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Abstract. Drawing inspiration from the findings presented in references [10] and [16], this study aims
to broaden the scope of Milne-type inequalities within the context of Katugampola fractional integrals,
thus enriching the toolbox of fractional calculus. Through the discovery of a novel integral identity, we
establish a suite of Milne-type inequalities tailored for functions whose first-order derivatives are s-convex
in the second sense. To validate our theoretical advances, an example is provided, complete with graphical
illustrations. The research concludes by underscoring the practical utility of these inequalities, showcasing
their applicability across a wide range of fields within mathematical and applied sciences.

1. Introduction

Definition 1.1 ([28]). A function & : I — R is said to be convex, if
Kx+A-v)y) <vR )+ (1 -v)K(y)

holds for all x,y € I and all v € [0, 1].

Definition 1.2 ([7]). A nonnegative function & : I C [0, c0) — R is said to be s-convex in the second sense for some

fixed s € (0,1], if
Kx+ 1 =v)y) <vRE)+ (1 -v) ’K(y)
holds for all x,y € I and v € [0, 1].

The realm of fractional calculus represents a formidable extension of classical calculus, allowing for the
exploration of derivatives and integrals of non-integer orders. This mathematical field has been enriched
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by the introduction of several fractional integral operators, such as the Riemann-Liouville [23], Hadamard
[30], and Katugampola [20] fractional operators. These tools are instrumental in modeling phenomena with
intrinsic memory and hereditary properties, finding extensive application across physics, engineering, and
beyond.

Amidst numerical techniques for integral approximation, Milne’s rule distinguishes itself within the
Simpson’s rule family, acclaimed for its precision in estimating function integrals. Its accuracy and adapt-
ability have been the subject of extensive research, with studies exploring its application to classical [2], local
fractional [4, 25, 27], and quantum integrals [5, 34], along with investigations into its effectiveness with var-
ious fractional operators [8-11, 36]. For an exhaustive review, references [6, 13-15, 29] offer comprehensive
insights.

In [16], Djenaoui and Meftah established the following error bounds of Milne’s rule via for differentiable
convex functions:

Theorem 1.3. [16] Let & : [¢1, ©a] — R be a differentiable mapping on (cq, ¢2) such that & € Ly ([¢1, c2]). If |R'] is
convex on [¢1, ¢2], then we have

]

f S dy] < 220 9 )+ v @),

81

1+ ¢
2

%(29(@) —R( )+ ZR(cz))

Recent advancements have seen the adaptation of Milne’s Rule to the domain of fractional calculus, par-
ticularly through the establishment of Milne-type inequalities using Riemann-Liouville fractional integrals
[8, 10].

Theorem 1.4. [8] Let & : [¢1, 2] — R be a differentiable mapping on (c1, ) such that & € Ly ([¢1, ¢2]). If K] is
convex on [¢1, ¢2], then we have

29 () - 8 (952 4 20 (@) - ZLEED (g (ke s
- (452 eanie) - SR (052 e (452)

(2 —cr)f 2 2
<C2—C1 B+
- 12 p+1

) (8 () + 8" (2)]),

where ]f . and ]f _ represent the left- and right-sided Riemann-Liouville fractional integrals, respectively.
1 2

Theorem 1.5. [10] Let & : [¢1, ;] — R be a differentiable mapping on (cq, ¢2) such that & € Ly ([¢1, ¢2]). If |R'] is
convex on [¢1, ¢], then we have

: (ZR(cl) - R( )+ 2R(c2)) S (](¥)R(a) + I(¥),R(c2)
—c|[2 1 , , 4+2 |, (a+o
S—4 [(g - —(‘B+1)(ﬁ+2))(|ﬁ ()l + IR (e)]) + 3(6+2) ( > )],

where ]f . and ]f _ represent the Riemann-Liouville fractional integrals, respectively.
1 2

