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Abstract. This paper presents a novel computational approach to tackle challenges in approximation the-
ory. The proposed method leverages pseudo-Chebyshev wavelet approximations, a concept introduced by
Lal et al. in 2022, based on pseudo-Chebyshev functions. The paper provides a detailed description of the
method, followed by an error analysis for a given function. Key results are illustrated through an example,
highlighting the accuracy and efficiency of the pseudo-Chebyshev wavelet approximation technique. Fur-
thermore, the paper derives error estimates for functions of bounded variation using pseudo-Chebyshev

wavelets via orthogonal projection operators, demonstrating that these estimators are exceptionally precise
and optimal in the context of wavelet analysis.

1. Introduction

Orthogonal functions play a vital role in addressing a wide range of problems, such as differential
and integral equations, approximation theory, and dynamical systems. They facilitate the simplification
of complex problems by converting them into truncated approximations, making them more manageable
and easier to analyse. Among these, Chebyshev polynomials T,,, where m is non negative integers, emerge
as particularly effective numerically, as emphasized in various sources [2, 3, 30-35, 38]. Ricci introduced
pseudo-Chebyshev functions of fractional degree [37], which were further studied by Cesarano and Ricci,
who examined their notable properties, including orthogonality, in greater detail [4].

Wavelets, a relatively recent innovation emerging in the 1980s, have undergone significant expansion,
attracting the interest of numerous researchers, including Morlet et al. [27], Daubechies [7], Chui [5, 6],
Strang [41], Natanson [28], Meyer [25], Daubechies and Lagarias [8], Walter [43, 44], Islam et al. [10],
Mohammadi [26], Lal et al. [18, 19], Malmir[20-24], Venkatesh [42], Keshavarz et al. [11], and many others
in both pure and applied mathematics. Beyond their foundations in harmonic theory and Fourier analysis,
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wavelets have also drawn inspiration from fractals and approximation theory, driving their continued
development and evolution. Similarly, numerous researchers, including Rehman and Siddiqi [36], Strang
[40], Lal and Kumar [15-17], Bastin [2], Biazar [3], Babolian [1], Kumar [12], Kumar et al. [13, 14] and
others, have explored the applications of wavelet theory, highlighting its effectiveness as a powerful tool in
science and technology. Fractals, defined by their bounded, continuous, and nowhere-differentiable nature,
encompass phenomena such as Brownian trajectories, fractional Brownian motion, typical Feynman paths,
complex Bernoulli spirals, and turbulent fluid dynamics.

This insight has sparked interest in the exploration of approximating functions within f € BVq(X)
utilizing pseudo-Chebyshev wavelets and their practical implications. However, to date, there appears to
be no endeavour aimed at scrutinizing the error linked with functions associated with f € BVq(X) using
the orthogonal projection operator via pseudo-Chebyshev wavelets.

The paper is structured as follows: Section 2 presents the preliminary results and findings. Section 3
outlines the primary convergence theorems concerning pseudo-Chebyshev wavelet approximations, along
with an algorithm for the pseudo-Chebyshev wavelet, which is used to solve the problems of approximation
theory. Section 4 provides numerical examples that explore the approximations and applications of pseudo-
Chebyshev wavelets with computational MATLAB algorithm. Section 5 offers discussions and conclusions.
Finally, the references cited in this study are listed.

2. Definitions and Preliminaries

2.1. Wavelets and Multiresolution Analysis

Wavelets: A function ¢ € L%(R) is said to be basic wavelet. If it is satisfies the ‘admissibility’ condition

Cym f Pl 51

|wl

Wavelets are a set {{y,,; m,n € Z} of functions constructed from translation and dilation of a single basic
wavelet ¢ also called the mother wavelet. If the dilation parameter 2 and the translation parameter b vary
continuously, then the following family of continuous wavelets are

Yap(t) = lal 2 sb(%),a #0,beR [7].

