

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The pseudo-Chebyshev wavelets and its applications in the error of the functions of bounded variation

Susheel Kumar^a, Sudhir K. Mishra^a, Gaurav K. Mishra^a, Lakshmi Narayan Mishra^b, Laxmi Rathour^c*

^aDepartment of Mathematics, Tilak Dhari P.G. College, Jaunpur-222002, India ^bDepartment of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India ^cDepartment of Mathematics, National Institute of Technology, Chaltlang, Aizawl, Mizoram-796012, India

Abstract. This paper presents a novel computational approach to tackle challenges in approximation theory. The proposed method leverages pseudo-Chebyshev wavelet approximations, a concept introduced by Lal et al. in 2022, based on pseudo-Chebyshev functions. The paper provides a detailed description of the method, followed by an error analysis for a given function. Key results are illustrated through an example, highlighting the accuracy and efficiency of the pseudo-Chebyshev wavelet approximation technique. Furthermore, the paper derives error estimates for functions of bounded variation using pseudo-Chebyshev wavelets via orthogonal projection operators, demonstrating that these estimators are exceptionally precise and optimal in the context of wavelet analysis.

1. Introduction

Orthogonal functions play a vital role in addressing a wide range of problems, such as differential and integral equations, approximation theory, and dynamical systems. They facilitate the simplification of complex problems by converting them into truncated approximations, making them more manageable and easier to analyse. Among these, Chebyshev polynomials T_m , where m is non negative integers, emerge as particularly effective numerically, as emphasized in various sources [2, 3, 30–35, 38]. Ricci introduced pseudo-Chebyshev functions of fractional degree [37], which were further studied by Cesarano and Ricci, who examined their notable properties, including orthogonality, in greater detail [4].

Wavelets, a relatively recent innovation emerging in the 1980s, have undergone significant expansion, attracting the interest of numerous researchers, including Morlet et al. [27], Daubechies [7], Chui [5, 6], Strang [41], Natanson [28], Meyer [25], Daubechies and Lagarias [8], Walter [43, 44], Islam et al. [10], Mohammadi [26], Lal et al. [18, 19], Malmir[20–24], Venkatesh [42], Keshavarz et al. [11], and many others in both pure and applied mathematics. Beyond their foundations in harmonic theory and Fourier analysis,

 $^{2020\ \}textit{Mathematics Subject Classification}.\ Primary\ 40A30; Secondary\ 42C15, 42A16, 65T60, 65L10, 65L60, 65R20.$

Keywords. Wavelets, Multiresolution analysis, Pseudo Chebyshev wavelets, Orthogonal projection operators.

Received: 16 April 2024; Revised: 20 December 2024; Accepted: 23 July 2025

Communicated by Miodrag Spalević

^{*} Corresponding author: Laxmi Rathour

Email addresses: susheel22686@rediffmail.com (Susheel Kumar), sudhirkrm@gmail.com (Sudhir K. Mishra), gm0092@gmail.com (Gaurav K. Mishra), lakshminarayanmishra04@gmail.com (Lakshmi Narayan Mishra), laxmirathour817@gmail.com (Laxmi Rathour)

wavelets have also drawn inspiration from fractals and approximation theory, driving their continued development and evolution. Similarly, numerous researchers, including Rehman and Siddiqi [36], Strang [40], Lal and Kumar [15–17], Bastin [2], Biazar [3], Babolian [1], Kumar [12], Kumar et al. [13, 14] and others, have explored the applications of wavelet theory, highlighting its effectiveness as a powerful tool in science and technology. Fractals, defined by their bounded, continuous, and nowhere-differentiable nature, encompass phenomena such as Brownian trajectories, fractional Brownian motion, typical Feynman paths, complex Bernoulli spirals, and turbulent fluid dynamics.

This insight has sparked interest in the exploration of approximating functions within $f \in BV_{\Omega}(X)$ utilizing pseudo-Chebyshev wavelets and their practical implications. However, to date, there appears to be no endeavour aimed at scrutinizing the error linked with functions associated with $f \in BV_{\Omega}(X)$ using the orthogonal projection operator via pseudo-Chebyshev wavelets.

The paper is structured as follows: Section 2 presents the preliminary results and findings. Section 3 outlines the primary convergence theorems concerning pseudo-Chebyshev wavelet approximations, along with an algorithm for the pseudo-Chebyshev wavelet, which is used to solve the problems of approximation theory. Section 4 provides numerical examples that explore the approximations and applications of pseudo-Chebyshev wavelets with computational MATLAB algorithm. Section 5 offers discussions and conclusions. Finally, the references cited in this study are listed.

2. Definitions and Preliminaries

2.1. Wavelets and Multiresolution Analysis

Wavelets: A function $\psi \in L^2(\mathbb{R})$ is said to be basic wavelet. If it is satisfies the 'admissibility' condition

$$C_{\psi} = \int_{-\infty}^{\infty} \frac{\left|\hat{\psi}(\omega)\right|^2}{|\omega|} d\omega < \infty \quad [5].$$

Wavelets are a set $\{\psi_{m,n}; m, n \in \mathbb{Z}\}$ of functions constructed from translation and dilation of a single basic wavelet ψ also called the mother wavelet. If the dilation parameter a and the translation parameter b vary continuously, then the following family of continuous wavelets are

$$\psi_{a,b}(t) = |a|^{-\frac{1}{2}} \psi\left(\frac{t-b}{a}\right), a \neq 0, b \in \mathbb{R} \quad [7].$$

Multiresolution Analysis: A sequence of closed subspaces W_n of $L^2(\mathbb{R})$, $n \in \mathbb{Z}$ are said to be Multiresolution Analysis. If it is satisfying the following properties [9]:

- (i) W_n is a subset of W_{n+1} ,
- (ii) $f(t) \in W_n \Leftrightarrow f(2t) \in W_{n+1}$,
- (iii) $f(t) \in W_0 \Leftrightarrow f(t+1) \in W_0$,

(iv)
$$\bigcup_{n=-\infty}^{\infty} W_n = L^2(\mathbb{R})$$
 and $\bigcap_{n=-\infty}^{\infty} W_n = \{0\}$,

