penrose inverse. The method arises from the second Penrose equation XAX = X and is further
generalized by two real parameters. A detailed theoretical analysis is conducted to show that, under
certain conditions, the new approach possesses linear, quadratic, and cubic convergence. As a result,
various linear and quadratic convergence schemes can be extracted. Efficiency analysis of the method
is considered to state its relation with respect to the condition number and number of iterations. We
provide adequate examples to validate the new iterative scheme including matrices produced from real-life
problems. Moreover, the applicability of method is also examined on one-dimensional heat problems. The
convergence and error analysis, as well as the average CPU time analysis, are also given.

1. Introduction and preliminaries

Let C"™ and C*" denote the set of all complex m X n matrices and all complex m X n matrices with

rank r, respectively. Let A!, A*, R(A), N(A) and rank(A) represent the transpose, the conjugate transpose,
the range space, the null space and the rank of the matrix A € C"™", respectively.

For A € C"™", the Moore-Penrose inverse is denoted by At and is defined as
AA" = Preay, ATA = Priary,

where Pr) denotes the orthogonal projection onto range space R(A). The unique matrix A" satisfies the
following four equations

() AXA=A, (i) XAX =X, (i) (AX) = AX, (iv) (XA) = XA. (1)
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One of the most commonly used direct methods to evaluate A" is the singular value decomposition
(SVD) method. For A € C"™*", the SVD method is a factorization of the form A = UZV*, where U is an m X m
complex unitary matrix, X is an m X n rectangular diagonal matrix with non-negative real numbers on the
diagonal and V is an n X n complex unitary matrix. Then, A" can be written as A" = VE'U*, where T' is the
generalized inverse of X obtained by replacing every non-zero diagonal entry in X with its reciprocal and
then transposing the resulting matrix. The most frequently used iterative method for approximating A~! is
the famous Newton’s method originated in Schulz [1] as

Xir1 = X2l —AXy), k=0,1,2,.... )
As usual, I denotes the identity matrix of an appropriate order. The eigenvalues of A € C/*" are given by
M(A) 2 -+ 2 AA) > A (A) = - = Ay(A) = 0. 3)

It is further established that the eigenvalues of I — AXy must have a magnitude less than 1 to ensure its
second order convergence. Moreover, it satisfies error inequality, ||Rx41l| < IIAIIIIR|2, where residuals are
defined as Ry = [ — AX [2]. Ben-Israel and Greville [3] used (2) and the initial approximation X, = 6A”,
where 0 satisfies

0<6</\1(AA*)’ (4)

to compute A'. The success of iterative algorithms in converging to A" depends significantly on the
choice of the initial estimate Xy. Several approaches for selecting this initial approximation have been
suggested in literature [4-6]. Petkovi¢ and Stanimirovié¢ [7] developed an iterative method for computing
the Moore-Penrose inverse of an arbitrary matrix A € C"*", given by

Xiy1 = (1 + ﬁ)Xk - ﬁXkAXk, k= 0,1,..., (5)

with initial approximation Xy = BA*, where § € (0, 1] be an appropriate real number. They showed that the
method has a linear convergence for § < 1, while the well-known Schulz method is retrieved for § = 1. The
method (5) is based on the second and fourth Penrose equations, i.e., XAX = X and (XA)* = XA. Srivastava
and Gupta [8] extended the work of Petkovi¢ and Stanimirovi¢ [7] and proposed the following third order
iterative algorithm

{ Xo = pA’,

6
Xi1 = Xe(l + aI = 3AX; + (AXp)?), k=0,1,..., ©)

to compute A" by using appropriate values of a, § € R.
On the other hand, hyperpower matrix iterations of order p represent a general series form of matrices:

Xt = Xk + Vi + V2 +-+ VPY, Vi=1-AX,, k=0,1,..., (7)

and several studies [9-14] have focused on developing more efficient versions of this method. For instance,
Pan et al. [10] presented an 18th-order hyperpower method that requires only seven matrix multiplication,
as outlined below:

