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Durrmeyer form of the operators including As-Appell polynomials
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Abstract. The present paper aims at demonstrating the Durrmeyer type modification of the operators
including degenerate Appell polynomials and obtain the rate of approximation through the usual modulus
of continuity and Lipschitz class functions. Moreover, we consider the convergence degree for a Peetre’s
K-functional and give the Voronovskaja-type theorem.

1. Introduction and Preliminaries

In 1912, Bernstein [4] presented positive linear operators for the proof of the Weierstrass approximation
theorem in [20]. These operators as follows

= a
Bu(v;y) = ; bn,a(V)U(;)/ yel01], n=0,1,2,... O
where the function v is continuous on [0, 1] and
n
bn,a(V) = (a))/a(l - y)n—a,a =0,1,...,n.

By this means, Bernstein obtained a very special and simply proof. Further, Durrmeyer [8] presented a
different form of the Bernstein operators as
; 1
D) =1+ Y bua)]| [ buattrotort|.
a=0 0

For the continuous functions on [0, o), Szész [17] found the operators as

) = Y dutro (%) @
a=0
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where

dn,a (7/) =

(ny)a e_ny
al '

Then, the Durrmeyer form of the Szdsz operators were found by Mazhar and Totik [13] as

00

S; (U} V) =n Z dn,a (7/) [f dn,a—l(t)v(t)dt] + U(O)dn,o (7/)
a=1

0

Many authors have widely studied about Szdsz operators. One of the studies, Jakimovski and Leviatan
[10] introduced the operators

To(v;y) = sz;) ;mnwv(g) 3)

where v € C[0, o) and C [0, c0) denotes the set of continuous functions on [0, ) such that |U()/)| < aeV (a,
A are positive constants). In addition,

M@ =) b, M(1)#0
a=0

is analytic function has a formal series and #, Appell polynomials [3] have the generating function as
follows

M@ =Y Pu()q",q € R (or ©) (4)
a=0

where (ql <R, (R >1). lim T,(v;y) = v(y) is uniformly convergent on every compact subset of the interval
n—oo

[0, 00). This study is more generally version for the Szdsz operators. That is, if we take M(1) = 1 in (3),
then we have the classical Szasz operators (2). After the studies, Appell polynomials gained depth in many
scientific fields such as physical, mathematics and engineering (see [3], [14], [15],[18],[19]). For example,
Icoz et al. [9] introduced the operators with the help of generalized Appell polynomials as follows

1 = a
IO = ) Bk QZ:;‘ Palnyyo (E)

where P,(y) is the generalized Appell polynomials and they have

MEOEQKD) = ) Pa)E.
a=0

In addition, M, E and k are analytic functions as follows

(o)

M(t) = Z bat", E(t) = Z cat”, k(t) = Z A", [t <R, (R > 1).
a=0 a=1

a=0
Another example, Durrmeyer type form of the Jakimovski-Leviatan operators was presented by Karaisa
[11] as

e Puny) [ -
T,@7) = 37 @ Z;‘ ES Y Zua(D0(B)t + 51 ( 1)bov(0), v >0
a= 0
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where v € Cp[0, ), Cp[0, o) is denoted by bounded, continuous and real valued functions, B(n + 1, a) is the
Beta function and z,, ,(t) = (15)%

Moreover, Costabile and Longo [6] have presented the degenerate Appell polynomials (or As-Appell
polynomials) as follows

M)+ 607" = Y Aulri ) ®
a=0 '
where
M(t) := M(t; ) = Z Ga,¢;,00,¢ # 0. (6)
a=0 ’

Based on the polynomials (5), Sergi et al. [16] have presented the operators as follows

1
Bu(v:7) = iZﬂam )0 (“( +¢)) %
M(1; d))(l +¢)? =0

where y € [0, o), v € C[0, ). The operators are positive and linear under the proper conditions and if we
take limits for the function (5) and the operator (7) as ¢ — 07, we can find that (5) reduce to (4) and (7)
reduce to the Jakimovski-Leviatan operators (3), respectively. In the light of these studies, we consider the
Durrmeyer type modification of the operators involving degenerate Appell polynomials as follows

1 . A (ny; P) ®
K (v; = %y Siua 1 d
O e gt & B L J, OO
Ao(ny; P)

——— = 0(0) (8)
M1 )1 + ) ?

2 __ Under the restrictions

(1+t)n+;z+1 .

where S, ,(t) =

(i)  M(@1;¢) #0, for fixed V¢ € (-1,0),
(1) 04/M(1;¢) 20, for Ya € N and V¢ € (-1,0), 9)
(ii)) (6) and (7) are convergent in|t| < R, (R > 1),

the operators are linear and positive.

