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Abstract. This study extends stability theory by investigating the Hyers–Ulam and Hyers–Ulam–Rassias
stability of a class of Caputo fractional iterative differential equations. The analysis employs a fixed point
approach together with a generalized form of the Bielecki metric to derive sufficient conditions ensuring
the stability of solutions. Both bounded and unbounded intervals are examined to highlight the robustness
of the established results across different temporal domains. The framework accommodates the interplay
between fractional–order derivatives and iterative dynamics, offering a unified treatment that generalizes
several existing results in the literature. To support the theoretical analysis, several illustrative examples
are presented to demonstrate the validity of the main results within the mathematical framework.

1. Introduction and Preliminaries

The concept of stability introduced by S. M. Ulam [47] in 1940 has gained increasing attention from
researchers due to its vast applications. The initial results concerning this type of stability, particularly
for functional equations, aimed to determine how close an approximate solution is to the exact solution
and whether such a solution exists. For the additive Cauchy equation, f (x + y) = f (x) + f (y), D. H.
Hyers [9] provided a partial answer within Banach spaces, leading to what is now known as Hyers–Ulam
stability. Later, T. M. Rassias [51] expanded upon this idea by introducing new concepts, culminating in
Hyers–Ulam–Rassias stability.

Various generalizations of stability have since been developed by numerous researchers, such as Rassias
[52], Gajda [59], and Aoki [53], who explored alternative norms, different classes of equations, and distinct
mathematical techniques for obtaining approximate solutions. For a comprehensive overview of these
advancements, refer to [23] and Brzdek et al. [15]. For more insights, refer to the papers [16, 58].

In this paper, we investigate Hyers–Ulam stability, Hyers–Ulam–Rassias stability, and a new form
of stability called σ–semi–Hyers–Ulam stability for the following Caputo fractional iterative differential
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equation:

CDα
0 x(t) = f (t, x(t), x(1(x(t)))), 0 < α < 1, (1)
x(0) = c, c ≥ 0.

where t ∈ I = [0,T], CDα
0 denotes the Caputo fractional derivative of order α, f : I×C×C→ C is a continuous

function, and 1 : C → C is a continuous operator such that 1(x(t)) ≤ t for all t ∈ I. Here, C denotes the
Banach space of all real–valued continuous functions defined on the interval I.

Our interest in this problem is sparked by a recent work [1], where the authors examined the existence
and uniqueness of solutions to a first–order iterative initial value problem:

x′(t) = f (t, x(t), x(1(x(t)))), x(0) = c, (2)

using Picard’s methods under certain restrictions on f and 1. Many related studies exist in fields such as
electrodynamics [50], population growth [21], infectious disease modeling [10], and dynamical systems.
The utility of both integer and fractional derivatives in modeling has prompted extensive research into
ordinary and fractional iterative differential equations. For works on ordinary derivatives, see [8], and
for fractional derivatives, refer to [28, 29]. Two widely recognized definitions of Riemann–Liouville and
Caputo fractional derivatives are employed in this study, as referenced in [17, 54].

Building upon these foundational and emerging studies, several recent works have focused specifically
on the stability analysis of fractional and integral equations using various generalized concepts. For in-
stance, Irshad et al. [24] examined the stability of time–fractional nonlinear Schrödinger equations, while
Shah and Irshad [30] addressed Hyers–Ulam–Mittag–Leffler stability in nonlinear fractional reaction–
diffusion equations with delays. The Hyers–Ulam–Rassias stability of nonlinear convolution integral
equations has been explored in the work of Irshad, Shah, and Liaquat [25]. Related contributions include
studies on the Hyers–Ulam stability of Bernoulli’s differential equation [31] and impulsive Fredholm inte-
gral equations on finite intervals [32]. Shah and Irshad further extended this investigation to oscillatory
Volterra integral equations [33], hybrid differential equations involving Gronwall–type inequalities [34],
and impulsive Hammerstein integral systems [35].

Additional advancements include the application of the Gronwall lemma to Ulam–type stability of
integral equations by Shah et al. [36] and the use of fixed point methods for stability analysis of delay
fractional integro–differential equations with almost sectorial operators [37]. In the context of generalized
integral systems, Shah and Tanveer [38] studied (k, ψ)–fractional order quadratic integral equations, while
Shah and Abbasi [39] focused on impulsive Hammerstein integral equations. Further related efforts by Shah
and collaborators address the Hyers–Ulam stability of weakly singular Volterra equations [40], nonlinear
Volterra–Fredholm equations [41], and impulsive Volterra integral equations using fixed point theory [42].
A foundational fixed point analysis for Volterra–type systems with delay can also be found in [43].

In a parallel line of research integrating fixed point theory with biological modeling, Turab and Sintu-
navarat contributed several influential works. These include the analysis of traumatic avoidance learning
models via the Banach fixed point theorem [2], behavioral modeling of two–choice decision–making in fish
using analytic techniques [3], and a novel study on nonlinear fractional boundary value problems defined
over graph structures such as the ethane graph [4]. These cumulative efforts demonstrate the flexibility and
depth of fixed point techniques and fractional analysis in addressing a wide variety of nonlinear systems
across mathematical and applied domains.