Multiresolution Analysis: A sequence of closed subspaces W, of L?(R), n € Z are said to be Multireso-
lution Analysis. If it is satisfying the following properties [9]:

(i) W, is a subset of W,,;1,
(i) £() € Wy © F©2) € Wy,
(iif) f(t) e Wo & f(t+1) e Wy,

(iv) CJ W, = L*(R) and ﬁ W, =

n=—oo n=—o00

(v) there exists a function ¢ such that the set {qb( —k)ke Z: is a Riesz basis of Wy.  Since

P € A(R), = 2 (2 — k) with V; := clos (i - k € Z),
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and this family of subspaces of L*(R) gives a direct sum decomposition of L*(R) is the same that every
g € L*(R) has a unique decomposition

g = Zgn="'+972+971+90+91+92+“',
nez

where g, € V,, for all n € Z and we describe this by writing L*(R) = W, ®;, Vi, where W,, := @;’n;l_mvm.
{Unm;m € Z}, is a Riesz basis of V,,. Therefore

00

g= Z <g/¢n,m>¢n,m+i i <gr§bn,m>ﬁl’n,m [44].

n=-—oo k=m n=—co

2.2. Pseudo Chebyshev Wavelets [18]

In recent research articles, Ricci [37] explores the extension of classical sets of Chebyshev polynomi-
als of the first and second kind to include fractional indices, particularly in the investigation of complex
Bernoulli spirals. These extended functions are referred to as pseudo-Chebyshev functions.

The pseudo-Chebyshev functions T.+1/2(t) is defined as Cesarano and Ricci, [4, 37]
Tin+1/2)(t) = cos((m + 1/2) (arccost)) where m € INU {0} .

The recurrence relation of the pseudo-Chebyshev polynomials and its orthogonal properties are given by

(4]

1+t
Tys/2(t) = 2tTy10(t) — Tru—sa(t), where Tipp =T 10 = — MmE N.

The first few pseudo-Chebyshev polynomials are

1+¢ 1+¢ 1+¢
T 1 = /_ T/ = /_ Tap = -1 i
1/2 > s 4172 2 & 3/2 (Zt ) 2

Since these polynomials are satisfying the following conditions

1
Twr12(0Twr12(t) _ [ 5 for m=n,
Vi “ 1 0 otherwise.

Therefore the set {Ty.41/2(t);m > 0} is an orthogonal subset of L?(-1,1) with respect to weight functions

W u(t) = w2t — 21 + 1) where w(t) = ‘/11_7

For half-integer indices, the pseudo-Chebyshev functions exhibit similar properties to their classical
counterparts, including differential equations, recurrence relations, orthogonality properties, and so on, as
documented in [4, 37].

Pseudo Chebyshev Wavelets: Let T,.1» be the pseudo-Chebyshev functions of indices m + 1/2.
Then the pseudo-Chebyshev wavelets are given by Lal et al. [18] in 2022, defined by
LTy p@t —2n+1), for B <t <5,

l;bn,m(t) = Qb(k,n,m)(f):{ T <

0 otherwise, wherem >0, n=1,2,3,---2¢Yand k € N.
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2.3. Orthogonal Projection Operators Py (f)
An orthogonal projection operator P,(f) of a function f € L (X) onto W, defined as [14]

Pu(f) = Y Fumday, Y (1)
m=0

where (f, Yun), = ffgbn,ma)k,nd,u and fixed n=1,2,3,---,21 ke N.
i d

2.4. Wavelet Series
A function f € Lé(X) is expanded by wavelet series as [24]:

f = i i frbnm),, Unm = i (i Pl’:’n] Ym for each fixed k € IN, )

n=1 m=0 n=1 \m=0

where P]’(',’n ={f, Yum >wk,,, is said to be (, m)th coefficients of a function f corresponding the orthonormal
wavelets ¢, ,, of the wavelet series.

For each fixed, n € N, wheren =1,2,3,---,2¥1 the expansions

(Puf, V) <Z o nmdg, Wims wn,m> = Y umda, WG Cnn)
m=0

m=0
i f, I/’n,m>wkm = i PZ,Zn'
m=0

m=0

are called n'" coefficients of an orthogonal projection operator for each fixed k € IN.

If the wavelet series of any function f is truncated by an orthogonal projection operators

2k— 1

@WW)=2f%%n

n=1 m=0

(00,00)

then, we say that the wavelet series has sum’s for each point, if the sequence of functions {P(zk,1 M) f (t)}
’ (k=0,M=0)
uniformly converges to s(t) i.e.,

o= fim fim Paos 1)

It is denoted by f ~ s say wavelet approximation of function f. The approximation is called best wavelet
approximation, if s(t) = f(t) for each points in the domain of functions.