The aim of the paper are considering the approximation properties of the operators (8) and estimating the
degree of approximation. In section 2 of the paper, we obtain some results for the operators applying test
functions, computations of central moments and the Korovkin theorem. In section 3, we get the degree
of approximation for the operators (8) by considering the modulus of continuity, Peetre’s K-functional,
Lipschitz class and Voronovskaja-type theorem.

2. Auxiliary Results

Lemma 2.1. For the linear operator K,,(v; y), one can obtain that

Ku(Ly) = 1,
M'(1;
KD = 7+ g 4+ 6)
1 M (1; 2M'(1;
KB = g | i+ 6
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2M'(1;
+ny( M(i;(;;) (1+¢)+2+ qb) + (ny)?

1 M™'(1;¢) + 6M" (1; ¢) + 6M'(1; ¢)
(n=2)(n—"1n [ M(1; d)

[3 (M7 (1;¢) +4M'(1;9))
+ny

,n>1,

Kq(t%;7) (1+5k?

3pM'(1; ¢)
1+¢) - W(l +¢)

M(1; )
3M'(1; )
M(1; P)

1267 + 66 + 6) ) ( (1+¢)+3¢ + 6) + (ny)S} n>2,

| ) 1 M1 ¢) + 12M""(1; p)
Kity) = (n—-3)(n—-2)(n—-1)n [ M(L; $)
36M”(1; ) + 24M’(1; ) 4
ML ) (1+9)
4 (M"’(l;qb) +9M"(1;¢) + 18M'(1?(P))
Ty M(1; )

69 (M (1;¢) + 6M'(1;))
M(; ¢)

+6(° + 4% + 60 + 4))

1 +9¢)*

(1+¢)°

8¢°M'(1; ¢)

1+¢)y+ M 6)

(1+¢)

6(M”(1;¢) + 6M'(1;)) 126M(1; ¢)
+(n)/)2[ M 9) +§) ~ M6
AM'(1;¢)
M(1; )

1+¢)

+11¢* + 36¢) + 36) + (n)/)3( (1+¢)+6¢ +12
+(ny)4] ,n> 3.

Lemma 2.2. The operator K, has the central moments as

1M'(1;¢)

Klt=77) = ey OO (10)
M (1; ) + 2M (1
Ki((t=p%y) = (n—ll)n( ( f/)f(:;@( ¢)(1+¢)2
2yM/(1;
+ )]/w(l('¢;b)(1+qb)+ny(2+¢)+)/)),n>1. (11)

Theorem 2.3. For v € C[0, 00) N G, the operators (8) verify

lim K, (v;y) = v(y)
n—oo

converges uniformly in every compact subset of [0, c0). Here G = {v € C[0, o0) : lim fg/)z is ﬁnite}.
y—00

Proof. From Lemma 2.1,
lim K,(t;7) =y',i=0,1,2
n—oo

is uniformly on [0, c0). Considering that the universal Korovkin theorem [1], we obtain the desired result. [J
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3. Approximation Results

In this section, we define that T[0, o) is the set of all function v which defined on [0, o) and satisfied
[o(t)] < M,(1 +#?). Here, M, is a constant that depending only on v. E[0, ) is the subspace of all continuous

functions belong to T[0, c0). We also define that Q[0, o) is the subspace of all functions belonging to E[0, co)
o)

and lim 7 e is finite. In addition, the sup norm on QJ0, c0) is
'IV—)OO
[o(y)l
llo]| = sup .
y€[0,00) 1+ yZ

For v € [0, o0) and 0 > 0, the modulus of continuity [2] is defined by

w(v;0) = sup |v(t) —ov(y)l. (12)
V:t€[0,00),

|t=yI<6

The modulus of continuity has the following properties:

o [o) - 00| < wiei o) (1+ 1),

e If v is uniformly continuous on [0, o), then }sirr(} w(v;0) = 0.

Theorem 3.1. For v € C[0, 00) N G, we have the modulus of continuity of the operator K,, as

|Ku(0;7) - 0()| < 20(v; 6)

where 3(y;¢) = VKu((E=7)%):

Proof. From the above properties, we obtain
[Ku(@;7) —o()| < Kallo)) —0()]57)

w(v; 0) (1 + %Kn(|t -y

IA

;y))-

From the Cauchy-Schwarz inequality and definition of 6(y; k), we achieve

w(v;6) (1 + % \/m)

2w(v; 0).