Fractional differential equations provide powerful tools for modeling complex phenomena involving
memory and hereditary characteristics across various scientific domains such as biology, engineering,
epidemiology, and chemical graph theory. Turab et al. [5] developed solutions for nonlinear boundary
value problems on the hexasilinane graph, demonstrating the relevance of fractional differential equations
in structural graph modeling. In the context of epidemiology, Sintunavarat and Turab [56] formulated
an extended SEIR model for COVID–19 using the Atangana–Baleanu–Caputo fractional operator to de-
scribe disease dynamics involving asymptomatic, symptomatic, and hospitalized populations. The model
included existence, uniqueness, and stability analysis, supported by a suitable numerical scheme. Fur-
thermore, [57] applied fixed point theory to analyze fractional boundary value problems emerging from
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chemical graph theory. These investigations highlight the significance of fractional differential equations
in real–world applications and encourage continued research in this direction.

Fractional iterative differential equations with Caputo derivatives have numerous applications across
various disciplines. In physics and engineering, such equations effectively model viscoelastic materials,
anomalous diffusion, and electrical circuits featuring fractional–order elements. These equations are also
used to describe heat transfer, thermal analysis, and mechanical systems characterized by fractional–order
derivatives.

Moreover, these equations play a significant role in biology and medicine. They help model popula-
tion dynamics, tumor growth, and complex biological systems, offering insights into pharmacokinetics,
pharmacodynamics, and neuronal activity.

In finance and economics, fractional iterative differential equations model financial markets, stock
prices, and fractional–order stochastic processes, contributing to option pricing, risk management, and the
dynamics of economic systems [7, 18, 26]. In signal processing and image analysis, fractional–order models
are applied to filtering, image denoising, edge detection, and signal modeling. Ongoing research in math-
ematics and numerical analysis continues to develop methods for stability, convergence, and theoretical
understanding of such equations.

Real–world applications extend further to modeling renewable energy systems, groundwater flow, con-
taminant transport, and complex networks. Notable examples include the fractional–order logistic equa-
tion, Lotka–Volterra model, diffusion equation, wave equation, and heat equation. Solutions are obtained
through methods such as finite difference, finite element, Laplace transforms, Adomian decomposition,
and variational iteration [27, 44, 49, 55].

The Caputo derivative, introduced by Michele Caputo in 1967, provides a robust framework for mod-
eling memory–dependent and non–local phenomena. Its versatility has made it a key tool in fractional
iterative differential equations, driving ongoing research and applications [12, 13, 22, 45].

In recent years, substantial efforts have been made to study the stability of fractional differential equa-
tions using fixed point methods and various metric frameworks. However, to the best of our knowledge,
there are no existing results on the Hyers–Ulam and Hyers–Ulam–Rassias stability for Caputo fractional
iterative differential equations within the setting of a generalized Bielecki metric. Existing studies primarily
focus on either classical Caputo–type equations or do not account for the iterative nature of the system.
Moreover, the combined effects of iterative dynamics and fractional–order derivatives have received limited
attention, especially in the context of both bounded and unbounded temporal domains. These gaps moti-
vate the present study, which aims to fill this void by establishing new stability criteria using a generalized
metric approach, thus extending and unifying several known results.

The results presented in this paper offer practical benefits by providing a rigorous analytical framework
for ensuring the stability of fractional iterative differential systems. Such stability guarantees are essential
for validating the reliability of mathematical models that involve memory effects and iterative processes,
features commonly found in real–world phenomena. By establishing Hyers–Ulam and Hyers–Ulam–
Rassias stability through a generalized Bielecki metric, the study enhances the tools available for researchers
dealing with complex dynamical systems. These findings help ensure that small deviations in input or
initial conditions lead to predictable and bounded responses, which is crucial for accurate analysis and
dependable behavior in applied mathematical modeling.

Let us consider the following standard definitions of fractional calculus.

Definition 1.1 (See [14, 46]). Let x(t) : [0,T] → C be a continuous and integrable function over [0,T], and let
α > 0. The fractional integral of x(t) of order α is defined as

Iα0 x(t) =
1
Γ(α)

∫ t

0
(t − ξ)α−1x(ξ) dξ. (3)

Definition 1.2 (See [14, 46]). Let α ∈ (n− 1,n) for n ∈N, and let x(t) : [0,T]→ C be a continuous and integrable
function for T > 0. The Caputo fractional derivative of x(t) of order α is defined as

CDα
0 x(t) =

1
Γ(n − α)

∫ t

0
(t − ξ)n−α−1x(n)(ξ) dξ. (4)
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In Definitions 1.1 and 1.2, the Gamma function, Γ(x), is expressed as

Γ(x) =
∫
∞

0
ξx−1e−ξdξ. (5)

It is known that Γ(1) = 1, Γ
(

1
2

)
=
√
π, Γ(x+1) = xΓ(x) for x > 0, and Γ(n+1) = n! for n ∈N. Furthermore,

it can be observed that Iα0 (CDα
0 x(t)) = x(t)− x(0). Consequently, the integral representation of Equation (1) is

given by

x(t) = c +
1
Γ(α)

∫ t

0
(t − ξ)α−1 f (ξ, x(ξ), x(1(x(ξ)))) dξ, (6)

where t, ξ ∈ [0,T], α ∈ (0, 1), c ≥ 0, and Γ(.) denotes the Gamma function.
The stabilities discussed earlier are formally defined in the context of the Caputo fractional iterative

differential Equation (1).