(v) there exists a function ϕ such that the set $\{\phi(.-k); k \in \mathbb{Z}\}$ is a Riesz basis of W_0 . Since

$$\psi \in L^2(\mathbb{R}), \psi_{j,k} := 2^{\frac{j}{2}} \psi(2^j - k) \text{ with } V_j := clos \langle \psi_{j,k} : k \in \mathbb{Z} \rangle,$$

and this family of subspaces of $L^2(\mathbb{R})$ gives a direct sum decomposition of $L^2(\mathbb{R})$ is the same that every $g \in L^2(\mathbb{R})$ has a unique decomposition

$$g = \sum_{n \in \mathbb{Z}} g_n = \dots + g_{-2} + g_{-1} + g_0 + g_1 + g_2 + \dots,$$

where $g_n \in V_n$ for all $n \in \mathbb{Z}$ and we describe this by writing $L^2(\mathbb{R}) = W_n \oplus_{i=n}^{\infty} V_i$, where $W_n := \bigoplus_{m=-\infty}^{n-1} V_m$. $\{\psi_{n,m}; m \in \mathbb{Z}\}$, is a Riesz basis of V_n . Therefore

$$g = \sum_{n=-\infty}^{\infty} \left\langle g, \phi_{n,m} \right\rangle \phi_{n,m} + \sum_{k=m}^{\infty} \sum_{n=-\infty}^{\infty} \left\langle g, \psi_{n,m} \right\rangle \psi_{n,m} \quad [44].$$

2.2. Pseudo Chebyshev Wavelets [18]

In recent research articles, Ricci [37] explores the extension of classical sets of Chebyshev polynomials of the first and second kind to include fractional indices, particularly in the investigation of complex Bernoulli spirals. These extended functions are referred to as pseudo-Chebyshev functions.

The pseudo-Chebyshev functions $T_{n+1/2}(t)$ is defined as Cesarano and Ricci, [4, 37]

$$T_{(m+1/2)}(t) = \cos((m+1/2)(arc\cos t))$$
 where $m \in \mathbb{N} \cup \{0\}$.

The recurrence relation of the pseudo-Chebyshev polynomials and its orthogonal properties are given by [4]

$$T_{m+1/2}(t) = 2tT_{m-1/2}(t) - T_{m-3/2}(t)$$
, where $T_{1/2} = T_{-1/2} = \sqrt{\frac{1+t}{2}}$, $m \in \mathbb{N}$.

The first few pseudo-Chebyshev polynomials are

$$T_{-1/2} = \sqrt{\frac{1+t}{2}}, \ T_{1/2} = \sqrt{\frac{1+t}{2}} \ \& \ T_{3/2} = (2t-1)\sqrt{\frac{1+t}{2}}.$$

Since these polynomials are satisfying the following conditions

$$\int_{-1}^{1} \frac{T_{m+1/2}(t)T_{n+1/2}(t)}{\sqrt{1-t^2}} = \begin{cases} \frac{\pi}{2} & \text{for } m = n, \\ 0 & \text{otherwise.} \end{cases}$$

Therefore the set $\{T_{m+1/2}(t); m \ge 0\}$ is an orthogonal subset of $L^2(-1,1)$ with respect to weight functions $\omega_{k,n}(t) = \omega(2^k t - 2n + 1)$ where $\omega(t) = \frac{1}{\sqrt{1-t^2}}$.

For half-integer indices, the pseudo-Chebyshev functions exhibit similar properties to their classical counterparts, including differential equations, recurrence relations, orthogonality properties, and so on, as documented in [4, 37].

Pseudo Chebyshev Wavelets: Let $T_{m+1/2}$ be the pseudo-Chebyshev functions of indices m + 1/2. Then the pseudo-Chebyshev wavelets are given by Lal et al. [18] in 2022, defined by

$$\psi_{n,m}(t) := \psi_{(k,n,m)}(t) = \begin{cases} \sqrt{\frac{2^{k+1}}{\pi}} T_{m+1/2}(2^k t - 2n + 1), & \text{for } \frac{n-1}{2^{k-1}} \le t \le \frac{n}{2^{k-1}}, \\ 0 & \text{otherwise, where } m \ge 0, n = 1, 2, 3, \dots 2^{k-1} \text{ and } k \in \mathbb{N}. \end{cases}$$

2.3. Orthogonal Projection Operators $P_n(f)$

An orthogonal projection operator $P_n(f)$ of a function $f \in L^2_{\Omega}(X)$ onto W_n defined as [14]

$$P_n(f) = \sum_{m=0}^{\infty} \langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \psi_{n,m}, \tag{1}$$

where $\langle f, \psi_{n,m} \rangle_{\omega_{k,n}} = \int_{\Omega} f \psi_{n,m} \omega_{k,n} d\mu$ and fixed $n = 1, 2, 3, \dots, 2^{k-1}, k \in \mathbb{N}$.

2.4. Wavelet Series

A function $f \in L^2_{\mathcal{O}}(X)$ is expanded by wavelet series as [24]:

$$f = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \psi_{n,m} = \sum_{n=1}^{\infty} \left(\sum_{m=0}^{\infty} P_{k,n}^{m} \right) \psi_{n,m} \text{ for each fixed } k \in \mathbb{N},$$
 (2)

where $P_{k,n}^m = \langle f, \psi_{n,m} \rangle_{\omega_{k,n}}$ is said to be $(n,m)^{th}$ coefficients of a function f corresponding the orthonormal wavelets $\psi_{n,m}$ of the wavelet series.

For each fixed, $n \in \mathbb{N}$, where $n = 1, 2, 3, \dots, 2^{k-1}$, the expansions

$$\langle P_{n}f, \psi_{n,m} \rangle = \left\langle \sum_{m=0}^{\infty} \langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \psi_{n,m}, \psi_{n,m} \right\rangle = \sum_{m=0}^{\infty} \langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \langle \psi_{n,m}, \psi_{n,m} \rangle$$
$$= \sum_{m=0}^{\infty} \langle f, \psi_{n,m} \rangle_{\omega_{k,n}} = \sum_{m=0}^{\infty} P_{k,n}^{m},$$

are called n^{th} coefficients of an orthogonal projection operator for each fixed $k \in \mathbb{N}$.

If the wavelet series of any function *f* is truncated by an orthogonal projection operators

$$\left(P_{(2^{k-1},M)}f\right) = \sum_{n=1}^{2^{k-1}} \sum_{m=0}^{M} P_{k,n}^m \psi_{n,m}$$

then, we say that the wavelet series has sum's for each point, if the sequence of functions $\left\{P_{\left(2^{k-1},M\right)}f(t)\right\}_{(k=0,M=0)}^{(\infty,\infty)}$ uniformly converges to $\mathbf{s}(t)$ i.e.,

$$s = \lim_{M \to \infty} \lim_{k \to \infty} P_{2^{k-1},M}(f).$$

It is denoted by $f \approx s$ say wavelet approximation of function f. The approximation is called best wavelet approximation, if s(t) = f(t) for each points in the domain of functions.