Within the spectrum of fractional integral operators, the introduction of Katugampola fractional integral
operators marks a significant advancement, offering a broader theoretical base that encapsulates the features
of both Riemann-Liouville and Hadamard fractional integrals. This innovative framework, proposed by
Udita N. Katugampola in 2011, features versatile fractional integral operators that incorporate an adjustable
parameter, facilitating customization for diverse application needs. The advent of Katugampola operators
has spurred a wealth of research, particularly in the realm of integral inequalities. Notable contributions
include the work by Farid et al., who formulated Ostrowski-type inequalities tailored for differentiable
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h-convex functions, as documented in [18]. Additionally, Kermausuor extended these findings by deriving
generalized Ostrowski-type inequalities for functions characterized by strongly (s, m)-convex second-order
derivatives in [21], alongside Simpson-type inequalities for s-convex first-order derivatives in [22]. For
further exploration in this domain, the interested reader is referred to [1, 12, 26, 31, 32], along with the
works cited therein.

The result provided in Theorem 1.4 was extended to Katugampola fractional integrals by Lakhdari et
al. in [24].
Theorem 1.6. Letf K : [cf, cg] — R be a differentiable function on (cf, cg) with0 < ¢ < ¢, and & € L1 [cf, ¢l If
|| is convex, then for B, o > 0 we have

1 . ci’ + ¢ . FXIT (B +1) 5 cf +¢ b ci’ + ¢
§(ZR(C1)—R[T)+ZR(CZ) B e ) e i

(4~
() w ()

G+
R, 1 2

For related work on Katugampola fractional integral inequalities, Set and Mumcu explored Hermite—
Hadamard-type inequalities for F-convex functions in [33]. In [35], Toplu et al. established similar inequal-
ities under the framework of p-convexity. Furthermore, Giirbiiz and colleagues derived Ostrowski-type
inequalities for the same class of functions in [19].

In this paper, we extend the findings presented in [16] and [10] to the Katugampola fractional integrals.
Our approach begins with the introduction of a new identity, from which we derive Milne-type inequal-
ities for differentiable s-convex mappings. The outcomes of this research not only generalize previously
established results but also refine some of them. The investigation concludes with an illustrative exam-
ple, including graphical representations, which confirms the accuracy of our findings and discusses some
applications.

6+(+1)(+2)
3B+ (B+2)

8+p
T 62+p)

a4 ( 8+
T 4 |6(2+p)

where K ﬁR and K’ f_R
1 2

2. Preliminaries

Definition 2.1 ([23]). Let & € Li[cy, ¢2]. The fractional Riemann-Liouville integrals ]f 'K and ]’f K of order >0
1 2
with a > 0, are defined by

]fIR(x) :%‘B)I(x —z)f 1 K)dz, x>,
]éR(x) =%ﬁ) f -2 R@dz, o >x,

respectively, where T(y) = [e™2z#~1 dz is the Gamma function, and J°, K(x) = JER(x) = K(x).
0 1 2

Definition 2.2 ([30]). Let § > 0. The left and right Hadamard fractional integral of any order p > 0 are defined by

X
]
H.. 80 :%ﬁ) f (Inx - Inz)f! ? &z, x>a,
51

HZR(X) =%ﬁ)f(lnz —Inx)f! @ dz, o >x.
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In the subsequent exposition, we define X}'(c1, ¢2) (with £ an element of IR and the range of m being from 1
to infinity) to represent the collection of complex-valued functions { that are Lebesgue measurable and for
which the norm ||K]| X remains finite. The norm is expressed as

¢ 1/m
||R||X;1 = (f IV[R(Z)Imdz) forl <m < oo,
(51

and when m = oo,

||R||x7 = ess sup IZK(2).

a<z<b

Definition 2.3 ([20]). Let & € X}’ ([¢1, c2]). The left and right side Katugampola fractional integrals of order € C
with Re (B) > 0and o > 0, are defined by

1 -l
oacB _0 277 R(z)
W‘TR(X) T®J o7 dz, x>q
(51

and

1-p 2 -1
o _0 z77°R(2)
‘Kgﬁ(x) ) ooz 7 dz, ¢ >x,

X

respectively.

Remark 2.4. Given the conditions 8, 0 > 0 and for x > a, it is noted that:
1. When gtends to 1, the Katugampola fractional integral, denoted as E’O’j 1+R(x), converges to the Riemann-Liouville
fractional integral, represented by @R(x).
2. Conwversely, as o nears 0%, the convergence of 906 1+R(x) aligns with that of the Hadamard fractional integral,
wgﬁ(x).
This observation similarly applies to related results for right-sided operators.