Definition 1.3. Let x be a continuous function on [0,T] such that∣∣∣ CDα
0 x(t) − f (t, x(t), x(1(x(t))))

∣∣∣ ≤ σ(t), t ∈ [0,T],

where σ is a non–decreasing function. If there exists a solution x0 to the Caputo fractional iterative differential
equation and a constant C > 0, independent of x and x0, such that

|x(t) − x0(t)| ≤ Cσ(t),

for all t ∈ [0,T], then the Caputo fractional iterative differential Equation (1) is said to exhibit Hyers–Ulam–Rassias
stability.

Definition 1.4. Let x be a continuous function on [0,T], such that∣∣∣ CDα
0 x(t) − f (t, x(t), x(1(x(t))))

∣∣∣ ≤ θ, t ∈ [0,T],

where θ ≥ 0. If there exists a solution x0 to the Caputo fractional iterative differential equation and a constant C > 0,
independent of x and x0, such that

|x(t) − x0(t)| ≤ Cθ,

for all t ∈ [0,T], then the Caputo fractional iterative differential Equation (1) is said to have Hyers–Ulam stability.

We now introduce a novel type of stability, as identified by Castro and Simões [19]. This stability lies
between the two previously discussed stabilities, namely Hyers–Ulam–Rassias stability and Hyers–Ulam
stability.

Definition 1.5. Let σ be a non–decreasing function defined on [0,T]. If for every continuous function x satisfying∣∣∣ CDα
0 x(t) − f (t, x(t), x(1(x(t))))

∣∣∣ ≤ θ, t ∈ [0,T], (7)

where θ ≥ 0, there exists a solution x0 of the Caputo fractional iterative differential equation and a constant C > 0,
independent of x and x0, such that

|x(t) − x0(t)| ≤ Cσ(t), t ∈ [0,T], (8)

then the Caputo fractional iterative differential Equation (1) is said to have σ–semi–Hyers–Ulam stability.

For a nonempty set X, the generalized metric on X is defined as follows:

Definition 1.6 ([48]). Let X be a nonempty set and d : X × X → [0,+∞] be a given mapping. We say that d is a
generalized metric on X if and only if d satisfies the following conditions:
1. d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ X;
3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
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This concept differs from the standard definition of a complete metric space, as it allows the possibility
that not all pairs of points in X have a finite distance. Consequently, such a space can be described as a
generalized complete metric space.

Next, we present a well–known result in fixed–point theory.

Theorem 1.7 ([11]). Let (X, d) be a generalized complete metric space and consider a mapping T : X → X which is
a strictly contractive operator, that is,

d(Tx,Ty) ≤ Ld(x, y), x, y ∈ X,

for some Lipschitz constant 0 ≤ L < 1. If there exists a non–negative integer k such that d(Tk+1x,Tkx) < ∞ for some
x ∈ X, then the following three propositions hold true:
(M1) The sequence (Tnx)n∈N converges to a fixed–point x∗ of T;
(M2) x∗ is the unique fixed–point of T in X∗ =

{
y ∈ X : d(Tkx, y) < ∞

}
;

(M3) If y ∈ X∗, then

d(y, x∗) ≤
1

1 − L
d(Ty, y). (9)

2. Hyers–Ulam–Rassias Stability on a Bounded Interval

This section presents the necessary conditions for the Hyers–Ulam–Rassias stability of the Caputo frac-
tional iterative differential Equation (1), where t ∈ [0,T], for some fixed real number T.

We will explore the space of continuous functions C([0,T]) on [0,T], which is equipped with a general-
ization of the Bielecki metric given by

d(x, y) = sup
t∈[0,T]

|x(t) − y(t)|
σ(t)

, (10)

where σ is a non–decreasing continuous function σ : [0,T]→ (0,∞). In (10), if we take σ(t) = ep(t) with p > 0,
we obtain the well–known Bielecki metric. In this work, we have chosen to consider a more general form
of the metric to make it more inclusive.

We recall that the space C([0,T]) with the generalized metric d is a complete metric space (see, for
instance, earlier research [20], [6]).

Theorem 2.1. Let f : [0,T] × C × C → C be a continuous function such that there exist constants L1,L2 > 0
satisfying

| f (t, x1, y1) − f (t, x2, y2)| ≤ L1|x1 − x2| + L2|y1 − y2| (11)

for all t ∈ [0,T] and x1, x2, y1, y2 ∈ C. Additionally, let 1 : C→ C be a continuous function such that 1(x(t)) ≤ t.
Let σ : [0,T] → (0,∞) be a non–decreasing continuous function such that there exists K > 0 for which the

following inequality holds:∫ t

0
(t − ξ)α−1σ(ξ) dξ ≤ Kσ(t) (12)

for all t ∈ [0,T].
If x ∈ C([0,T]) satisfies∣∣∣CDα

0 x(t) − f (t, x(t), x(1(x(t))))
∣∣∣ ≤ σ(t), t ∈ [0,T], (13)

and K(L1+L2)
Γ(α) < 1, then there exists a unique function x0 ∈ C([0,T]), a solution to Equation (1), given by

x0(t) = c +
1
Γ(α)

∫ t

0
(t − ξ)α−1 f (ξ, x0(ξ), x0(1(x0(ξ)))) dξ, (14)



R. Shah et al. / Filomat 39:25 (2025), 8929–8944 8934

such that

|x(t) − x0(t)| ≤
K

Γ(α) − K(L1 + L2)
σ(t) (15)

for all t ∈ [0,T].
Thus, under the above conditions, the Caputo fractional iterative differential Equation (1) is Hyers–Ulam–Rassias

stable.