2.5. Error of Wavelet Approximation

The error of wavelet approximation $E_{2^{k-1},M}(f)$ of a function $f \in L^2_{\Omega}(X)$ by the orthogonal projection operators $P_{2^{k-1},M}(f)$ is defined as [45]

$$E_{2^{k-1},M}(f) = \inf_{P_{2^{k-1},M}(f)} (f - P_{1,M}(f))$$
 where M and $k \in \mathbb{N}$.

If $||E_{2^{k-1},M}(f)||_2 \to 0$ as $k \to \infty$ or $M \to \infty$ then $P_{2^{k-1},M}(f)$ is called the best wavelet approximation of a function $f \in L^2_{\Omega}(X)$ [45].

2.6. Function of $BV_{\Omega}(X)$ class

Let X and Ω be a Measurable space. Then a function f is said to be function of bounded variation, i.e.

$$f \in BV_{\Omega}(X)$$
 if $\exists M > 0$ such that $\sup_{T} V(f,T) < M$ where T is partition of Ω .

and
$$V(f,T) = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|, [29].$$

Remark 2.1. (i) A monotone function is a function of bounded variation.

- (ii) A Lipschitz function on the finite measurable space Ω is a function of bounded variation.
- (iii) A continuous function need not be a function of bounded variation..
- (iv) A bounded function on an open and connected domain Ω need not be a function of bounded variation.
- (v) A differentiable function with bounded derivative is a function of bounded variation.
- (vi) The space $BV_{\Omega}(X)$ is a real/complex linear space.

2.7. Auxiliary Lemmas

For the proof of main results, the following lemmas are required.

Lemma 2.2. *Jordan Decomposition Theorem:* [29] A function $f \in BV_{\Omega}(X)$ iff $f = f_1 - f_2$ where f_1 and f_2 are non decreasing monotonic functions on Ω .

Lemma 2.3. Generalized Mean Value Theorem: [29] Let f be a finite Lebesgue integrable function on the measurable space Ω and g be a non negative non decreasing monotonic function on Ω . Then $\exists \alpha \in \Omega$ such that

$$\int_{\Omega} fg d\mu \leq g(\alpha) \int_{\Omega} f d\mu.$$

Lemma 2.4. *Generalized Mean Value Theorem:* [29] Let f be a finite Lebesgue integrable function on the measurable space Ω and g be a non negative non increasing monotonic function on Ω . Then $\exists \beta \in \Omega$ such that

$$\int_{\Omega} fg d\mu \geq g(\beta) \int_{\Omega} f d\mu.$$

Lemma 2.5. Cauchy Integral Test: [39] Let N be an integer and a $f:[N,\infty)\to\mathbb{R}$ be a real valued monotonic decreasing function. Then

$$\int_{N}^{\infty} f(t)dt \le \sum_{N}^{\infty} f(n) \le f(N) + \int_{N}^{\infty} f(t)dt.$$

3. Main results

In this section, four new theorems have been established in the following forms:

Theorem 3.1. If X and Ω be a Measurable space and $f \in BV_{\Omega}(X)$, then the Pseudo Chebyshev Wavelet coefficients of the function f corresponding the wavelet series (2) are

$$\langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \leq \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \frac{(-1)^m}{m+1/2} \left\{ f_1 \left(\frac{n}{2^{k-1}} \right) - f_2 \left(\frac{n-1}{2^{k-1}} \right) \right\},$$

where, $f = f_1 - f_2$ given by Lemma 2.2.

Proof of Theorem 3.1. Since

$$\langle f, \psi_{n,m} \rangle_{\omega_{k,n}} = \langle f_1 - f_2, \psi_{n,m} \rangle_{\omega_{k,n}}, \text{ by Lemma 2.2,}$$

= $\langle f_1, \psi_{n,m} \rangle_{\omega_{k,n}} - \langle f_2, \psi_{n,m} \rangle_{\omega_{k,n}}.$

Now

$$\begin{split} \left\langle f_{1},\psi_{n,m}\right\rangle_{\omega_{k,n}} &= \int\limits_{\frac{n-1}{2^{k-1}}}^{\frac{n}{2^{k-1}}} f_{1}(t)\psi_{n,m}(t)\omega_{k,n}(t)dt \\ &\leq f_{1}\left(\frac{n}{2^{k-1}}\right)\int\limits_{\frac{n-1}{2^{k-1}}}^{\frac{n}{2^{k-1}}} \sqrt{\frac{2^{k+1}}{\pi}} T_{m+\frac{1}{2}}(2^{k}t-2n+1)\omega_{k,n}(t)dt, \text{ by Lemma 2.3,} \\ &= f_{1}\left(\frac{n}{2^{k-1}}\right)\sqrt{\frac{2^{k+1}}{\pi}}\int\limits_{\frac{n-1}{2^{k-1}}}^{\frac{n}{2^{k-1}}} T_{m+\frac{1}{2}}(2^{k}t-2n+1)\omega(2^{k}t-2n+1)dt, \\ &= \sqrt{\frac{2}{\pi}}f_{1}\left(\frac{n}{2^{k-1}}\right)\frac{1}{2^{k/2}}\int\limits_{-1}^{1} T_{m+\frac{1}{2}}(x)\omega(x)dx, \\ &= \sqrt{\frac{2}{\pi}}f_{1}\left(\frac{n}{2^{k-1}}\right)\frac{1}{2^{k/2}}\int\limits_{0}^{\pi}\cos((m+1/2)x)dx, \\ &= \sqrt{\frac{2}{\pi}}f_{1}\left(\frac{n}{2^{k-1}}\right)\frac{1}{2^{k/2}}\int\limits_{0}^{\pi}\cos((m+1/2)x)dx, \end{split}$$

Similarly,

$$\langle f_2, \psi_{n,m} \rangle_{\omega_{k,n}} = \int_{\frac{n-1}{2^{k-1}}}^{\frac{n}{2^{k-1}}} f_2(t) \psi_{n,m}(t) \omega_{k,n}(t) dt$$

$$\geq f_2 \left(\frac{n-1}{2^{k-1}} \right) \int_{\frac{n-1}{2^{k-1}}}^{\frac{n}{2^{k-1}}} \sqrt{\frac{2^{k+1}}{\pi}} T_{m+\frac{1}{2}} (2^k t - 2n + 1) \omega_{k,n}(t) dt, \text{ by Lemma 2.4,}$$

$$= \sqrt{\frac{2}{\pi}} f_2 \left(\frac{n-1}{2^{k-1}} \right) \frac{1}{2^{k/2}} \frac{(-1)^m}{m+1/2}.$$

Therefore

$$\langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \leq \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \frac{(-1)^m}{m+1/2} \left\{ f_1 \left(\frac{n}{2^{k-1}} \right) - f_2 \left(\frac{n-1}{2^{k-1}} \right) \right\},$$

$$\leq \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \frac{(-1)^m}{m+1/2} \left\{ f_1 (1) - f_2 (0) \right\},$$
where $f = f_1 - f_2$ given by Lemma 2.2. (3)

Thus the Theorem 3.1 is completely established.