Definition 2.5 ([23]). For any complex numbers and nonpositive integers x, y such that Re (x) > 0 and Re (y) > 0.
The beta function is defined by

1

B(x,y) = fz"‘l (1-2)" dz =

0

()T (y)
T(x+y)’

where T (.) is the Euler gamma function.

Definition 2.6 ([23]). The hypergeometric function is defined, as follows

1

2F1 (4, 00, 63,0) = MIZCZ_l (1-2°" (1 -02)™" dz,
0

where ¢z > ¢ > 0,[v| < 1and B(.,.) is the beta function.
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3. Main results

In order to prove our results, we need the following lemma.

>
the following equality holds

0, 0 _
% (23 (ci’) _ R(H_Jrcz] +2R (cé’)] _ w °0F (R)

2 T(g-

Lemma 3.1. Let & : [ 0] — R be a differentiable function on (c" ) with0 < ¢; < ¢, and ] € L} [ ¢ Q] then

o 4 1 0 0

Q(c2_cl) s 4 q+6

=—\< B _ Z el (1 =10 + 0L 2

1 f(v 3)1/ KA =) +v > dv
0

1

<+
+f ——v@ﬁ ViR 1/9T+(1—1/4’)céJ dv|, (1)

0

where B, 0 > 0 and
P (R) =kt /() + ek’ K(<). )

Proof. Let

1 4 0
¢+

f "ﬁ - 4”15{’ [(1 -0+ v"%)dv

0

and
1

G+l
0, = f(% —vgﬁ)vg_lﬁ’ [1/5’—1 > 24 1-v% cg]dv
0
Integrating by parts O;, we get
il
0, = #0)(1/4’5 - %)R((l ve) ] +1? a 2]

v=1 1

2 G+
- ﬁcgfv@’g_lﬁ[vgcf+(l—v9) L_2\av
1

2 & — 2
v=0 2 0

1
o oND
04 2\?
(1+E2

2

2 ¢ +c 8 2ﬁ+1ﬁ Al )
=- 3Q(Cg_ CQ)R( 1 2 2]+ 3@((3— CQ)R(C({)— W f (MQ_ cf) R () u®\du

2 c1 a
R <+ ST (B ) oxcP ] (cg)
p+1 1\~ :
(c*” - c") [ qt+a)’
2 1 (T]

)

v=1

0, 0
4 <+
g—v@ﬁ)ﬁ(v" 12 2 +(1—v0)cg]

v=0
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1 0 0

28 » G+64 0
- ; v R((l —19) — v |dv

CQ + (@ 8 2:3"'1 “ B-1
]2 2] + - R(cg) - —ﬁﬁﬂ f (cg - u") K W) u?du

( ’ 0)
,—¢C
2 1
1 Al
2

<+ “19f+IT (B 4+ 1
=- @2 03(12 2]+ 8 QR(CQ _ T (§+1 )@7<ﬁ lJ%(cg). 4)
TN o A T
Summing (3) and (4), then multiplying the resulting equality by o5 2 1), we get the desired result. [
Remark 3.2. By setting o = 1, Lemma 3.1 will be reduced to Lemma 2.1 from [10].
Theorem 3.3. Let K : [cl 2] — R be a differentiable function on (cg 9) with 0 < ¢ < ¢, and & € L [ CIf

|| is s-convex in the second sense for some fixed s € (0, 1], then we have
0 < F2r(p+1)
%(2R(ci)—ﬁ( s )+ZR( )) 22 ¢ 0/3(5{)‘

(&)’
C_(f 4 : , 24+s+1) | (G+S
: 24 1 ((3(s+1) _B(ﬁ+1r5+1))(9 (cf)’+ [ (cg)‘)+3(s+1)(;+s+1) K| [ 12 2]

where B, 0 > 0, °OF (K) is defined as in (2) and B(.,.) is the beta function.