2.5. Error of Wavelet Approximation

The error of wavelet approximation Ey-1,;(f) of a function f € L?(X) by the orthogonal projection
operators Pyi1 ; (f) is defined as [45]

Exip(f) = ) inf(f) (f —=P1m(f)) where M and k € N.

If |[Eyeipr(f)llo = 0as k — o0 or M — oo then Poi1y;(f) is called the best wavelet approximation of a
function f € L2(X) [45].
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2.6. Function of BV (X) class

Let X and Q) be a Measurable space. Then a function f is said to be function of bounded variation, i.e.

feBVqa(X) if 3dM > 0 suchthat sup V(f,T) < M where T is partition of Q.
T

,[29].

and  V(f,T)=)_|f(x) = f(xi)
k=1

Remark 2.1. (i) A monotone function is a function of bounded variation.
(ii) A Lipschitz function on the finite measurable space () is a function of bounded variation.
(iii) A continuous function need not be a function of bounded variation..
(iv) A bounded function on an open and connected domain Q) need not be a function of bounded variation.
(v) A differentiable function with bounded derivative is a function of bounded variation.
(vi) The space BVq(X) is a realfcomplex linear space.

2.7. Auxiliary Lemmas

For the proof of main results, the following lemmas are required.

Lemma 2.2. Jordan Decomposition Theorem: [29] A function f € BVo (X) iff f = fi — f» where fi and f, are
non decreasing monotonic functions on C.

Lemma 2.3. Generalized Mean Value Theorem: [29] Let f be a finite Lebesque integrable function on the
measurable space Q) and g be a non negative non decreasing monotonic function on Q. Then 3 a € Q such that

L fodp < g(a) L fdp.

Lemma 2.4. Generalized Mean Value Theorem: [29] Let f be a finite Lebesque integrable function on the
measurable space Q) and g be a non negative non increasing monotonic function on ). Then 3 f € Q such that

fQ fodu = g(p) fQ fau.

Lemma 2.5. Cauchy Integral Test: [39] Let N be an integer and a f : [N,0) — IR be a real valued monotonic
decreasing function. Then

f f(t)dtszwlf(n)s f(N) + f f(bdt.
N N X

3. Main results

In this section, four new theorems have been established in the following forms:

Theorem 3.1. If X and Q be a Measurable space and f € BV q (X), then the Pseudo Chebyshev Wavelet coefficients
of the function f corresponding the wavelet series (2) are

Fnmd, < %%%{f(zk—)‘f(zk;l)}

where, f = f1 — f» given by Lemma 2.2.
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Proof of Theorem 3.1. Since

Sfotpnm), = {fr=fo¥nm),,,, by Lemma22,
= <f1/ l,bn,m>wk/” - <f2/ l,bn,m>wk/” .

Now

il = f A Oeopn(Bit

1
21

7 -
n [ok+1
< h (F) f TTer%(Zkt —2n + Dwy,(t)dt, by Lemma 2.3,

n=1
2k-1

n 2k+1 23
—_1) _ f T, 24 = 20+ D@t - 20 + 1),
2?;{;_11
1

\/7f1 2k1/2 me+;(x)w(x)dx,

-1

\/7 f1 W cos((m + 1/2)x)dx,
1 ( D
[f 1 ﬁ m+1/2°

n

Fortuma, = [ SOOn 0

b
21

Similarly,

P p
-1 2 +1
> fo S T,.1Q% =2+ Dwia(P)dt, by Lemma 2.4,
2 i 2
11—1

[2 f n 1 1 (=1
: 2k1 K2 +1/2°
Therefore

f, labn,m>mk,,, < 2 2k1/2 7;5_4_11’7/12 {fl (zk 1) fz( 2k-1 )}'

2 1 (=1
2k/2m+1/2{f1 D-£0)4,

where f = fi — f, given by Lemma 2.2.

Thus the Theorem 3.1 is completely established.