Theorem 3.2. If X and Ω be a Measurable space and $f \in BV_{\Omega}(X)$, then the n^{th} coefficients of an orthogonal projection operator for each fixed $k \in \mathbb{N}$ using Pseudo Chebyshev Wavelets of the function f corresponding the wavelet series (2) are

$$\left\langle P_n f, \psi_{n,m} \right\rangle_{\omega_{k,n}} = \sum_{m=0}^{\infty} P_{k,n}^m \leq \sqrt{\frac{\pi}{2}} \frac{1}{2^{k/2}} \left\{ f_1 \left(\frac{n}{2^{k-1}} \right) - f_2 \left(\frac{n-1}{2^{k-1}} \right) \right\},$$

where, $f = f_1 - f_2$ given by Lemma 2.2.

Proof of Theorem 3.2. Since

$$\sum_{m=0}^{\infty} P_{k,n}^{m} = \left\langle P_{n}f, \psi_{n,j} \right\rangle_{\omega_{k,n}} = \left\langle \sum_{m=0}^{\infty} \left\langle f, \psi_{n,m} \right\rangle_{\omega_{k,n}} \psi_{n,m}, \psi_{n,j} \right\rangle_{\omega_{k,n}}, \text{ by eq (1)}$$

$$= \sum_{m=0}^{\infty} \left\langle f, \psi_{n,m} \right\rangle_{\omega_{k,n}} \left\langle \psi_{n,m}, \psi_{n,j} \right\rangle_{k,n} = \sum_{m=0}^{\infty} \left\langle f, \psi_{n,m} \right\rangle_{\omega_{k,n}},$$

$$\leq \sum_{m=0}^{\infty} \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \frac{(-1)^{m}}{m+1/2} \left\{ f_{1} \left(\frac{n}{2^{k-1}} \right) - f_{2} \left(\frac{n-1}{2^{k-1}} \right) \right\}, \text{ by eq (3)}$$

$$= \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \left\{ f_{1} \left(\frac{n}{2^{k-1}} \right) - f_{2} \left(\frac{n-1}{2^{k-1}} \right) \right\} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m+1/2},$$

$$= \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \left\{ f_{1} \left(\frac{n}{2^{k-1}} \right) - f_{2} \left(\frac{n-1}{2^{k-1}} \right) \right\},$$

$$= \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \left\{ f_{1} \left(\frac{n}{2^{k-1}} \right) - f_{2} \left(\frac{n-1}{2^{k-1}} \right) \right\},$$

where $f = f_1 - f_2$ given by Lemma 2.2 for each fixed $n = 1, 2, 3, \dots, 2^{k-1}, k \in \mathbb{N}$.

Therefore the Theorem 3.2 is completely established.

Theorem 3.3. If X and Ω be a Measurable space and $f \in BV_{\Omega}(X)$, then the error of wavelet approximation $E_{2^{k-1},M}(f)$ by the orthogonal projection operators $P_{2^{k-1},M}(f)$ using Pseudo Chebyshev Wavelets of the function f corresponding the wavelet series (2) is

$$||E_{2^{k-1},M}(f)||_{2} = \inf_{P_{2^{k-1},M}(f)} ||f - P_{2^{k-1},M}(f)||_{2} \le \frac{2^{5/4} \left| \{f_{1}(1) - f_{2}(0)\} \right|}{\sqrt{\pi}} \frac{1}{2^{k+1/2} (M+1/2)},$$

where, $f = f_1 - f_2$ given by Lemma 2.2.

Proof of Theorem 3.3. Since

$$f - P_{2^{k-1},M}(f) = \left(\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} - \sum_{n=1}^{2^{k-1}} \sum_{m=0}^{M-1} \right) \langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \psi_{n,m}$$

$$= \left(\left(\sum_{n=1}^{2^{k-1}} + \sum_{n=2^{k}}^{\infty} \sum_{m=0}^{\infty} - \sum_{n=1}^{2^{k-1}} \sum_{m=0}^{M-1} \right) \langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \psi_{n,m}$$

$$= \left(\sum_{n=1}^{2^{k-1}} \sum_{m=0}^{\infty} + \sum_{n=2^{k}}^{\infty} \sum_{m=0}^{\infty} - \sum_{n=1}^{2^{k-1}} \sum_{m=0}^{M-1} \right) \langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \psi_{n,m}$$

$$= \left(\sum_{n=1}^{2^{k-1}} \left(\sum_{m=0}^{M-1} + \sum_{m=M}^{\infty} \right) + \sum_{n=2^{k}}^{\infty} \sum_{m=0}^{\infty} - \sum_{n=1}^{2^{k-1}} \sum_{m=0}^{M-1} \right) \langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \psi_{n,m}$$

$$= \left(\sum_{n=1}^{2^{k-1}} \sum_{m=0}^{M-1} + \sum_{n=1}^{2^{k-1}} \sum_{m=M}^{\infty} + \sum_{n=2^{k}}^{\infty} \sum_{m=0}^{\infty} - \sum_{n=1}^{2^{k-1}} \sum_{m=0}^{M-1} \right) \langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \psi_{n,m}$$

$$= \left(\sum_{n=1}^{2^{k-1}} \sum_{m=M}^{\infty} + \sum_{n=2^{k}}^{\infty} \sum_{m=0}^{\infty} \right) \langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \psi_{n,m}$$