Proof. By taking the absolute value of both sides of equality 1, then applying the s-convexity of |}’|, we have

o 4 _
%(%wq)_g{iijﬂ+zg@9)_Q?iﬂlﬂiﬂogyg)

2 (Cg _ ci;)ﬁ

1 0
c -d G+
[f = = )v"lR’[(l @)c + ¢ ]
0

+(1 - o)’

(¢ )]dv]
i LG ] e (124)

0
- 4 )
= 24 1 ((3(s+1) _B(5+1,s+1))(R (cf)’+

1
f——vgﬁ)vg_lv@sva
0
7))

0
2

& ((g)‘) N 2(4p+s+1)

+¢
3s+1D(B+s+1) 2
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where we have used the facts that

1

f——v "1(1—1/") dv—ﬁ—%B(ﬁ+Ls+l) (5)
0

and
/ 1,61y = 45 +s5+1 6
f——v v v_39(5+1)(ﬁ+s+1)’ (6)

0

This completes the proof. [J

. . . I8 ()]s (&)
Corollary 3.4. By using the s-convexity of ||, i.e: e

RI ((i“;(g ) S

1 , C+ed P26 IT (B + 1)
g(ZR(cg)—R[ 1 > 2)+2$§(cg))— WeOﬁ(R)

, we get from Theorem 3.3

<c§— 4B+s+1)+2!5 (4B +s+1)

- 4 (( 3(s+1)(B+s+1)

Corollary 3.5. If we attempt to take s = 1, Theorem 3.3 yields

0 0 —
% (29 ()-8 [clzﬂ] +28 (cg)) _LTTEED Y

(¢-)
G- (282 +6B+1 | 4p+2| ,(G+
12 ((ﬁ+1)(ﬁ+2)ﬁ((§)|+ﬁ+2|g[ 2 )

& (fi;cé’) <

0, 0
%(ZR (Cf) _ R[cl + CZ] +92R (cé’)] w °0F (R)

2 2 0

(- ‘1)
2 (s [ @l @)

Corollary 3.6. By setting ¢ = 1, Theorem 3.3 gives

(2&{(1) R(l“z) ZR(Q))—wJﬁ(R)‘

(2= Cl)ﬁ

R (cf)‘ + R (cg)

)

—B(ﬁ+1,s+1))(

28>+ 68 +1
(B+1)(B+2)

v (9))

L)
2

Moreover, using the fact that , we get

e

2(4p+s+1)

<= ; - ((3 (s4+ 1) B(B+1,s+ 1)) (I8 ()l + 18 (2)]) +

’ q+0
% (2 32)

where

JE®) =T K@)+ KEO). 7)

(*5) (*5)
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Remark 3.7. It is noteworthy to mention that under certain parameter conditions, the results presented in Theorem
3.3 align closely with established findings in the literature. Specifically,

1. Corollary 3.6 is effectively rendered equivalent to Theorem 2.2 as presented in [10] when one sets s = 1.
2. Bysetting p =1, Corollary 3.6 directly corresponds to the result established in Theorem 2.2 from [16], indicating
an equivalence in findings under these specific conditions.

Theorem 3.8. Let K : [cf, cg] — R be a differentiable function on (cl, ) with0 < ¢ < ¢, and & € L1 [ g] If
IR/ is s-convex in the second sense for some fixed s € (0,1] where k > 1 with 1 T +1 =~ =1, then we have

0

@ 4 _
%(Zﬁ(cf) —R[cl -; Cz) 128 (cg)) _ M 20P (R)

(-4
o, 0\|¥ : o, 0\|¥ K\ *
- 1 R/(C§7)| + R/(CIercz) R,(¥) R/(cg)
<231(21(A%’%+1"%))A s+1 * s+1 !

where B, 0 > 0, YOF (R) is defined as in (2) and ,F; (., ., .;.) is the hypergeometric function.