8966
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Theorem 3.2. If X and Q be a Measurable space and f € BVq (X), then the n' coefficients of an orthogonal projection

operator for each fixed k € IN using Pseudo Chebyshev Wavelets of the function f corresponding the wavelet series

(2) are
o))

- /1 n-
(P"f’ ¢”/m>(ukl,, = Z Pk,n < zk/z {fl (Zk 1 ) f2 ( k-
m=0

where, f = f1 — f» given by Lemma 2.2.

Proof of Theorem 3.2. Since

ZPZ; = < nf lpn] <Z (f 1an>wkn lpnmrl/}n]> ’ by €q (1)
m=0 m=0 Wiy
= Z<f EDnm>wk” <¢n mr'vbn] Z(f Un, m>wk”
m=0

IA

Y\t (5) £ (5 ) byea
_ \in,z{fl(zkl) AL

- V)l s g
- aaslalaE)-2 (5.

m=0
where f = fi — f, given by Lemma 2.2 for each fixed n=1,2,3,--- 21 ke N.

Therefore the Theorem 3.2 is completely established.

Theorem 3.3. If X and Q) bea Measurable space and f € BV (X), then the error of wavelet approximation Ey y (f)
by the orthogonal projection operators Poi1 py (f) using Pseudo Chebyshev Wavelets of the function f corresponding
the wavelet series (2) is

o 1A () - £ 0)] 1
Il Eyer pa(f) 2= sz}?j(f)||f —Puay (Pl < N 2 (M+1/2)

where, f = f1 — f» given by Lemma 2.2.

Proof of Theorem 3.3. Since

=

s
Mg
MN

f=Pram(f) =

=
I
—_
L
3
i
fe=}
=
Il
—_
3
Il
[}

I
%
+
gk

1
Pt
i —
= IPTe
oo
e
i
Mgo
| =
N L
I s
zll
|

N
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k1 M1 2k o oo 2T M-1
DMWY
m=0 n=1 n=2km=0 n=1 m=0
= LX)
n=1 m=M

n=2k1

]<f, b, Y

DMe LD

] Vb, Y

3
]
o

Now using the property of the o.n. wavelets {1, ,(t)} in the disjoint subsets of Q. Then

m=1m=M p;=2km

[EE-%:

My 1 mz—M

gk

|f - P2k4,M(f)|2 ](fr Yy >“’k,n] I;bm,ml]

1l
o

X

”[\18

] <f/ lybnzfmz >wk’nz lzbnz,mz (t)]

k-1 oo

= Y Y [ b |

n=1 m=M

Hence,

f}f PZ“M(f)) du

L
Qn/k

W%Mﬁﬁ=jﬁ%ﬂﬁﬁm—

|Exr (A nf

Zkl 00

d# 1nf2 Z '<f ¢nm>wk

2

= 1r1f O

n=1 m=M

21 (="
Vagmasis A0 -£0)
= 1anZ

2 1 (-1)
> Y J}mmﬂmmm £O)

|mm AOY 1 1
= —ZHZ

M T mM(m+l/2)

261 oo

mfZ Y

n=1 m=M

IA

()

-1 o 2

1
2k=

2l - O 1 ) .
_ " _k{(M+1/2)2 +A[(x+l/2)2}’ by Lemma 2.5

_4Mﬂ%ﬁ@Wl{ 1 }
- n FlM+1/272  (M+1/2)

22 (f (1) - £ O))f 1
T K12 (M +1/2)°

IA

Therefore

24 (f (1) - £ (0)}| 1

Bl < = 22 (M +1/2)
where f = f; — f, given by Lemma 2.2.
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Thus the Theorem 3.3 is completely established.

Theorem 3.4. If f is monotonic real valued function defined on the measurable set () = (0, 1], then

( ) < \/;23/2 m+1)/2f(2k 1) f07’ f is non decreasing,
G W

I wri)2 f (zk 1) for f is non increasing,

v

iP’” B Ezlef 57 )5 for f is non decreasing,
kn = m_1 n=1\. / i |
— ‘/EW fl2=); for f is non increasing,

k-1

for f is non decreasing,

Vi |f>
Il Eyop(f) I < WW“Z“

\/7 SRRV |f zkl

Proof of Theorem 3.4. It can be developed on the lines of proofs of Theorems 3.1, 3.2 and 3.3 considering
f is monotonic function.

; for f is non increasing.