Ry =1- AX;,
M= (1+aRE+R)I +R? +R}),
Ti = M+ 3R?, Sk = My +diR? + doR,
Xie1 = Xi((I+ R)((TkSk) + uR; + ¢Ry)),

(8)

where ¢; = 1( 27—2\/%+1), c = 1(1— 27—2\/@), c3 = L(5x/%—93), dy = &(—93—5\/%),

4 4 496
V93 321

d = —y o H= g, Y = Tosa" Soleimani et al. [15] discussed the improvements to the method in (7) for
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p = 30 and highlights the applicability of such schemes to real-world problems. Indeed, these higher-order
algorithms produce more accurate solutions with fewer iterations. However, designing the algorithm with
same order that yields improved results is a difficult challenge. Motivated by the development of (6), based
on the second Penrose equation influence us to work in this direction. Thus, in this paper, we develop
and analyze a second order iterative family for computing Moore-Penrose inverse. The main aim of the
paper is to discover a better alternative of the quadratic convergent iterative scheme other than the Schulz
method.

The manuscript is organized as follows. Section 2 deals with the derivation and explanation of the
proposed iterative scheme for computing generalized inverses. Following that, the convergence behavior of
the method toward the Moore-Penrose inverse is discussed in detail. Section 3 addresses the computational
complexity of the method by using the concept of a computational efficiency index and the necessary
iterations. Section 4 shows the efficacy of the proposed work by applying the method to different types
of matrices obtained from several real-life models, such as statically determinate truss problems and one-
dimensional heat problems. Finally, section 5 presents the concluding points.

2. A new second order iterative method

Assume that A € C"™" and X = A € C"™". We begin with only Penrose equation (ii) and for arbitrary
a,p € R, we obtain
X = X - a(XAX - X) + B(2X - 3XAX + X(AX)?)
= (1+a+28)X — (a + 3B)XAX + BX(AX)?)
= X ((1+a+2p)I - (a + 3P)AX + B(AX)?)
= X(al + bAX + c(AX)?),

wherea=1+a+28,b=—(a+3p),c=psuchthata+b+c=1.
Thus, a generalized second order iterative method can be presented as

Xie1 = X (al + BAX + c(AX)?), 9)
wherea=1+a+28,b=—(a+3p),c=psuchthata+b+c=1.

Lemma 2.1. For all k > 0, the sequence {X} generated by (9) with Xy = OA" satisfies

(i) XkA = (XiA),
(ii) AtAX, = X,
(ifi) X AAT = X,

Proof. We shall prove this lemma by mathematical induction. Clearly, statement (i) holds for k = 0, since
we have XpA = 6A"A = (XpA)". Assume that it holds for some positive integer k, i.e.,, XA = (X A)". To
show that it also holds for k + 1, consider
(XenA)' = a(XeA)" + bGA)) + e(XeA))’
= aX;A + b(XA) + c(X A)°
= X (al + bXxA + c(XA)) A
= Xir1A.

Thus, the first statement is true for k + 1. To prove the second statement for k = 0, we find

ATAXy = 6ATAA" = 5(ATA) A" = 6A" = X,.
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Assume it holds for some k, i.e., ATAX, = Xi. Then, we have
ATAXq = ATA (Xk (aI + XA + c(XkA)z)) = Xjs1.

This shows that the second statement holds for k + 1.
In a similar manner, the third statement can also be proved. [

Now, we are in a position to discuss the convergence analysis of the iterative scheme (9) with the starting
value Xy = 6A* and show that it converges to the Moore-Penrose inverse X = A'.

Theorem 2.2. Let 0 # A € C™", X = A", the initial approximation Xy = 0A*, for arbitrary real number & be
such that the residual Ry = (Xo — X)A satisfies ||Ro|| < 1. The sequence {Xy} generated by (9) for a > 0 starting
with Xo = 0A" converges to the Moore—Penrose inverse At. It exhibits linear convergence for a + B # 1, quadratic
convergence for a + f§ = 1 and third order convergence for o = 0 and p = 1. The first, second, and third order error
terms are given by

errory = (1 — a — B)E, error, = —aELAEy and errors = ﬂEk(AEk)z,
where E;, = X — AT denotes the error matrix.