Proof. From Lemma 3.1, properties of modulus, Holder’s inequality, and s-convexity in the second sense of
|S']*, we have

HE 2T (B +1
%(Zﬁ(cf) —R[cl . ) ; 2R(c§)) : % 208 ()

0, .0
¢ +c
1- v")c§'+v9¥]

5 dv

”\
—_—

<+
Y [v% +(1-0) cg)

0 0

IA
o
N
]
~
LanliS]
O%w <
—
QI @
|
<
=
~——
=
N
<
o%»—\
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o Al () + ‘R' (%°) ‘R' (525)] +]% (&)
= 2 1(2F1(_/\/l/l+1; ))A + 7
3 B’ B s+1 s+1

where we have used

NS

1

1
4 A 42 1 3\ 4\
Z_ B - = 11 _2 I 111 .
f(3 V)dv‘eﬂﬁfw (1 4y) dy‘(s) P (A g j +15).
0 0

W0

This completes the proof. [J
Corollary 3.9. By using the s-convexity of |R'|*, we get from Theorem 3.8

o 4 _
%(ZR (Cf) —R[cl -; Cz] DT (Cg)) _ w °0P (R)

(-

RN
NS

Corollary 3.10. If we attempt to take s = 1, Theorem 3.8 becomes

o 4 _
%(Zﬁ(cf) —R[tl ; Cz) o8 (cg)) _ w °0F (R)

o o\
G4

1
KN\ %

K

R(%) fls () ’
- .

==

G -4 . BNY!
= RS

Moreover, using the convexity of |{'|*, we get

1 0

3 (29 (cg’) -R [cl;—cz) +28 (cg)) G °0F (R)

(=)

[3 s () + [ (9 [ () +al (c§)|KH_

J? (R)‘

3R )

Corollary 3.11. For o = 1, Theorem 3.8, gives

1 1+ 0 25‘11"(/3 + 1)
’5(29«1) -8(52)+ 28 (@) - et

’ K 7 [ ato * ’l 7 ato * ’ K %
IR ()l + R (252) K (452) +I8 (@)
s+1 * s+1 !

<A GR (AL

>l

N

))

where JP (K) is defined by (7).

oo (a2l @+ @) (I8 +a+2lr @)
<2 3 ! (2F1 (—/\,%, +1; )) [[ 2S(Sl+1) 2 + ! G611 2 .

8953
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Corollary 3.12. By choosing s = 1 in Corollary 3.11, we get

1+ 2‘3‘11"(‘8 + 1)

(2 — f1)ﬁ

I8 @ + v (cx2) ) (|8 (g2 + 18 @

1
1
)’ 2 + 7 :

‘%(zﬁ(q)—ﬁ( + 28 c2)) - g <R>‘

1
i

Q-—c
L-a
3

+1;

(2F1 (=73,

‘Dal»a
ml»a
ST

where JP (K) is defined by (7).

Remark 3.13. Here are some critical observations regarding the alignment of Theorem 3.8 with previously established
results in the literature. In particular,

1. Corollary 3.12 represents a refinement of Theorem 2.3 from [10].
2. Corollary 3.11 simplifies to Theorem 2.6 from [16] upon setting p = 1.

17 ¢ ©
IR/ is s-convex in the second sense for some fixed s € (0, 1] where & > 1 with 1 T+ E =1, then we have

0 0 -
% (2R ()-8 [clzﬂ] +28 (cg)) - % 0 (R)
2 1

G- 4p+1 )\ 4

<3 (sn) (e peen)
4B +s+1 (a+S)\

+[3(s+1)(ﬁ+s+1)ﬁ[ 2 ) "

where B, 0 > 0, °OF (R) is defined as in (2) and B(.,.) is the beta function.

Theorem 3.14. Let K : [cf, cg] — R be a differentiable function on (cg ) with0 < ¢ < ¢, and & € L! [ ¢ g]. If

()

K 48+s+1 & <+
+3(s+1)(ﬁ+s+1) 2

Xt >|ﬂ

Proof. Using the modulus and power mean inequality to the equality (1), then applying the s-convexity of
IR]¥, we get

%(2R(c§) _ R[ti) - ) . 2R(c§)) N
(-<)

o(d-) rya &+
ST f(g—v"ﬁ)v(’_l K ((1—1/5’) cf+v9%) d
0
Y 4 7+
N
—1 ’ 1 2
+f(§—v@ﬁ)v" [ (V@T +(1-19) cgJ dv‘
0
1 o o
c+cC
] +f——vﬁ ( 122+(1—v)c§]dv
0