3.1. Corollaries

In this section, four new corollaries related to theorems 3.1, 3.2, 3.3 & 3.4 have been established in the
following forms:

Corollary 3.5. Let f € BV(X) where Q) = (0,1] & X = R and the pseudo-Chebyshev wavelet series of the function
f an order one i.e. k = 1 is given by

Z Frbim) o, Prm = (FrPumde,, Y10+ {frPumde,, Y11+ {fr Prmdy,, P12+
m=0

Then

A1) -£O) D"
\r m+1/2’

where, f = fi — f» given by Lemma 2.2.

<f’ 'l]bl,m >“)1,1 <
Corollary 3.6. If Pf denotes the orthogonal projection operator of the function f € BV(X) an order one and given
by
Z Lobimd o, Yrm = F 01000, Y10 + {Frh1)g,, Y11 +{f P12),,, Y12+,
m=0

then

Pf ), < (fi()- ]23 ) V7

where, f = fi — f» given by Lemma 2.2.

Corollary 3.7. Let f € BV(X) where Q) = (0,1] & X = R and the pseudo-Chebyshev wavelet series of the function
f an order one i.e. k = 1 is given by

Z Frrimd o, Prm = CFrprmde,, Y10+ Pmde,, Y11+ Pimde,, Y12+
m=0
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Then

Mﬂ%ﬁ@n 1

lEim ()l < ( (@r2)4 M+1/2)

where, f = fi — f, given by Lemma 2.2.

Corollary 3.8. Let f € BVq(X) where Q) = (0,1] & X = R and the pseudo-Chebyshev wavelet series of the function
f an order one i.e. k = 1 is given by

Z Frthimd o, Prm = Pumde,, Y10 + K Pumde,, Y11+ {f Pumdy,, Y12+
m=0

Then

) 1y , .
= wrip for fis non decreasing,
(f/ I7D1,m>(u1,1 < { L‘/OH) 1"

Vr

m+1/27

for f is non increasing,

———; for f is non decreasing,

Pfh1m)y, < { VRFO)

Vrf@)
2
% ; for f is non increasing,

fol 1|
r2)* (M+1/2)”

lEvm(f) 12 <
- ©) , , .
%m; for f is non increasing.

for f is non decreasing,

Proof of Corollaries 3.5, 3.6, 3.7 and 3.8.  Proofs of Corollary 3.5, 3.6, 3.7 and 3.8 can be developed on the
lines of proofs of Theorems 3.1, 3.2, 3.3 and 3.4 considering monotonic f respectively.
4. Illustrative Example

In this section, we calculate the approximation of a function

) = 2112 - 3832 1 752 4 104712 = 16t%72; for 0<t<1,
f = 0; otherwise.

by the pseudo-Chebyshev wavelet approximation method.
If we take in the Theorem 3.1,if k =1, thenn = 1 and

PiA®O = Y i, Y1 = Y, 91000 = fi,
m=0 m=0

then we say that f = f; by the orthogonal projection operators P,(f) of an order k = 1.

The calculated values of the projection operators and its errors Pi1(f), P12(f), P13(f), P1a(f), Pi5(f),

P16(f), Prz(f), Eva(f), Eva(f), Eva(f), Eva(f) Eis(f) Eve(f) Evz(f), ie. Pom(f) & Eym(f) for1<M <7
are given by Table 1 for different values of 0 <t < 1.

P1(f) Z Fobim) oy, P1m
m=0

1.5232 19 — 0.4708 11 — 0.6370 )15 — 0.3600 1)y 3 — 0.0554 y 4 + 0+ -+ - +0,

Q
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~ fo=f, ¥Vt 0<t<1,

and

Eulf) = inf (=P () =358 3, CF Yo, 0, for M2

4.1. Computaional Algorithm

Algorithm for the Solving of Computaional Problems in Symbolic Math in MATLAB

Declare the Variables: as like x, y,z, u,v

Define the Wavelets: as like here PCW

Define the exact, approximated and error valued functions:
as like symbolic f, g, h

Solve the Equations:

Use MATLAB's vpasolve: solve function to numerically
Output the Solutions:

Display the Numerical solutions in appropriate manner.