Proof. To prove the first part of the theorem, it suffices to verify that ||Xy — X|| — 0 when k — +co. Using
the properties of the Moore-Penrose inverse X and the results of Lemma 2.1, we obtain

X1 = X = X1 AX = XAX]|
< Xk A = XAIIXI.
Applying the scheme (9) and Lemma 2.1, we have
XA — XA = aXp A + bXAX A + cXi(AX)?A — XA
= aX;A — XA + b(XiA)? + (X A)?
= (1+a+20)XxA — XA — (a + 38)(XtA)* + B(XxA)?
= XpA - XA + a[ XA - (XeAP| + B[2X0A = B(XiA) + (XeA)
= XpA - XA - a (XA - XA + (XA — XA)| + B(XeA - XA)® - (XA - XA)|.
After rearranging terms, we have
XinA — XA = (XA — XA) - 2| (XA - XAP + (XA — XA)| + B[(XeA - XAP = (XA - XA)).
Thus, the sequence of residual matrices defined by Ry = XA — XA satisfies the following recurrence relation:
Risi = Ri—aR} + Rl +BIR} — Ryl
(1-a—P)Ri — aR} + BR}. (10)

Let s, = ||[Rkll. Now, for the convergence of the sequence {X;}, we require that sy — 0 as k — oo. This can be
shown by mathematical induction. Clearly, it holds for k = 0 as sy = [|Rol| = [|XoA — XA|| < 1. Assuming it
holds for some k, i.e., sy < 1, we show that it for k + 1. Taking the norm on recurrence relation (10), we get

s <(1—a— ‘B)Sk + D(Si + ﬁs;j’ < Sk, (11)

whenever @ > 0, § > 0 and 0 < a + < 1. This completes the proof by induction, since sp,; < s < 1.
Moreover, inequality (11) implies sxq < s¢ holds for k =0, 1, ..., indicating that sy is a decreasing sequence.
Since s¢ > 0 is bounded, we conclude that si is convergent and sy — s when k — +0co. Moreover, 0 <s < 1
holds. Using earlier inequality (11), we obtain

s<(1-a-p)s+as’+ps.
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The last inequality implies that either s = 1 or s = 0. Hence, we conclude s = 0. This proof that sy — 0 as
k — 400 and consequently, ||X; — X|| < s¢l|X||, which leads to Xy — X when k — +oco. This establishes the
convergence of method described in (9), and this confirms the first part of the theorem.

Next, substituting X; = X + E; into (9), one can obtain

Epr + X = (Er + X) [ul + bA(E + X) + c(A(Ex + X))Z]
= a(Ex + X) + b(Ex + X)(AEx + AX) + c(Ex + X)(AEx + AX)?.
This simplifies to
Epy1 = aEp + (lZ - 1)X + b[EkAEk + ExAX + XAE, + XAX] + C(Ek + X)[AXAX + (AEk)z + AXAE; + AELAX]
= aE + (a — 1)X + b[ELAEx + ExAX + XAEy + X] + c¢(Ex + X)[AX + (AE)? + AEx + AELAX]

=aE;, + (11 - 1)X + b[EkAEk + ExAX + XAE; + X]
+ c(ExAX + Ex(AER)? + ELAEr + (EXA)*X + X + X(AEL)? + XAEy + XAEAX).

We can further break this down into error terms as
errory =aE; + (a — 1)X + b(ExAX + XAE + X) + c(EtAX + X + XAEy + XAEAX),
errory =bE AEx + c(ExAEx + (ExA)*X + X(AEL)?),

errors =cEk(AEk)2.
Using E; = Xj — X and the results from Lemma 2.1, the error, error, and errors can be expressed as

error; =(1 — a — B)Eg,
errory = — aEAEy,
errors =,8Ek(AEk)2.