Now using the property of the o.n. wavelets $\{\psi_{n,m}(t)\}$ in the disjoint subsets of Ω . Then

$$\begin{aligned} \left| f - P_{2^{k-1},M}(f) \right|^{2} &= \left(\left(\sum_{n_{1}=1}^{2^{k-1}} \sum_{m_{1}=M}^{\infty} + \sum_{n_{1}=2^{k}}^{\infty} \sum_{m_{1}=0}^{\infty} \right) \left\langle f, \psi_{n_{1},m_{1}} \right\rangle_{\omega_{k,n_{1}}} \psi_{n_{1},m_{1}} \right) \\ &\times \left(\left(\sum_{n_{2}=1}^{2^{k-1}} \sum_{m_{2}=M}^{\infty} + \sum_{n_{2}=2^{k}}^{\infty} \sum_{m_{2}=0}^{\infty} \right) \left\langle f, \psi_{n_{2},m_{2}} \right\rangle_{\omega_{k,n_{2}}} \psi_{n_{2},m_{2}}(t) \right) \\ &= \sum_{n=1}^{2^{k-1}} \sum_{m=M}^{\infty} \left| \left\langle f, \psi_{n,m} \right\rangle_{\omega_{k,n}} \right|^{2}. \end{aligned}$$

Hence,

$$\begin{split} \left| E_{2^{k-1},M}(f) \right|^2 &= \left\| \left| E_{n,m}(f) \right|_2^2 = \int_{\Omega} \left| E_{n,m}(f) \right|^2 d\mu = \inf_{P_{2^{k-1},M}(f)} \int_{\Omega_{n,k}} \left| f - P_{2^{k-1},M}(f) \right|^2 d\mu \\ &= \inf_{M} \int_{\Omega_{n,k}} \sum_{n=1}^{2^{k-1}} \sum_{m=M}^{\infty} \left| \left\langle f, \psi_{n,m} \right\rangle_{\omega_{k,n}} \right|^2 d\mu = \inf_{M} \sum_{n=1}^{2^{k-1}} \sum_{m=M}^{\infty} \left| \left\langle f, \psi_{n,m} \right\rangle_{\omega_{k,n}} \right|^2 \int_{\Omega_{n,k}} d\mu \\ &\leq \inf_{M} \sum_{n=1}^{2^{k-1}} \sum_{m=M}^{\infty} \left| \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \frac{(-1)^m}{m+1/2} \left\{ f_1(1) - f_2(0) \right\} \right|^2 \mu(\Omega_{n,k}) \\ &= \inf_{M} \sum_{n=1}^{2^{k-1}} \sum_{m=M}^{\infty} \left| \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \frac{(-1)^m}{m+1/2} \left\{ f_1(1) - f_2(0) \right\} \right|^2 \frac{1}{2^{k-1}} \\ &= \inf_{M} \frac{\left| \left\{ f_1(1) - f_2(0) \right\} \right|^2}{\pi} \frac{1}{2^k} \left\{ \frac{1}{(M+1/2)^2} + \int_{M}^{\infty} \frac{dx}{(x+1/2)^2} \right\}, \text{ by Lemma 2.5} \\ &= \frac{4 \left| \left\{ f_1(1) - f_2(0) \right\} \right|^2}{\pi} \frac{1}{2^k} \left\{ \frac{1}{(M+1/2)^2} + \frac{1}{(M+1/2)} \right\} \\ &\leq \frac{2^{5/2} \left| \left\{ f_1(1) - f_2(0) \right\} \right|^2}{\pi} \frac{1}{2^{k+1/2} (M+1/2)}. \end{split}$$

Therefore

$$\|E_{2^{k-1},M}(f)\|_{2} \le \frac{2^{5/4} \left|\left\{f_{1}(1)-f_{2}(0)\right\}\right|}{\sqrt{\pi}} \frac{1}{2^{k+1/2} (M+1/2)}$$
where $f = f_{1} - f_{2}$ given by Lemma 2.2.

Thus the Theorem 3.3 is completely established.

Theorem 3.4. *If* f *is monotonic real valued function defined on the measurable set* $\Omega = (0,1]$ *, then*

$$\langle f, \psi_{n,m} \rangle_{\omega_{k,n}} \leq \begin{cases} \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \frac{(-1)^m}{m+1/2} f\left(\frac{n}{2^{k-1}}\right); \text{ for } f \text{ is non decreasing,} \\ \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \frac{(-1)^m}{m+1/2} f\left(\frac{n-1}{2^{k-1}}\right); \text{ for } f \text{ is non increasing,} \end{cases}$$

$$\sum_{m=0}^{\infty} P_{k,n}^{m} \leq \begin{cases} \sqrt{\frac{\pi}{2}} \frac{1}{2^{k/2}} f\left(\frac{n}{2^{k-1}}\right); \text{ for } f \text{ is non decreasing,} \\ \sqrt{\frac{\pi}{2}} \frac{1}{2^{k/2}} f\left(\frac{n-1}{2^{k-1}}\right); \text{ for } f \text{ is non increasing,} \end{cases}$$

$$\| E_{2^{k-1},M}(f) \|_{2} \leq \begin{cases} \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \frac{1}{m+1/2} \left| f\left(\frac{n}{2^{k-1}}\right) \right|; \ for \ f \ \ is \ non \ decreasing, \\ \sqrt{\frac{2}{\pi}} \frac{1}{2^{k/2}} \frac{1}{m+1/2} \left| f\left(\frac{n-1}{2^{k-1}}\right) \right|; \ for \ f \ \ is \ non \ increasing. \end{cases}$$

Proof of Theorem 3.4. It can be developed on the lines of proofs of Theorems 3.1, 3.2 and 3.3 considering *f* is monotonic function.

3.1. Corollaries

In this section, four new corollaries related to theorems 3.1, 3.2, 3.3 & 3.4 have been established in the following forms:

Corollary 3.5. Let $f \in BV_{\Omega}(X)$ where $\Omega = (0,1] \& X = \mathbb{R}$ and the pseudo-Chebyshev wavelet series of the function f an order one i.e. k = 1 is given by

$$\sum_{m=0}^{\infty} \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,m} = \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,0} + \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,1} + \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,2} + \cdots$$

Then

$$\langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \le \frac{\{f_1(1) - f_2(0)\}}{\sqrt{\pi}} \frac{(-1)^m}{m + 1/2}$$

where, $f = f_1 - f_2$ given by Lemma 2.2.