X 0.0000 | 0.1000 | 0.2000 | 0.3000 | 0.4000 | 0.5000 | 0.6000 | 0.7000 | 0.8000 | 0.9000 | 1.000

fe 0.0000 | 0.5624 | 0.7756 | 1.0245 | 1.3600 | 1.7678 | 2.1738 | 2.4417 | 2.3670 | 1.6720 | 0.0000

Ply{fx 0.0000 | 0.5435 | 0.7686 | 0.9414 | 1.0870 | 1.2153 | 1.3313 | 1.4380 | 1.5373 | 1.6305 | 1.7188

Ei1fe | 0.0000 | 0.0189 | 0.0070 | 0.0831 | 0.2730 | 0.5524 | 0.8425 | 1.0037 | 0.8297 | 0.0414 | 1.7187

Piof. | 0.0000 | 0.9803 | 1.2913 | 1.4652 | 1.5574 | 1.5910 | 1.5782 | 1.5269 | 1.4423 | 1.3282 | 1.1875

Eipfe | 0.0000 | 0.4179 | 0.5157 | 0.4407 | 0.1974 | 0.1768 | 0.5956 | 0.9148 | 0.9247 | 0.3438 | 1.1875

Pisf. | 0.0000 | 0.2621 | 0.7642 | 1.2919 | 1.7574 | 2.0992 | 2.2686 | 2.2245 | 1.9308 | 1.3554 | 0.4688

Eisf. | 0.0000 | 0.3003 | 0.0115 | 0.2675 | 0.3974 | 0.3315 | 0.0948 | 0.2172 | 0.4362 | 0.3165 | 0.4687

Piaf. | 0.0000 | 0.5776 | 0.7220 | 0.9697 | 1.3525 | 1.8120 | 2.2359 | 2.4719 | 2.3349 | 1.6113 | 0.0625

Eiafe | 0.0000 | 0.0152 | 0.0536 | 0.0547 | 0.0075 | 0.0442 | 0.0620 | 0.0302 | 0.0321 | 0.0606 | 0.0625

Pi5f. | 0.0000 | 0.5624 | 0.7756 | 1.0245 | 1.3600 | 1.7678 | 2.1738 | 2.4417 | 2.3670 | 1.6720 | 0.0000

Ei5fc | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Pigfe | 0.0000 | 0.5624 | 0.7756 | 1.0245 | 1.3600 | 1.7678 | 2.1738 | 2.4417 | 2.3670 | 1.6720 | 0.0000

Ei6fx | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Piyf. | 0.0000 | 0.5624 | 0.7756 | 1.0245 | 1.3600 | 1.7678 | 2.1738 | 2.4417 | 2.3670 | 1.6720 | 0.0000

Eq7f: | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

Table 1: Py f = flfM and fforM=1,2,3,4,and k= 1.

w1

o

fandf,

0 01 02 03 04 05 08 07 08 09 1 (] 05 06 07 08 09 1
t t

o 01 0z 03 o4 05 05 07 08 09 1 o 01 02z 03 of 05 08 07 08 05 1
ey e
b |- = = Truncated 9 o | = = Trncated 9

0 01 0z 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t t

M-1
Figure 1: Graph of f & Pyy(f) = X fY"Y1m = fi™, M=1,2,3,4,56&k=1.
m=0
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Figure 2: Graph of EVM(f),M =1,2,3,4,5,6 &k =1.

5. Discussion and Conclusions

Since, by Theorem 3.3 and Corollary 3.7 the absolute error Ei1 )y and Eq p of order k, &k = 1respectively,
using orthogonal projection operators, P,, n=1,2,3,---, k-1 by the Pseudo-Chebyshev wavelets are

254 |f (1) - £2(0) 1
0 <|I Egir p (f) [l2< = K2 (M +1/2)

lFO-£O] 1
Q) (M+1/2)

— 0 ask—> oorM —

0 <I Exm (f) < —0asM — oo.

Therefore
| Ey-ipq llo— 0 ask — o0 orM — oo and || Ejpm [lb— 0as M — co.

Thus the wavelet approximations determined in these results are best possible in the wavelet analysis [45].
More over the numerical findings in the Table 1 and Figure 1 and the absolute error in the Table 1 and
Figure 2 which also shows that this approach can solve the problem effectively.
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