Proof. We will consider the operatorΨ : C([0,T])→ C([0,T]) defined by

(Ψx)(t) = c +
1
Γ(α)

∫ t

0
(t − ξ)α−1 f (ξ, x(ξ), x(1(x(ξ)))) dξ (16)

for all t ∈ [0,T] and x ∈ C([0,T]).
It is important to note thatΨx is also continuous for every continuous function x. Indeed,

|(Ψx)(t) − (Ψx)(t0)| =
1
Γ(α)

∣∣∣∣∣∣
∫ t

0
(t − ξ)α−1 f (ξ, x(ξ), x(1(x(ξ)))) dξ

−

∫ t0

0
(t0 − ξ)α−1 f (ξ, x(ξ), x(1(x(ξ)))) dξ

∣∣∣∣∣∣
=

1
Γ(α)

∣∣∣∣∣∣
∫ t

0
(t − ξ)α−1 f (ξ, x(ξ), x(1(x(ξ)))) dξ

−

∫ t

0
(t0 − ξ)α−1 f (ξ, x(ξ), x(1(x(ξ)))) dξ

+

∫ t

0
(t0 − ξ)α−1 f (ξ, x(ξ), x(1(x(ξ)))) dξ

−

∫ t0

0
(t0 − ξ)α−1 f (ξ, x(ξ), x(1(x(ξ)))) dξ

∣∣∣∣∣∣
≤

1
Γ(α)

( ∫ t

0

∣∣∣(t − ξ)α−1
− (t0 − ξ)α−1

∣∣∣
×

∣∣∣ f (ξ, x(ξ), x(1(x(ξ))))
∣∣∣ dξ

+

∣∣∣∣∣∣
∫ t

t0

(t0 − ξ)α−1 f (ξ, x(ξ), x(1(x(ξ)))) dξ

∣∣∣∣∣∣
)
→ 0

when t→ t0.
We shall conclude that under the present conditions, the operator Ψ is strictly contractive with respect

to the metric (10)

d(Ψx,Ψy) = sup
t∈[0,T]

|(Ψx)(t) − (Ψy)(t)|
σ(t)

=
1
Γ(α)

sup
t∈[0,T]

1
σ(t)

∣∣∣∣∣∣
∫ t

0
(t − ξ)α−1 f (ξ, x(ξ), x(1(x(ξ)))) dξ

−

∫ t

0
(t − ξ)α−1 f (ξ, y(ξ), y(1(y(ξ)))) dξ

∣∣∣∣∣∣
≤

1
Γ(α)

sup
t∈[0,T]

1
σ(t)

∫ t

0
(t − ξ)α−1
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×

∣∣∣∣ f (ξ, x(ξ), x(1(x(ξ)))) − f (ξ, y(ξ), y(1(y(ξ))))
∣∣∣∣ dξ

≤
1
Γ(α)

sup
t∈[0,T]

1
σ(t)

∫ t

0
(t − ξ)α−1

×

[
L1

∣∣∣x(ξ) − y(ξ)
∣∣∣ + L2

∣∣∣x(1(x(ξ))) − y(1(y(ξ)))
∣∣∣] dξ

≤
(L1 + L2)
Γ(α)

sup
t∈[0,T]

1
σ(t)

∫ t

0
(t − ξ)α−1

∣∣∣x(ξ) − y(ξ)
∣∣∣ dξ

=
(L1 + L2)
Γ(α)

sup
t∈[0,T]

1
σ(t)

∫ t

0
(t − ξ)α−1

∣∣∣x(ξ) − y(ξ)
∣∣∣

σ(ξ)
σ(ξ) dξ

≤
(L1 + L2)
Γ(α)

sup
ξ∈[0,T]

|x(ξ) − y(ξ)|
σ(ξ)

sup
t∈[0,T]

1
σ(t)

∫ t

0
(t − ξ)α−1σ(ξ) dξ

≤
K(L1 + L2)
Γ(α)

d(x, y).

As a consequence of K(L1+L2)
Γ(α) < 1, it follows that Ψ is strictly contractive. Therefore, we can apply the

previously mentioned Banach fixed–point theorem, which guarantees the Hyers–Ulam–Rassias stability of
the Caputo fractional iterative differential equation.

Moreover, Equation (15) follows from (9) and (13). Indeed, from (13), we have

|x(t) − (Ψx)(t)| ≤
K
Γ(α)

σ(t), t ∈ [0,T]. (17)

The Banach fixed–point theorem can now be applied again, and from (9), we get

d(x, x0) ≤
1

1 − K(L1+L2)
Γ(α)

d(Ψx, x). (18)

By the definition of the metric d and from (17), it follows that

sup
t∈[0,T]

|x(t) − x0(t)|
σ(t)

≤
K

Γ(α) − K(L1 + L2)
, (19)

and thus, (15) holds.