[ 1

0 0

:cz—c ——1/’3

4

L 0

s 1 RPN

<C5_c —ﬁ —ﬁ wla-o@o12| g

=72 V 1% 0 V———— > v
0 0

)

B(+1, s+1))

(3(s+1)

v

R’[(l—v)c +v

1-1
K
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dv]

¢+
0¥ (v% +(1-0) cg)

0 1 1 0 0 K K
™4 4 5 4 slar (O 4 oslar| LT %
S [f(g—v)dv (——v)(l—v) R(cl) +1° (] > dv
0 0
Cra (]S o))
+ jxg—v)v 8| L2 ||+ a-oy|s (&) |av
0
0o_ 0 1 NN
= -B 1 I8
4 \3() 36+ PEFLs+D (<) T3+ D(Brstl) 2
4+s+1 e \|* 4 Y-
R'(l ) = _BE+1s+D)||R () |
(3(s+1)(ﬁ+s+1) 2 +(3(s+1) B+1s+ )) (cz) )}
The proof is achieved. [
Corollary 3.15. By using the s-convexity of |R|*, Theorem 3.14 becomes
<+ B-1T (B +1
%Pﬁ@@-ﬁ[i?£]+mW§ﬂ—Qi——ﬂ%72%wan
(&2-<)
G=¢ [ _4p+1 - 4B+5+1+2°x4(B+s+1) /(L\* 4p+s+1 / (0\| ¥
= 41 (3(ﬁ+1)) [(( 25%3(s+1)(B+s+1) - B(‘B +tls+ 1)) ! ((1) 25%3(s+1)(B+s+1) ! (Cz) )

1
4B+5+1 (0| [AprstI+2xA(B+s+]) s o\|F\*
(25><3(s+1)(ﬁ+s+1) K (Cl) +( 25%3(s+1)(B+s+1) B(+1s+ 1)) | (c2)| ) ]

Corollary 3.16. If we attempt to take s = 1, Theorem 3.14 yields

1 ¢+ 2T (B+1)
g(ZR(cf)—R[ 1 . 2)+2R(c§))— W@Oﬁ(ﬁ)

1

.

) 26+1 | (f+¢
(c§)| +3(5+2)R(12 2)

viof) |

S e

2p+1 | (44
+[3(ﬁ+2)ﬁ( 2 )

3 B+1)(B+2)

Moreover, by making use of the convexity of |R'[*, we get

1 0 G165 o) F2PTE+
5(25{((1)—R[ > )+2R(C2) —W
(- <)

S-d(ap+1 \h (2 2p2+36-5 )
(3(/3+1)) ((5_6(ﬁ+1)(ﬁ+2))

0 0

0P (R)

, 26+1
() + 562

(<)

1
K)rc

<
4

8955



W. Saleh et al. / Filomat 39:25 (2025), 8945-8959 8956

w@f) |

o

4% (cf) "

Corollary 3.17. For o = 1, Theorem 3.14 becomes

+( 28 +1

2 282+38-5
6(B+2) ( )

3 6(B+1)(B+2)

1+ 0

’%@R«O—R(—E—J+zﬁag)_%igléig

(—o)f

G—c [ 4+1 7 4 o 4B +s+1 o+
=73 (3(5+1)) [((3(”1)_3([3“,”1))& ()l +3(s+1)(ﬁ+s+1)ﬁ( 2 )

48+s+1 (a+ o)\[f 4 , K%
+(3@+1Kﬁ+s+l)ﬁ( 2 ) +(§GITS_BW+1”+1Q&(Q”)1'

where JP (K) is defined by (7).

A=

)

Remark 3.18. Similar to the preceding theorems, Theorem 3.14 constitutes a generalization of several previously
established results. Specifically:

1. In Corollary 3.17, if we take s = 1, we obtain Theorem 2.5 from [10].
2. In Corollary 3.17, if we take = 1, we obtain Theorem 2.9 from [16].

4. Applications

4.1. Milne’s quadrature formula

Let Y be a partition of the interval [, c;] witha = yo < 11 < ... < y, = b, and consider the following
quadrature rule

%]

fﬁ (dy=A(&®,Y)+R(K,Y),
where

n—1

ARY) = ) B9 (28 () - R (£342) + 28 (i)

i=0
and R (!, Y) denotes the associated approximation error.