Corollary 3.6. If Pf denotes the orthogonal projection operator of the function $f \in BV_{\Omega}(X)$ an order one and given by

$$Pf = \sum_{m=0}^{\infty} \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,m} = \langle f, \psi_{1,0} \rangle_{\omega_{1,1}} \psi_{1,0} + \langle f, \psi_{1,1} \rangle_{\omega_{1,1}} \psi_{1,1} + \langle f, \psi_{1,2} \rangle_{\omega_{1,1}} \psi_{1,2} + \cdots,$$

then

$$\langle Pf, \psi_{1,m} \rangle_{\omega_{1,1}} \leq \frac{\left(f_1\left(1\right) - f_2\left(0\right)\right)\sqrt{\pi}}{2},$$

where, $f = f_1 - f_2$ given by Lemma 2.2.

Corollary 3.7. Let $f \in BV_{\Omega}(X)$ where $\Omega = (0,1] \& X = \mathbb{R}$ and the pseudo-Chebyshev wavelet series of the function f an order one i.e. k = 1 is given by

$$\sum_{m=0}^{\infty} \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,m} = \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,0} + \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,1} + \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,2} + \cdots$$

Then

$$||E_{1,M}(f)||_2 \le \left(\frac{\left|f_1(1) - f_2(0)\right|}{(2\pi^2)^{1/4}}\right)\frac{1}{(M+1/2)},$$

where, $f = f_1 - f_2$ given by Lemma 2.2.

Corollary 3.8. Let $f \in BV_{\Omega}(X)$ where $\Omega = (0,1] \& X = \mathbb{R}$ and the pseudo-Chebyshev wavelet series of the function f an order one i.e. k = 1 is given by

$$\sum_{m=0}^{\infty} \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,m} = \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,0} + \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,1} + \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,2} + \cdots$$

Then

$$\langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \leq \begin{cases} \frac{f(1)}{\sqrt{\pi}} \frac{(-1)^m}{m+1/2}; & \text{for } f \text{ is non decreasing,} \\ \frac{f(0)}{\sqrt{\pi}} \frac{(-1)^m}{m+1/2}; & \text{for } f \text{ is non increasing,} \end{cases}$$

$$\langle Pf, \psi_{1,m} \rangle_{\omega_{1,1}} \leq \begin{cases} \frac{\sqrt{\pi}f(1)}{2}; \text{ for } f \text{ is non decreasing,} \\ \frac{\sqrt{\pi}f(0)}{2}; \text{ for } f \text{ is non increasing,} \end{cases}$$

$$||E_{1,M}(f)||_2 \le \begin{cases} \frac{|f(1)|}{(2\pi^2)^{1/4}} \frac{1}{(M+1/2)}; \text{ for } f \text{ is non decreasing,} \\ \frac{|f(0)|}{(2\pi^2)^{1/4}} \frac{1}{(M+1/2)}; \text{ for } f \text{ is non increasing.} \end{cases}$$

Proof of Corollaries 3.5, 3.6, 3.7 and 3.8. Proofs of Corollary 3.5, 3.6, 3.7 and 3.8 can be developed on the lines of proofs of Theorems 3.1, 3.2, 3.3 and 3.4 considering monotonic *f* respectively.

4. Illustrative Example

In this section, we calculate the approximation of a function

$$f(t) = \begin{cases} 2t^{1/2} - 3t^{3/2} + 7t^{5/2} + 10t^{7/2} - 16t^{9/2}; & \text{for } 0 \le t \le 1, \\ 0; & \text{otherwise.} \end{cases}$$

by the pseudo-Chebyshev wavelet approximation method.

If we take in the Theorem 3.1, if k = 1, then n = 1 and

$$P_1(f)(t) = \sum_{m=0}^{\infty} \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,m}(t) = \sum_{m=0}^{\infty} f^{1,m} \psi_{1,m}(t) = f_0,$$

then we say that $f \approx f_0$ by the orthogonal projection operators $P_n(f)$ of an order k = 1.

The calculated values of the projection operators and its errors $P_{1,1}(f)$, $P_{1,2}(f)$, $P_{1,3}(f)$, $P_{1,4}(f)$, $P_{1,5}(f)$, $P_{1,6}(f)$, $P_{1,7}(f)$, $E_{1,1}(f)$, $E_{1,1}(f)$, $E_{1,2}(f)$, $E_{1,4}(f)$ $E_{1,5}(f)$ $E_{1,6}(f)$ $E_{1,7}(f)$, i.e. $P_{1,M}(f)$ & $E_{1,M}(f)$ for $1 \le M \le 7$ are given by Table 1 for different values of $0 \le t \le 1$.

$$P_{1}(f) = \sum_{m=0}^{\infty} \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,m}$$

$$\approx 1.5232 \ \psi_{1,0} - 0.4708 \ \psi_{1,1} - 0.6370 \ \psi_{1,2} - 0.3600 \ \psi_{1,3} - 0.0554 \ \psi_{1,4} + 0 + \dots + 0,$$

$$\approx f_0 = f, \ \forall t, \ 0 \le t \le 1,$$

and

$$E_{1,M}(f) = \inf_{P_{1,M}(f)} (f - P_{1,M}(f)) = \inf_{M} \sum_{m=M}^{\infty} \langle f, \psi_{1,m} \rangle_{\omega_{1,1}} \psi_{1,m} \approx 0, \text{ for } M \geq 5.$$

4.1. Computaional Algorithm

Algorithm for the Solving of Computaional Problems in Symbolic Math in MATLAB

Declare the Variables: as like x, y, z, u, v **Define the Wavelets:** as like here PCW

Define the exact, approximated and error valued functions:

as like symbolic f, g, h Solve the Equations:

Use MATLAB's vpasolve: solve function to numerically

Output the Solutions:

Display the Numerical solutions in appropriate manner.