Obviously, error; vanishes if and only if @ + § = 1. While error, will be zero only in the case of @ = 0.
Hence, using these observations with the condition a > 0, we conclude that the proposed scheme has at
least quadratic convergence for the set of values a, 5 € [0,1] C R with the condition a + § = 1. Moreover,
the scheme has cubic convergence fora =0and f=1. O

Theorem 2.3. Iterative scheme (9) with initial approximation Xo = 0A” results in the following relation

where s = ||Rg||.
Proof. Recalling the recurrence relation (10)

Rip1 = (1 —a—p)Re — aR} + PR}, (12)
Taking the norm on the above recurrence relation, we have

IRks1ll = 11 = @ = B)R — aR} + BR]|I (13)

This leads to the following inequality

A

IResall < 11— a = BlIR + lallRI? + IBIIRAIP,

IRkl

< [1—a—Bl+lalllRell + BRI
IRl
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On the other hand, from (13), we also have

\

IResall = 11— = BRI = lallIRI? = IBIIRKIP,

IRkl
S > [ —a— Bl lallRell - IBIIRKP.
IRl

Consequently, these inequalities bounds in terms of s; = ||R¢|| indicates

Sk+1

11— a - Bl —lalsc — IBls; < 5 S 11— a— Bl +lalsk + IBls;. (14)

As si approaches zero, Theorem (2.2) permits us to deduce, by taking a limit of (14), SI;—H —1l-a-Bask
k

approaches infinity. This completes the proof. [J

3. Theoretical complexity

This section emphasizes the study of measuring the theoretical efficiency of the iterative method. Several
factors contribute to an algorithm’s performance, including the local convergence order, the number of
iterations, and the count of matrix-matrix multiplications involved in evaluating the matrix inverse. We
analyze the computational complexity of our method and compared with its opponents using the concept
of an efficiency index. The computational efficiency index [16] (CEI) of the p"-order iterative method is
measured as

CEI = p1, (15)

where d denotes the total computational cost per step. In this context, the computational cost d relies on the
distinct count of matrix products at each iteration k and the number of iterations used for convergence s.
In particular, for the pth—order iterative methods, this cost is calculated as ks (for more detail, refer [17, 18]).
Theoretically, the approximate value of s for Schulz method is given by Séderstrom and Stewart [19] as
follows

s ~ 2log, k2(A),

where x,(A) is the condition number of A with 2-norm. This idea is further extended by Soleymani [17] for
pt-order Schulz-type method and provides the following approximation

s=2 logp K2 (A). (16)

To determine the efficiency index using equations (15) and (16) of the iterative scheme (9), we consider
different parametric values and abbreviated them as follows. For f = 1 & a = 0, scheme (9) is denoted by
CM,, which defines the well-known cubically convergent Chebyshev matrix method [20]. The second order
proposed scheme is denoted by SM,, SM3, and SMy for f =08 & a=02,=a=05andf=0&a =1,
respectively. The method SMy corresponds to the well-known quadratically convergent Newton-Schulz
method [1]. For f =1 & a = 0.1, the linear convergence method is tested, which is referred to as LMs. We
compare the results with the same-order matrix inversion finders proposed by Petkovi¢ and Stanimirovi¢
[7] (denoted by PS) and Stanimirovi¢ et al. [5] (denoted by SM) as well as eighteenth order method (8)
(denoted by EM;3). The estimated CEI values for each technique are given in Table 1. Overall, the methods
SMis and CM; demonstrate a better efficiency index. Among the quadratic convergence schemes, the SMy
possesses a higher CEI than its counterparts; but, its performance in numerical testing (refer to section
4) does not meet expectations on its theoretical efficiency index when compared to other tested quadratic
methods.
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Table 1: Comparisons of CEI for different iterative methods

Methods EM;s CM, SM» SM; SM, SM LMs PS
s=1 187 ~151 33 ~144 25~126 25~126 2:~141 25~126 1 1
s=2 1.23 1.21 1.12 1.12 1.19 1.12 1 1
s=3 1.15 1.13 1.08 1.08 1.09 1.08 1 1