3. σ–semi–Hyers–Ulam and Hyers–Ulam Stabilities on a Bounded Interval

We shall now outline the necessary conditions in this section for the σ–semi–Hyers–Ulam and Hyers–
Ulam stability of the Caputo fractional iterative differential Equation (1).

Theorem 3.1. Let f : [0,T] × C × C→ C be a continuous given function such that there exist L1,L2 > 0 so that

| f (t, x1, y1) − f (t, x2, y2)| ≤ L1|x1 − x2| + L2|y1 − y2| (20)

for all t ∈ [0,T] and x1, x2, y1, y2 ∈ C. In addition, 1 : C→ C is a continuous function with 1(x(t)) ≤ t.
Let σ : [0,T]→ (0,∞) be a non–decreasing continuous function such that there exists K > 0 so that∫ t

0
(t − ξ)α−1σ(ξ) ≤ Kσ(t) (21)

for all t ∈ [0,T].
If x ∈ C([0,T]) is such that∣∣∣CDα

0 x(t) − f (t, x(t), x(1(x(t))))
∣∣∣ ≤ θ, t ∈ [0,T], (22)
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where θ ≥ 0 and K(L1+L2)
Γ(α) < 1, then there exists a unique function x0 ∈ C([0,T]), solution of Equation (1), that is

x0(t) = c +
1
Γ(α)

∫ t

0
(t − ξ)α−1 f (ξ, x0(ξ), x0(1(x0(ξ)))) dξ (23)

such that

|x(t) − x0(t)| ≤
TαKθ

Γ(α + 1)(Γ(α) − K(L1 + L2))σ(0)
σ(t), (24)

for all t ∈ [0,T], which means that the Caputo fractional iterative differential Equation (1) is σ–semi–Hyers–Ulam
stable.

Proof. Applying the same method as before, we conclude that Ψ is strictly contractive with respect to
the metric (10) since K(L1+L2)

Γ(α) < 1. Consequently, we can utilize the Banach fixed–point theorem, which
guarantees the σ–semi–Hyers–Ulam stability for the Caputo fractional iterative differential Equation (1).

However, keeping in mind (22) and the meaning ofΨ, we have that

|x(t) − (Ψx)(t)| ≤
Tα

Γ(α + 1)
θ, t ∈ [0,T]. (25)

From (9), the definition of the metric d, and from (25), it follows that

sup
t∈[0,T]

|x(t) − x0(t)|
σ(t)

≤
K

Γ(α) − K(L1 + L2)
sup

t∈[0,T]

Tαθ
Γ(α+1)

σ(t)
, (26)

so that (24) holds according to the definition of σ.

Corollary 3.2. Let f : [0,T] × C × C→ C be a continuous given function such that there exist L1,L2 > 0 so that

| f (t, x1, y1) − f (t, x2, y2)| ≤ L1|x1 − x2| + L2|y1 − y2| (27)

for all t ∈ [0,T] and x1, x2, y1, y2 ∈ C. In addition, 1 : C→ C is also a continuous function with 1(x(t)) ≤ t.
Let σ : [0,T]→ (0,∞) be a non–decreasing continuous function such that there exists K > 0 so that∫ t

0
(t − ξ)α−1σ(ξ) ≤ Kσ(t) (28)

for all t ∈ [0,T].
If x ∈ C([0,T]) is such that∣∣∣CDα

0 x(t) − f (t, x(t), x(1(x(t))))
∣∣∣ ≤ θ, t ∈ [0,T], (29)

where θ ≥ 0 and K(L1+L2)
Γ(α) < 1, then there exists a unique function x0 ∈ C([0,T]), solution of Equation (1), that is

x0(t) = c +
1
Γ(α)

∫ t

0
(t − ξ)α−1 f (ξ, x0(ξ), x0(1(x0(ξ)))) dξ (30)

such that

|x(t) − x0(t)| ≤
TαKσ(b)

Γ(α + 1)(Γ(α) − K(L1 + L2))σ(0)
θ, (31)

for all t ∈ [0,T], which means that the Caputo fractional iterative differential Equation (1) is Hyers–Ulam stable.
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4. Stabilities on an Unbounded Interval

Instead of analyzing the Caputo fractional iterative differential Equation (1) on a finite interval [0,T],
where T ∈ R, we now turn our attention to studying the Hyers–Ulam–Rassias and σ–semi–Hyers–Ulam
stabilities of the equation on the infinite interval [0,∞).

With the appropriate adjustments, the following results can also be extended to infinite intervals such
as (−∞,T], where T ∈ R, or even (−∞,∞).

We now focus on the Caputo fractional iterative differential equation
CDα

0 x(t) = f (t, x(t), x(1(x(t)))), 0 < α < 1, (32)
x(0) = c, c ≥ 0,

for t ∈ [0,∞), where the function f is defined as f : [0,∞)×C×C→ C and is assumed to be continuous in all
its arguments. The function 1 : C→ C is also assumed to be continuous, satisfying the condition 1(x(t)) ≤ t.
Here, C denotes the Banach space of all real–valued continuous functions defined on the interval [0,∞).

Our approach will leverage a recurrence procedure, building on the results obtained for the finite interval
case.