X	0.0000	0.1000	0.2000	0.3000	0.4000	0.5000	0.6000	0.7000	0.8000	0.9000	1.000
f_x	0.0000	0.5624	0.7756	1.0245	1.3600	1.7678	2.1738	2.4417	2.3670	1.6720	0.0000
$P_{1,1}f_x$	0.0000	0.5435	0.7686	0.9414	1.0870	1.2153	1.3313	1.4380	1.5373	1.6305	1.7188
$E_{1,1}f_x$	0.0000	0.0189	0.0070	0.0831	0.2730	0.5524	0.8425	1.0037	0.8297	0.0414	1.7187
$P_{1,2}f_x$	0.0000	0.9803	1.2913	1.4652	1.5574	1.5910	1.5782	1.5269	1.4423	1.3282	1.1875
$E_{1,2}f_x$	0.0000	0.4179	0.5157	0.4407	0.1974	0.1768	0.5956	0.9148	0.9247	0.3438	1.1875
$P_{1,3}f_x$	0.0000	0.2621	0.7642	1.2919	1.7574	2.0992	2.2686	2.2245	1.9308	1.3554	0.4688
$E_{1,3}f_x$	0.0000	0.3003	0.0115	0.2675	0.3974	0.3315	0.0948	0.2172	0.4362	0.3165	0.4687
$P_{1,4}f_x$	0.0000	0.5776	0.7220	0.9697	1.3525	1.8120	2.2359	2.4719	2.3349	1.6113	0.0625
$E_{1,4}f_x$	0.0000	0.0152	0.0536	0.0547	0.0075	0.0442	0.0620	0.0302	0.0321	0.0606	0.0625
$P_{1,5}f_x$	0.0000	0.5624	0.7756	1.0245	1.3600	1.7678	2.1738	2.4417	2.3670	1.6720	0.0000
$E_{1,5}f_x$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$P_{1,6}f_x$	0.0000	0.5624	0.7756	1.0245	1.3600	1.7678	2.1738	2.4417	2.3670	1.6720	0.0000
$E_{1,6}f_x$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$P_{1,7}f_x$	0.0000	0.5624	0.7756	1.0245	1.3600	1.7678	2.1738	2.4417	2.3670	1.6720	0.0000
$E_{1,7}f_x$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Table 1: $P_{1,M}f = f^{1,M}$ and f for M = 1, 2, 3, 4, and k = 1.

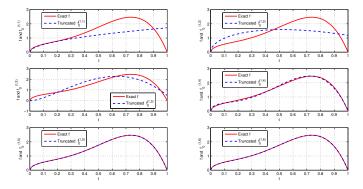


Figure 1: Graph of $f \& P_{1,M}(f) = \sum_{m=0}^{M-1} f^{1,m} \psi_{1,m} = f_0^{1,M}, M = 1,2,3,4,5,6 \& k = 1.$

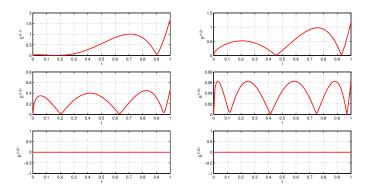


Figure 2: Graph of $E^{1,M}(f)$, M = 1, 2, 3, 4, 5, 6 & k = 1.

5. Discussion and Conclusions

Since, by Theorem 3.3 and Corollary 3.7 the absolute error $E_{2^{k-1},M}$ and $E_{1,M}$ of order k, & k=1 respectively, using orthogonal projection operators, P_n , $n=1,2,3,\cdots,2^{k-1}$ by the Pseudo-Chebyshev wavelets are

$$0 \le ||E_{2^{k-1},M}(f)||_2 \le \frac{2^{5/4} \left| f_1(1) - f_2(0) \right|}{\sqrt{\pi}} \frac{1}{2^{k+1/2} (M+1/2)} \to 0 \text{ as } k \to \infty \text{ or } M \to \infty$$

$$0 \le ||E_{1,M}(f)||_2 \le \frac{\left| f_1(1) - f_2(0) \right|}{(2\pi^2)^{1/4}} \frac{1}{(M+1/2)} \to 0 \text{ as } M \to \infty.$$

Therefore

$$||E_{2^{k-1}M}||_2 \to 0 \text{ as } k \to \infty \text{ or } M \to \infty \text{ and } ||E_{1,M}||_2 \to 0 \text{ as } M \to \infty.$$

Thus the wavelet approximations determined in these results are best possible in the wavelet analysis [45]. More over the numerical findings in the Table 1 and Figure 1 and the absolute error in the Table 1 and Figure 2 which also shows that this approach can solve the problem effectively.

Acknowledgements: Authors are grateful to anonymous learned referees and all the editorial board members, for their exemplary guidance, valuable feedback and constant encouragement which improve the quality and presentation of this paper.

Conflict of interest

The authors declare that there is no conflict of interest.

Data availability

This manuscript has no associated data.

References

- [1] Babolian, E., Fattahzadeh, F.; Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration, Applied Mathematics and Computation 188 (2007) 1016-1022.
- [2] Bastin, F.; A Riesz basis of wavelets and its dual with quintic deficient splines, Note di Mathematica 25 (2006), 1, 55-62.
- [3] Biazar. J., Ebrahimi, H.; Chebyshev wavelets approach for nonlinear systems of Volterra integral equations Computers and Mathematics with Applications 63 (2012) 608-616.
- [4] Cesarano, C., Ricci, P. E.; Orthogonality properties of the Pseudo Chebyshev functions (Variations on a Chebyshev's theme) Σ mathematics, Mdpi. J. Math. (2019), 7, 180; doi:103390/math7020180.
- [5] Chui C. K., An introduction to wavelets (Wavelet analysis and its applications), Vol. 1, Academic Press, USA, (1992).