4. Numerical section

This section provides the numerical behavior of the proposed matrix iterative method (9). The perfor-
mance of the scheme is studied by implementing it to real-life problems and compared with the results
obtained from existing techniques. We displayed the number of iterations k, last three errors ex = || Xjr1 —Xkl|,
computational order of convergence p, and computational time T (in seconds). The approximated value of
p is measured by using the following expression

o In(UIXg1 = Xell/ 11X — Xie—1ll)
In (1Xk — Xiall/1Xk1 — Xie—2ll)”

k=2,3,.... (17)

In order to measure these comparison components, the initial approximations X, = mA* and stopping
criteria || Xi+1 — Xkllo < T, where 7 represents the tolerance, are employed. Furthermore, the technical and
symbolic computation software Mathematica [21] version 11 is used to conduct the numerical findings up
to 250 significant digits.

Example 4.1. Consider the following rank-deficient matrix

(18)

(e O
N Ul W WN
N ON U W
NN O U1 OB
XA WDN -

The numerical results are displayed in Table 2 with T = 1070, A notable difference in the iteration count between the
existing and proposed linear and quadratic order iterative schemes is observed. As inspected from the finding, SM,
performs much better than other quadratic convergent schemes.

Table 2: Comparisons of iterative methods using example 4.1

Method k ) k-1 e p T
CM; 15 5.47478(-10) 1.29839(-30) 1.7319(-92) 3.0000 0.218
SM, 16 2.79245(-7) 1.38725(—15) 3.42365(-32) 2.0000 0.391
SM;3 18 9.66005(-9) 4.15032(-18) 7.66103(-37) 2.0000 0.344
SMy 23 3.06156(—13) 8.33755(-27) 6.18344(-54) 2.0000 0.376

SM 34 3.01258(-12) 1.21094(-24) 1.95654(—49) 2.0000 0.671
LMs 40 2.47729(-29) 2.47729(-30) 2.47729(-31) 1.0000 0.421
PS 1038 1.13112(-30) 1.04629(-30) 9.67816(-31) 1.0000 0.769
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Example 4.2. Consider the statically determinate truss problem [6, 22] shown in Figure 1. To determine the resultant
forces on the roller and stationary support with the members and the reaction forces, we model the problem into the
linear system Ax = b, where

m 0 as 0 0 0 0 0 0 1 0 0]
a 0 a4 0 0 0 0 0 0 0 0 1
—y —dg 0 0 0 0 0 ag ap 0 0 0
— as 0 0 1 0 0 as —a1 0 0 0
0 a -as a 0 0 0 0 0 0 0 0
A_| 0 s -z as 0 0 0 0 0 000
h 0 0 0 —-as O ag 0 0 o 0 0 0}
0 0 0 —-a -1 a5 0 0 0 0 0 0
0 0 0 0 0 —-a a -a 0 0 0 0
0 0 0 0 0 as —-a3 —as 0 0 0 0
0 0 0 0 0 0 —-a O a 0 0 0
0 0 0 0 0 0 as 0 a 0 1 0 |

t
x:[ F, F, F3 Fy Fs Fg F, Fg Fo Fy, Fq Fy ]
b:[O 0 0 0 0 500 0 1000 0 500 O O]t,
and a1 = sin(61), a; = cos(61), as = sin(6,), ay = cos(6,), as = sin(03), ag = cos(03), 61 = arctan(%), 0, =
arctan(3) and 05 = arctan(}) and then solve it using proposed iterative family. The computational components are
evaluated with a tolerance of T = 10730 gnd compared with other schemes. These results, shown in Table 3, demonstrate
that the proposed quadratic convergent methods provide more accurate solutions in less time and iterations than the

well-known Schulz and SM methods. Moreover, by observing linear convergent schemes, the presented method LMs
converges quite rapidly compared to the PS technique.