Let us consider a non–decreasing continuous function σ : [0,∞)→ (ϵ, ω), where ϵ, ω > 0, and the space
Cb([0,∞)) of bounded functions, endowed with the metric

db(x, y) = sup
t∈[0,∞)

|x(t) − y(t)|
σ(t)

. (33)

Theorem 4.1. Let f : [0,∞) × C × C → C be a continuous function such that there exist constants L1,L2 > 0
satisfying

| f (t, x1, y1) − f (t, x2, y2)| ≤ L1|x1 − x2| + L2|y1 − y2| (34)

for all t ∈ [0,∞) and x1, x2, y1, y2 ∈ C. Additionally, let 1 : C→ C be a continuous function with the property that
1(x(t)) ≤ t.

Let σ : [0,∞)→ (0,∞) be a non–decreasing continuous function such that there exists a constant K > 0 satisfying∫ t

0
(t − ξ)α−1σ(ξ) ≤ Kσ(t) (35)

for all t ∈ [0,∞).
In addition, suppose that∫ t

0
(t − ξ)α−1 f (ξ, x(ξ), x(1(x(ξ)))) dξ

is a bounded continuous function for any bounded continuous function x.
Suppose x ∈ Cb([0,∞)) satisfies the inequality∣∣∣CDα

0 x(t) − f (t, x(t), x(1(x(t))))
∣∣∣ ≤ σ(t), t ∈ [0,∞), (36)

and that K(L1+L2)
Γ(α) < 1. Then, there exists a unique function x0 ∈ C([0,T]) that solves the equation

x0(t) = c +
1
Γ(α)

∫ t

0
(t − ξ)α−1 f (ξ, x0(ξ), x0(1(x0(ξ)))) dξ (37)

such that

|x(t) − x0(t)| ≤
K

Γ(α) − K(L1 + L2)
σ(t) (38)

for all t ∈ [0,∞), which implies that the Caputo fractional iterative differential Equation (32) is Hyers–Ulam–Rassias
stable.
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Proof. For any m ∈ N, we define Im = [0,m]. By Theorem 2.1, there exists a unique continuous function
x0,m ∈ C(Im) such that

x0,m(t) = c +
1
Γ(α)

∫ t

0
(t − ξ)α−1 f (ξ, x0,m(ξ), x0,m(1(x0,m(ξ)))) dξ (39)

and

|x(t) − x0,m(t)| ≤
K

Γ(α) − K(L1 + L2)
σ(t) (40)

for all t ∈ Im. The uniqueness of x0,m implies that for any t ∈ Im,

x0,m(t) = x0,m+1(t) = x0,m+2(t) = · · · . (41)

For any t ∈ [0,∞), let m(t) ∈N be defined as

m(t) = min{m ∈N : t ∈ Im}.

We also define a function x0 : [0,∞)→ C by

x0(t) = x0,m(t)(t). (42)

For any t1 ∈ [0,∞), let m1 = m(t1). Then t1 ∈ Int(Im1+1), and there exists an ϵ > 0 such that x0(t) = x0,m1+1(t)
for all t ∈ (t1 − ϵ, t1 + ϵ), where Int(Im1+1) denotes the interior of Im1+1. By Theorem 2.1, x0,m1+1 is continuous
at t1, and thus, so is x0.

Next, we show that x0 satisfies

x0(t) = c +
1
Γ(α)

∫ t

0
(t − ξ)α−1 f (ξ, x0(ξ), x0(1(x0(ξ)))) dξ (43)

and

|x(t) − x0(t)| ≤
K

Γ(α) − K(L1 + L2)
σ(t). (44)

For any t ∈ [0,∞), choose m(t) such that t ∈ Im(t). From (39) and (42), we have

x0(t) = x0,m(t)(t)

= c +
1
Γ(α)

∫ t

0
(t − ξ)α−1 f (ξ, x0,m(t)(ξ), x0,m(t)(1(x0,m(t)(ξ)))) dξ

= c +
1
Γ(α)

∫ t

0
(t − ξ)α−1 f (ξ, x0(ξ), x0(1(x0(ξ)))) dξ. (45)

Note that m(ξ) ≤ m(t) for any ξ ∈ Im(t), and from (41), we know x0(ξ) = x0,m(ξ)(ξ) = x0,m(t)(ξ), so the last
equality in (45) holds.

To prove (44), from (42) and (40), we obtain for all t ∈ [0,∞),

|x(t) − x0(t)| = |x(t) − x0,m(t)(t)| ≤
K

Γ(α) − K(L1 + L2)
σ(t). (46)

Finally, we prove the uniqueness of x0. Let x1 be another bounded continuous function that satisfies
(37) and (38) for all t ∈ [a,∞). By the uniqueness of the solution on Im(t) for any m(t) ∈ N, we have that
x0|Im(t) = x0,m(t) and x1|Im(t) satisfies (37) and (38) for all t ∈ Im(t), so

x0(t) = x0|Im(t) (t) = x1|Im(t) (t) = x1(t).
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Now, we will provide sufficient conditions for the σ–semi–Hyers–Ulam stability of the Caputo fractional
iterative differential Equation (32).

Theorem 4.2. Let f : [0,∞) × C × C→ C be a continuous function such that there exist constants L1,L2 > 0 with
the property

| f (t, x1, y1) − f (t, x2, y2)| ≤ L1|x1 − x2| + L2|y1 − y2| (47)

for all t ∈ [0,∞) and x1, x2, y1, y2 ∈ C. Additionally, let 1 : C→ C be a continuous function such that 1(x(t)) ≤ t for
all t ∈ [0,∞).