- [6] Chui, C. K.; Wavelet: A Mathematical Tool for Signal Analysis, SIAM Publ., 1997.
- [7] Daubechies, I.; Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.
- [8] Daubechies. I. and Lagarias. J. C., Two-scale difference equations I, Existence and global regularity of solutions, Siam. J. Math. Anal.,22(1991),pp. 13881410.
- [9] Debnath . L., Wavelet Transforms and Their Applications, Birkhauser, Boston, Mass, USA, 2002.
- [10] Islam, M. R., Ahemmed, S.F. and Rahman, S.M., Comparision of wavelet approximation order in different smoothness spaces, Int. J. Math. Sci., (2006), Article ID 63670, 7 pages, 2006.
- [11] Keshavarz, E., Ordokhani, Y., Razzaghi, M.; Bernoulli wavelet operational mtrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Modelling (2014), 2014.04.064.
- [12] Kumar, S. Linear and non-linear wavelet approximations of functions of Lipschitz class and related classes using the Haar wavelet series J. of Ramanujan Society of Mathematics and Mathematical Sciences, Vol. 10, Issue 2 (2023), pp. 161-176 DOI: https://doi.org/10.56827/JRSMMS.2023.1002.12
- [13] Kumar, S., Awasthi, A. K., Mishra S. K., et al.; An error estimation of absolutely continuous signals and solution of Abel's integral equation using the first kind pseudo-Chebyshev wavelet technique, Franklin Open 10(2025) 100205, S2773-1863(24)00135-X, doi:https://doi.org/10.1016/j.fraope.2024.100205
- [14] Kumar, S., Mishra, G. K., Mishra, S. K, Lal, S.; Pseudo Chebyshev wavelets in two dimensions and their applications in the theory of approximation of functions belonging to Lipshitz class. South East Asian Journal of Mathematics & Mathematical Sciences, 2024, Volume: 20, Issue: 2, DOI: https://doi.org/10.56827/SEAJMMS.2024.2002.19
- [15] Lal, S., Kumar, S.; Best wavelet approximation of functions belonging to generalized Lipschitz class using Haar scaling function. Thai. J. Math. 15(2), 409-419 (2017).
- [16] Lal, S., Kumar, S.; Quasi- positive delta sequences and their applications in wavelet approximation, Int. J. Math. Math. Sci. Volume 2016, Article ID 9121249, 7 pages.
- [17] Lal, S., Kumar, S.; On Generalized Carleson Operator with Application in Walsh Type Wavelet Packet Expansions; Thai Journal of Mathematics, 19(2), 371–385 (2021), https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article
- [18] Lal S., Kumar S., Mishra S. K., Awasthi A. K. Error bounds of a function related to generalized Lipschitz class via the pseudo-Chebyshev wavelet and its applications in the approximation of functions Carpathian Math. Publ. 2022, 14 (1), 29-48, doi:10.15330/cmp.14.1.29-48.
- [19] Lal S., Sharma V.K., On the Estimation of Functions Belonging to Lipschitz Class by Block Pulse Functions and Hybrid Legendre Polynomials. Carpathian Math. Publ. 2020, 12 (1), 111-128.
- [20] Malmir, I.; A new fractional integration operational matrix of Chebyshev wavelets in fractional delay systems, Fratal Fractional (2019)3:46.
- [21] Malmir,I.; A general framework for optimal control of fractional non-linear delay system by wavelets, Stat Optim Inform Comput (2020),8(4): 858-875.
- [22] Malmir, I.; Caputo fractional derivative operational matrices of Legendere and Chebyshev wavelets in fractional delay optimal control, Numerical Algebra Control Optim (2022), 12(20): 395-426.
- [23] Malmir, I.; Novel Chebyshev wavelets algorithms for optimal control and analysis of general linear delay models, Appl Math Model 69: 621-647(2019).
- [24] Malmir, I.; An efficient method for a variety of fractional time-delay optimal control prolems with fractional performance indices, International Journal of Dynamics and Control (2023) 11: 2886-2910, https://doi.org/10.1007/s40435-023-01113-9.
- [25] Meyer.Y. Wavelets their post and their future, Progress in Wavelet Analysis and applications (Toulouse,1992)(Y.Meyer and S. Roques, eds.), Frontieres, Gif-sur-Yvette, 1993, pp.9-18.
- [26] Moĥammadi, F.; A wavelet-based computational method for solving stochastic. Its Volterra integral equations, Journal of Computational Physics 298(2015) 254-265.
- [27] Morlet J., Arens G., Fourgeau E. and Giard D. Wave propagation and sampling Theory, part I: complex signal land scattering in multilayer media, Geophysics 47 (1982),no.2,203-221.
- [28] Natanson. I.P., Constructive Function Theory, Gosudarstvennoe Izdatel'stvo Tehniko-Teoreticeskoi Literatury, Moscow, 1949
- [29] Ponnusamy S., Foundation of Mathematical Analysis, Birkhauser, Springer Science, New York Dordrecht Heidelberg London, (DOI 10.1007/978-0-8176-8292-7).
- [30] Rostami, R.; An effective Computational approach based on Hermite wavelet Galerkin for solving parabolic Volterra partial integro differential equations and its convergence analysis. Mathematical Modelling and Analysis, 2023, 28(1), 163-179. https://doi.org/10.3846/mma.2023.15690
- [31] Rostami, R., Maleknejad, K.; Approximation Solution to solve singular variable order fractional Volterra-Fredholm integral partial differential equations type defined using hybrid functions. International Journal of Computer Mathematics, 2024, 101(6), 668-693. https://doi.org/10.1080/00207160.2024.2371604
- [32] Rostami, R.; A new wavelet method for solving a class of non-linear partial integro-differential equations with weakly singular kernels. Math Sci 16, 225-235(2022). https://doi.org/10.1007/s40096-021-00414-4
- [33] Rostami, R. and Maleknejad, K.; A Novel approach to solve system of integral partial differential equations based on hybrid modified block-pluse functions, Math. Meth. Appl. Sci. 47(2024), 5798-5818, DOI 10.1002/mma.9891.
- [34] Rostami, R., Maleknejad, K.; Comparison of Two Hybrid functions for Numerical Solution of Nonlinear Mixed Partial Integro-Differential Equations. Iran J Sci Technol Trans Sci 46, 645-658(2022). https://doi.org/10.1007/s40995-022-01277-7.
- [35] Rostami, R., Maleknejad, K.; The Solution of the Non-linear Mixed Partial Integro-differential Equation via Two-Dimensional Hybrid Function Mediaterr. J. Math. 19, 89 (2022). https://doi.org/101007/s00009-022-01998-4
- [36] Rehman, S., Siddiqi, A. H.; Wavelet based correlation coefficient of time series of Saudi Meteorological Data, Chaos, Solitons and Fractals 39 (2009) 1764-1789.
- [37] Ricci, P. E.; Complex spirals and Pseudo Chebyshev polynomials of fractional degree, Symmetry 2018, 10, 671.

- [38] Razzaghi, M., Yousefi, S.; Legendre wavelets direct method for variational problems, Mathematics and Computers in Simulation 53 (2000) 185–192.
- [39] Rudin, W., Principal of Mathematical Analysis, Third Edition, McGraw-Hill, Inc, New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico City Milan Montreal, 1953.
- [40] Strang, G.; Wavelet transforms versus Fourier transforms, Appeared in Bulletin of the American Mathematical Society Volume 28, No. 2, April 1993, Pages 228-305.
- [41] Strang, G., Ngyuen, T.; Wavelets and Filter Banks, Wellesley Cambridge Press, 1996.
- [42] Venkatesh, Y.V., Ramani, K. and Nandini, R. Wavelet array decomposition of images using a Hermite sieve. Sadhana 18, 301-324 (1993), https://doi.org/10.1007/BF02742663.
- [43] Walter, G. G.; Approximation of the delta functions by wavelets. J. Approx. Theory 71(3), 329-343(1992).
- [44] Walter, G. G.; Point wise convergence of wavelet expansions. J. Approx. Theory 80(1), 108-118 (1995).
- [45] Zygmund A.: Trigonometric Series, vol.I. Cambridge University Press, Cambridge (1959).