Node

| 15 feet | 15 feet | 15 feet | 15 feet |

Figure 1: Forces on a statically determinate truss
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Table 3: Comparisons of iterative methods using example 4.2
Method k () €1 ek P T

CM; 10 3.55009(-8) 6.77114(-25) 4.69817(-75) 3.0000 0.265

SM, 11 3.27723(-8) 2.64251(—17) 1.71805(—35) 2.0001 0.296

SM; 12 1.76698(=7)  1.92047(-15)  2.26860(=31)  2.0000  0.312

SMy 15 2.96536(—10) 1.08175(-20) 1.43955(—41) 2.0000 0.311

SM 21 1.29021(-12) 3.07176(—25) 1.74116(-50) 2.0000 1.516

LMs 36 4.24312(-29) 4.24312(-30) 4.24312(-31) 1.0000 0.469

PS 961 1.11829(-30) 1.03442(-30) 9.56835(—31) 1.0000 5.675

Example 4.3. Consider the partial differential equation (pde):
au Pu

E:W (O<x<1,0<t§0.1), (19)

satisfying the initial condition
U=sinnx whent=0for0 <x <1,
and the boundary condition

U=0atx=0and1fort>0.

Our aim is to find the approximate U using finite-difference methods. In particular, we applied the Crank-Nicolson
implicit method on equation (19) to evaluate U at n points, which further yields the following approximated equation

Ui —Uij 1 {ui+1,j+1 = 2Ujje1 + Uic,jn . Uivr,j —2U;j + ui—l,j}

k 2 h? h?
implies
=rUjq,ji1 + 2+ 21U jy1 — Ui, je1 = Ui, + 2 = 2r)U; j + rUiy,
where r = k/h*. The following linear system of equations is obtained by taking step sizes h = 0.1 and k = 0.01,

AU = b, (20)
[ 4 -1 0 0 0 0 0 0 0
-1 4 -1 0 0 0 0 0 0
By 0 0 - 0 0 -1 4 -1 0 0 0 0 O
B By 0 .- 0 0 0 -1 4 -1 0 0 0 0
whereA=| 0 Ba Bi -+ 0 ,Bi= 0 0 0 -1 4 -1 0 0 0 |, 0isazeromatrix
S 0 0 0 0 -1 4 -1 0 0
0 0 0 B, B 0 0 0 0 0O -1 4 -1 0
0 0 0 0 0 o -1 4 -1
| O 0 0 0 0 0 0 -1 4
0 -1 0 0 0 0 0 0 0 ]
-1 0 -1 0 0 0 0O 0 0
0O -1 0 -1 0 0 0O 0 0
0 0O -1 0 -1 O 0O 0 0
oforder9x9,B,=| 0 0 0 -1 0 -1 0 0 O [,
0 0 0 o -1 0 -1 0 0
0 0 0 0 0O -1 0 -1 0
0 0 0 0 0 0o -1 0 -1
| 0 0 0 0 0 0 0 -1 0 |
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u= [UH, U21, U31, U41, ey U91, ulz, U22, U23, ey UZg, ey Uuo, Uz,w, ey U9/10]t, and b = [sin 0.271, sin0.17t +
sin 0.377, sin 0.27t+sin 0.47, sin 0.37t+sin 0.577, sin 0.47t+sin 0.67, sin 0.57t+sin 0.777, sin 0.67t+sin 0.8, sin 0.7 71+
sin 0.97,sin 0.87, 0,0, ..., 0.

In order to check the applicability of the proposed iterative methods (9) on solving PDE (19), the obtained linear sys-
tem (20) is considered. The numerical outcomes for the coefficient matrices are calculated using t = 1070, are displayed
in Table 4. The experimental data concludes that the proposed scheme, for each considered parametric value, provides
superior results as compared to the same order existing methods. In addition to this, the final approximate values of U,