Proposition 4.1. Let n € IN and & : [¢1, ] — R be a differentiable function on [c1, ;] with 0 < ¢ < ¢ and
K € L ([¢1, 2]). IfI8'] is a convex function, we have

n-1

m@xﬂgiﬁﬁgﬁ(

i=0

K ()| + R (in)])

Proof. Applying Corollary 3.6 with § = s = 1, on the subintervals [y;, yi+1] (i = 0,1, ...,n — 1) of the partition
Y, we get

Vi1
l (ZR (y) -8 (Lzy'”) +28 (yi+1)) - yMl_y,. fﬁ (y)dy
Vi
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YViri—VYi
cnn g

K ()| +4

& ()] + 3| (y,-+1)1). ®)

From the convexity of |R’| we have

[°Y (yi*'zym )| < |R’(y1)|+2|ﬁ’(yi+1)| . (9)

Using (9) into (8), we obtain

Yin1

HER ) - R (252) + 28 ) - 7 [ Ry < L
Yi

K ()] + |8 (1)) (10)

By multiplying both sides of (10) by yi+1 — i, summing over i = 0 to n — 1, and applying the triangle
inequality to the resulting sum, we obtain the required result. [

Proposition 4.2. Let n € IN and & : [¢1, o] — R be a differentiable function on [¢1, ;] with 0 < ¢ < ¢ and
K € L ([¢1, 2]). If I8’] is an s-convex function, we have

-1
RO < Y Sl (555 4 20) (0 ()] + 8 ().
i=0

Proof. Applying Corollary 3.6 with B = 1 on the subintervals [y;, yis1] (i = 0,1, ...,n — 1) of the partition Y,
we get

Yin1

LR ) - 8 (242) 4 28 ) - 52k [ Ry (1)
Yi
S4(§yr11)zsyi2) (ﬁ I°Y (]/z)| + % [°% (yi+2ym )’ + % % (yi+1)‘) )
From the s-convexity of ||, we have
R/(yi+2yi+1) < |R'(%)|+2|§'(yi+l)|. (12)
Using (12) into (11), we obtain
Yin1
128 (i) — S (E22) + 28 (yi)) - K(y)d
3 Yi Yir1 y,ﬂ Vi y)ay
Yi
<o (5 58) (8 ] + 8 ()] 13)

By multiplying both sides of (13) by ;11 — i, summing over i = 0 to n — 1, and applying the triangle
inequality to the resulting sum, we obtain the required result. [

4.2. Application to special means

For arbitrary real positive numbers ¢, c; we have:
The geometic mean: G (¢1, ¢2) = /c162.

The harmonic mean: H (¢1, ¢;) = %

+1 +1
9 -4

m)p ,¢1 # ¢ and p € R\ {-1,0}.

The p-logarithmic mean: L, (c1, ¢2) = (
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Proposition 4.3. Let ¢1,c; € Rand 1, A > 1, with 0 < ¢; < o and L + 1 = 1, then we have

|4H‘1 (,8)=H? (1, 0) =36 (1, 2) L3 (an, cz)‘
S3(rz4—c1) (4G‘2 (c1, ) H™? (c%, c%) +G*(a, Cz))-

Proof. The assertion follows from Theorem 3.3 with g = f = s = 1, applied to the function & () = y* on the
interval [ L1 ] O

0/ q

5. Conclusion

In conclusion, this study has successfully expanded existing research related to Katugampola fractional
integrals by introducing a new identity that facilitates the formulation of Milne-type inequalities for dif-
ferentiable convex mappings. Our findings represent a significant advancement in the field, providing
a broader generalization and refinement of previously established results. The inclusion of an example
with graphical demonstrations substantiates our theoretical results. Future research could further explore
the implications of these findings, potentially unveiling new avenues for applying Katugampola fractional
integrals in various scientific and engineering contexts. This work underscores the ongoing importance of
fractional calculus in advancing mathematical research and its applications, demonstrating the dynamic
interplay between theory and practice.
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