Let σ : [0,∞)→ (0,∞) be a non–decreasing continuous function such that there exists a constant K > 0 satisfying∫ t

0
(t − ξ)α−1σ(ξ) dξ ≤ Kσ(t) (48)

for all t ∈ [0,∞).
In addition, suppose that∫ t

0
(t − ξ)α−1 f (ξ, x(ξ), x(1(x(ξ)))) dξ

is a bounded continuous function for any bounded continuous function x.
Suppose x ∈ Cb([0,∞)) is such that∣∣∣CDα

0 x(t) − f (t, x(t), x(1(x(t))))
∣∣∣ ≤ θ, t ∈ [0,∞), (49)

where θ ≥ 0 and K(L1+L2)
Γ(α) < 1. Then there exists a unique function x0 ∈ Cb([0,T]), which is the solution of Equation

(32), given by

x0(t) = c +
1
Γ(α)

∫ t

0
(t − ξ)α−1 f (ξ, x0(ξ), x0(1(x0(ξ)))) dξ (50)

such that

|x(t) − x0(t)| ≤
Kθ

Γ(α) − K(L1 + L2)σ(0)
σ(t) (51)

for all t ∈ [0,∞). This implies that the Caputo fractional iterative differential Equation (32) is σ–semi–Hyers–Ulam
stable.

Proof. The proof follows the same procedure as in the previous case, combined with Theorem 3.2. Therefore,
we omit the detailed proof here as it is straightforward.

5. Applications

To demonstrate that the conditions of the above results can be achieved, we will now present some
examples.

Example 5.1. Consider the following Caputo fractional iterative differential equation:

CD
1
3
0 x(t) =

1
100

t +
1

20
e−t3
+

cos(x(t))
30

+
1

15
sin(x(1(x(t)))), t ∈ [0, 1],

x(0) = 0, (52)

along with the inequality:∣∣∣∣∣CD
1
3
0 x(t) −

1
100

t −
1

20
e−t3
−

cos(x(t))
30

−
1

15
sin(x(1(x(t))))

∣∣∣∣∣ ≤ e3t = σ(t).
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Equation (52) is structured according to the form of Equation (1) with the following parameters:

α =
1
3
, [0,T] = [0, 1], c = 0,

f (t, x(t), x(1(x(t)))) =
1

100
t +

1
20

e−t3
+

cos(x(t))
30

+
1
15

sin(x(1(x(t)))).

Next, we demonstrate that the conditions of Theorem 2.1 are satisfied. For this purpose, we choose L1 =
1
30 ,

L2 =
1

15 , and K = 10, and perform the following calculations:∣∣∣ f (t, x1(t), y1(1(x1(t)))) − f (t, x2(t), y2(1(x2(t))))
∣∣∣

≤
1
30

∣∣∣y1(t) − y2(t)
∣∣∣ + 1

15

∣∣∣y1(t) − y2(t)
∣∣∣ ,∣∣∣∣∣∣

∫ t

0
(t − ξ)α−1σ(ξ) dξ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ t

0
(t − ξ)

1
3−1e3ξ dξ

∣∣∣∣∣∣ ≤ 10e3t.

Furthermore, we compute:

K(L1 + L2)
Γ(α)

=
10

(
1
30 +

1
15

)
Γ
(

1
3

) ≈

10
(

1
10

)
2.6789385

= 0.3732 < 1.

Thus, all conditions of Theorem 2.1 are satisfied. Therefore, Equation (52) is Hyers–Ulam–Rassias stable, with
the bound:

|x(t) − x0(t)| ≤
10

2.6789385 − 10
[

1
30 +

1
15

] e3t = 5.9563 e3t, t ∈ [0, 1].

Thus, Example 5.1 provides a valid application of Theorem 2.1.

Example 5.2. Consider the following Caputo fractional iterative differential equation:

CD
2
3
0 x(t) =

1
t2 + 1

+
tan−1(x(t))

4
+

sin(x(1(x(t))))
20(t3 + t2 + t + 1)

, t ∈ [0, 2],

x(0) = 0, (53)

and the inequality:∣∣∣∣∣∣CD
2
3
0 x(t) −

1
t2 + 1

−
tan−1(x(t))

4
−

sin(x(1(x(t))))
20(t3 + t2 + t + 1)

∣∣∣∣∣∣ ≤ et = σ(t).

Equation (53) is written in the form of Equation (1), with the following parameters:

α =
2
3
, [0,T] = [0, 2], c = 0,

f (t, x(t), x(1(x(t)))) =
1

t2 + 1
+

tan−1(x(t))
4

+
sin(x(1(x(t))))

20(t3 + t2 + t + 1)
.

Next, we demonstrate that the conditions of Theorem 2.1 are satisfied. For this purpose, we set L1 =
1
4 , L2 =

1
20 ,

and K = 3, and we perform the following calculations:∣∣∣ f (t, x1(t), y1(1(x1(t)))) − f (t, x2(t), y2(1(x2(t))))
∣∣∣

≤
1
4
|x1(t) − x2(t)| +

1
20

∣∣∣y1(t) − y2(t)
∣∣∣ ,
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∫ t

0
(t − ξ)α−1σ(ξ) dξ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ t

0
(t − ξ)

2
3−1eξ dξ

∣∣∣∣∣∣ ≤ 3et.