accurate to four decimal places, are equal to 10.2802, 0.5329,0.7335,0.8623,0.9067, 0.8623,0.7335, 0.5329, 0.2802,
0.2540,0.4832,0.6651, 0.7818, 0.8221, 0.7818, 0.6651, 0.4832, 0.2540, 0.2303, 0.4381, 0.6030, 0.7089, 0.7453, 0.7089,
0.6030,0.4381,0.2303, 0.2088, 0.3972, 0.5467, 0.6427, 0.6758, 0.6427, 0.5467,0.3972, 0.2088, 0.1893, 0.3602, 0.4957,
0.5827,0.6127,0.5827,0.4957,0.3602,0.1893,0.1717, 0.3265, 0.4494, 0.5284, 0.5556, 0.5284, 0.4494, 0.3265, 0.1717,
0.1557,0.2961,0.4075,0.4791,0.5037, 0.4791, 0.4075, 0.2961, 0.1557,0.1411, 0.2684, 0.3695, 0.4344, 0.4567, 0.4345,
0.3695,0.2684,0.1411,0.1280, 0.2434, 0.3350, 0.3938, 0.4141, 0.3938, 0.3350, 0.2434, 0.1280, 0.1160, 0.2207, 0.3037,
0.3571,0.3754,0.3571,0.3037, 0.2207,0.1160], are obtained using the method CM,. Overall, we can conclude that
the developed scheme serves as a better alternative compared to existing linear and quadratic order iterative methods.

The motivation behind this problem is to assess the applicability of Schulz-type solvers for determining the solution
of partial differential equations (PDEs). The resulting linear system is sparse, making such solvers well-suited for
efficient computation. However, solving the linear system arising from discretization can still be challenging due
to factors such as large system size and poor conditioning. Thus, these methods serve as a robust alternative when
direct solvers or traditional iterative methods are inefficient due to the characteristics of the system matrix. Moreover,
we found that investigating the numerical implementation of the proposed technique over a particular case of PDE
(19) is quite fruitful. Thus, one can also determine the solutions for elliptic, parabolic, and hyperbolic PDEs using
the proposed method, even when the coefficient matrix of a modeled problem in a linear system becomes singular or
rectangular.

Table 4: Comparisons of iterative methods using example 4.3

Method k ek—2 er-1 ek p T
CM; 10 1.42806(—8) 2.44389(-25) 1.22485(-75) 3.0000 18.063
SM;, 11 1.33766(—8) 1.03667(—17) 6.22630(—36) 2.0001 22.453
SM3 12 7.21643(-8) 7.54283(—16) 8.24059(-32) 2.0000 26.375
SMy 15 1.17688(—10) 4.01223(-21) 4.66328(—42) 2.0008 28.048

SM 21 4.76395(-13) 9.86153(-26) 4.2257(-51) 2.0002 406.594
LMs 36 1.78668(—29) 1.78668(—30) 1.78668(—31) 1.0000 61.641
PS 950 1.11661(-30) 1.03287(-30) 9.55401(-31) 1.0000 1421.78

Apart from testing the scheme on the basis of accuracy, we also compared the computational convergence
behavior of new second order schemes with existing approaches. The comparison is illustrated in Figure 2
using Examples 4.1, 4.2, and 4.3. These figures illustrate the performance of the iterative methods in terms
of computational order of convergence with respect to iterations. According to Figure 2(a), the SM,, SM3,
SM,, and SM methods reach to convergence phase after 14, 15, 20 and 32 iterations, respectively. Figures
2(b) and 2(b)(c) demonstrate that each of the methods SM,, SM3, SM4, and SM, require about 9, 10, 13 and
17 iterations, respectively, to meet the theoretical convergence order. Eventually, the proposed methods
SM, and SMj3, reach the convergence phase earlier than the Schulz method SM; and SM methods. As
expected from the data displayed in Tables 2, 3, and 4, the performance of SM, and SM3 in each example is
comparatively better in terms of both convergence phase and accurate solution than SM4 and SM.

Example 4.4. In this test problem, we measure the performance of the developed scheme (9) on a variety of application
matrices. These test data are taken from Matrix Market Library [23], which provides the matrix generation tools and
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Figure 2: Iterations versus computational convergence order

services. The descriptions of the tested matrices are given in Table 5. By reason of the large order of matrices, their
visual representation along with the Moore—Penrose inverse, are shown in Figure 3.