Additionally, we compute:

K(L1 + L2)
Γ(α)

=
3
(

1
4 +

1
20

)
Γ
(

2
3

) ≈

3
(

3
10

)
1.3541179

= 0.6645 < 1.

Therefore, all the conditions of Theorem 2.1 are satisfied. As a result, Equation (53) is Hyers–Ulam–Rassias stable
with the bound:

|x(t) − x0(t)| ≤
3

1.3541179 − 3
[

1
4 +

1
20

] et = 6.6072 et, t ∈ [0, 2].

Thus, Example 5.2 illustrates the application of Theorem 2.1.

Example 5.3. Consider the following Caputo fractional iterative differential equation:

CD
1
9
0 x(t) = sin t + 1000 +

x(t)
2
+

cot(x(1(x(t))))
30

, t ∈ [0, 3],

x(0) = 0, (54)

and the inequality:∣∣∣∣∣CD
1
9
0 x(t) − sin(t) − 1000 −

x(t)
2
−

cot(x(1(x(t))))
30

∣∣∣∣∣ ≤ e9t = σ(t).

Equation (54) is written in the form of Equation (1), with the following parameters:

α =
1
9
, [0,T] = [0, 3], c = 0,

f (t, x(t), x(1(x(t)))) = sin(t) + 1000 +
x(t)
2
+

cot(x(1(x(t))))
30

.

We now proceed to demonstrate that the conditions of Theorem 2.1 are satisfied. For this, we set L1 =
1
2 , L2 =

1
30 ,

and K = 5, and compute:∣∣∣ f (t, x1(t), y1(1(x1(t)))) − f (t, x2(t), y2(1(x2(t))))
∣∣∣

≤
1
2
|x1(t) − x2(t)| +

1
30

∣∣∣y1(t) − y2(t)
∣∣∣ ,∣∣∣∣∣∣

∫ t

0
(t − ξ)α−1σ(ξ) dξ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ t

0
(t − ξ)

1
9−1e9ξ dξ

∣∣∣∣∣∣ ≤ 5e9t.

Additionally, we compute:

K(L1 + L2)
Γ(α)

=
5
(

1
2 +

1
30

)
Γ
(

1
9

) ≈

5
(

8
15

)
4.5908

= 0.581 < 1.

Thus, all the conditions of Theorem 2.1 are satisfied. Consequently, Equation (54) is Hyers–Ulam–Rassias stable,
with the bound:

|x(t) − x0(t)| ≤
5

4.5908 − 5
[

1
2 +

1
30

] e9t = 2.598 e9t, t ∈ [0, 3].

Thus, Example 5.3 demonstrates the application of Theorem 2.1.
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Example 5.4. Consider the following Caputo fractional iterative differential equation:

CD
3
5
0 x(t) = ln(t + 1) +

ex(t)

50
+

tanh(x(1(x(t))))
25

, t ∈ [0, 2],

x(0) = 2, (55)

and the inequality:∣∣∣∣∣∣CD
3
5
0 x(t) − ln(t + 1) −

ex(t)

50
−

tanh(x(1(x(t))))
25

∣∣∣∣∣∣ ≤ et = σ(t).

Equation (55) is written in the form of Equation (1), with the following parameters:

α =
3
5
, [0,T] = [0, 2], c = 2,

f (t, x(t), x(1(x(t)))) = ln(t + 1) +
ex(t)

50
+

tanh(x(1(x(t))))
25

.

Next, we verify that the conditions of Theorem 2.1 are satisfied. For this, we assume L1 =
1
50 , L2 =

1
25 , and K = 10.

Then we compute:∣∣∣ f (t, x1(t), y1(1(x1(t)))) − f (t, x2(t), y2(1(x2(t))))
∣∣∣

≤
1
50
|x1(t) − x2(t)| +

1
25

∣∣∣y1(t) − y2(t)
∣∣∣ ,

∣∣∣∣∣∣
∫ t

0
(t − ξ)α−1σ(ξ) dξ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ t

0
(t − ξ)

3
5−1eξ dξ

∣∣∣∣∣∣ ≤ 10et.

Moreover, we calculate:

K(L1 + L2)
Γ(α)

=
10

(
1
50 +

1
25

)
Γ
(

3
5

) ≈

10
(

3
50

)
1.4892

= 0.403 < 1.

Thus, all the conditions of Theorem 2.1 are satisfied. Therefore, Equation (55) is Hyers–Ulam–Rassias stable, with
the bound:

|x(t) − x0(t)| ≤
10

1.4892 − 10
[

1
50 +

1
25

] et = 11.25 et, t ∈ [0, 2].

Thus, Example 5.4 validates the application of Theorem 2.1 for the case c , 0.

6. Conclusion

In conclusion, this work successfully extends stability theory to Caputo fractional iterative differential
equations by proving their Hyers–Ulam and Hyers–Ulam–Rassias stability. Employing the fixed–point
method and a generalized Bielecki metric, the study rigorously establishes these results across both bounded
and unbounded intervals. Furthermore, the inclusion of illustrative examples highlights the practical
applicability and effectiveness of the proposed theoretical framework, contributing valuable insights to the
study of fractional differential equations.
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