The numerical outcomes using T = 1078 are demonstrated in Tables 6-8. It can be seen that the proposed quadratic
schemes are competing with the existing same order methods. Moreover, LMs exhibits good results as compared to
the linear order method PS. Overall, SM, is the more acceptable method in view of quadratic convergence.

Table 5: Details of matrices

A; Matrix Size Entries Type

Aq ILLC1033 1033 x 320 4732 real unsymmetric

Ay YOUNGIC 841 x 841 4089 complex symmetric indefinite
Az WELL1033 1033 x 320 4732 real unsymmetric
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Figure 3: Visual representation of sparse matrices along with its approximate inverse obtained by SM>

Table 6: Comparisons of iterative methods using example 4.4 for A;

Method k ) er-1 ex p T
CM; 23 747.551 1.76989(-1) 1.04919(-9) 3.07736 14.376
SM, 25 67.6965 1.89715(-2) 1.57868(-9) 1.99293 15.500
SM3 28 44.7166 2.06033(-2)  4.43591(-9) 1.99817 17.672
SMy 36 51.1454 5.39120(-2)  5.98222(-8) 2.00019 21.781

SM 58 21.4820 1.42526(-2)  2.36813(-8) 2.01222 606.188

LMs 32 2.30217(=7)  2.32912(-8)  2.54935(-9) 0.99426 20.642

PS 641 1.13256(-8) 1.04783(-8)  9.69217(-9)  0.994763  648.093
Table 7: Comparisons of iterative methods using example 4.4 for A,

Method k ex—2 er_1 ek p T
CM; 14 7.71696(-2) 1.80231(—4)  2.28837(-12) 3.1608 28.657
SM, 16 3.56565(—4) 1.59122(-8)  2.96861(-15)  2.02597 29.109
SM;3 17 1.71856(-2)  9.42404(-5) 2.77657(-9) 2.09762 30.813
SMy 22 4.03845(-3) 1.02478(-5)  6.56577(-11)  2.03159 31.001

SM 34 4.21653(-3) 1.67911(-5)  2.68443(-10)  2.03835 141.641
LMs5 19 1.20178(-7) 1.20177(-8) 1.20177(-9) 1.0000 37.641
PS 377 1.13983(-8) 1.05435(-8) 9.7527(-9) 1.0000 2558.69




Table 8: Comparisons of iterative methods using example 4.4 for A3
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Method k k-2 k-1 ey p T
CM; 15 3.25384 1.35865(—4) 6.43416(—13) 3.03500 11.891
SM, 16 2.9489 3.56957(-3) 4.99004(-9) 2.00700 15.032
SM; 18 1.26217 1.59852(=3)  2.49175(-9) 2.00428 12.251
SMy 23 6.64651(—1) 8.76376(—4) 1.48562(—-9) 2.00381 13.796
SM 36 1.04859(-1) 3.18485(-5) 5.97821(-9) 2.01270 281.735
LMs 22 3.02028(-7) 3.02028(-8) 3.02031(-9) 0.999994 16.719

PS 459 1.11774(-8) 1.03391(-8) 9.56365(-9) 0.99997 505.313

8927

5. Conclusions

In this paper, we have established a generic iterative method for evaluating the generalized inverse
of a matrix. The construction of the method is based on the second Penrose equation. A theoretical
investigation has been conducted to determine its convergence phase. It was further found that the
proposed family generates several first and second order iterative methods. The most notable case occur
when the parameters are set to f = 1 and a = 0, yielding a cubic convergent iterative method with a
higher efficiency index. Furthermore, the well-known Schulz and Chebyshev matrix iterative methods
can be derived from the presented algorithm. In order to justify the theoretical results, numerical testing
were performed on different types of matrices using the Matrix Market Library services. Furthermore,
the applicability of the method was explored through practical problems, such as statically determinate
truss systems and one-dimensional parabolic problems, by modeling them as linear systems. The obtained
results were compared with those of existing methods and it was observed that the new schemes SM,, SM3,
and LMs, perform effectively and are competing with their counterparts of the same order.
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