IA

(@3 7) = 0(p)

O

Now, we obtain the approximation degree of the operator K, for functions belonging to Lipschitz class
Lip,(b). Lipschitz class is defined as

t-y|"
(t+7y)?

where 0 < b <1,y €(0,0), t € [0,0) and M, is a constant depends on v (see [17]).

Lip,(b) = {v € E[0, ) : |o(t) — v(y)| < M,

Theorem 3.2. Let v € Lipz(b) and 6(y; ¢) = /Ky ((t — V)% y). Then we get the following inequalit
p Y Y)Y 8 § mequaiity

ol (y;
|Ku(@;7) = ()| < My "(yyg (p)-




B. Sergi Yilmaz, G. Igoz / Filomat 39:25 (2025), 8975-8984 8980
Proof. From the linearity and positivity of the operator K,
[Kn(@i) = o) = [Ku(o(t) = 0(); )]
Ku (o) =] :7)

is obtained. By considering that the operator K, as monotonity increased and v € Lipz(b), the inequality

IA

e
|I<n(v; V)~ 77(7/)| < MoKy | ——57
(t+y)?

is found. For p = 2,9 = 5%, using the Holder inequality, one can have the following equations

=i
t+

|Ku(0;) —0(y)| < Mv[Kn[ ;7]] (Ku(1;7)) T

(t—y)7* :
M(K( t+y y))
GWFW
< My|K, ;
: ( ( y 7

LAV
)/t
Therefore, the proof is completed. O

= M,

Let us remember that Cg[0, o) is the space of all bounded and continuous functions on endowed with
lollcyoe = sup [o0r,2)]. (13)
(7,2)€l0,00)
From the impression, one can express the definition of Peetre’s K-functional and then demonstrate the
theorem regarding this definition.
Definition 3.3. [7] Let C3[0, 00) be the space of all functions v € Cg[0, o) and belongs to the space Cg[0, o) such
that g;y’f, (i =1,2). The norm on the space C3[0, o) is defined as follows

2 0
lollcgoe = lcyom + 3 90| - 19
i=1 Cp[0,00)
For v € Cp[0, o0) and 6 > 0, the Peetre’s K-functional is defined by
Koy = in {llo=pll+ o[l
Besides,
K (v;6) < L]w (0; V5) + min(1, 6) lollcz 0| (15)

(see [5]). Here L is a constant independent of v and 0. w; (U; \/5) is defined by the second modulus of continuity [12]
as follows

w2(v;6) := sup |[v (- +2t) =20 (- + £) + v ()llcy[0,00) -
0<t<6
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Now, we can give the theorem.

Theorem 3.4. For v € Cg[0, 00), the operator K,, satisfy the inequality as follows

’ . 2
|K (v;y) - v(y)| < 4L{w2 [v \/6( S P) + ( Z]\\/I/I((ll;i))(1+¢))]

M :
+min (1 5(y; d) + (1 (1 (Z))) 1+ (P)) ]||U||cﬁ[o,oo)}

1MW)
ololismar o)

where L is a positive constant, wy is the second order modulus of continuity and 6(y; ¢) is defined by (11).

Proof. Let us define the operator

/( ¢
(1L;9)

We show that the equalities K, (1;y) = 1 and K,(t;y) = y are satisfied. For t € [0, o), Taylor expansion of the
function p € C3[0, o) is as follows

p(t) = p(y) + ”(V)a— )+ f -0 LD (v)

Ru(g;y) = Kn(g;y)w(y)—g(y ——=(1+ qb)) (16)

If we apply the operators K, to both side of the above equality, then we get

~ 82
Kalpiy) =p() = %K (t=y:y)+ Ky f(t—v)%dv;y

_ f (t—0) P(v)
| fo-o?

7/+1 M(l v) a*"f’)

1M (1;¢) *p(v)
_ f (y + - ML 6) 1+¢) - v) o dv

V4

From (16), we find

Ku(p;y) - p(y)

and then

’p(v)
dv? 4o}y

t
[Kup;y) -p)| < Ku f|t_v|
Y

1 M (1; D)
Y+ e AHP)

1M'(1;¢) *p(v)
* f IV+ZM(1;¢) m‘”‘”'

do

00?2
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< K, ((t - y)Z;Y) HP“cg[o,o@

1M 9)
NLCICEIO Y. .

In addition, by using the equality (16), we have

| M (L)
%“‘ ML) @N

With the help of the above inequality, we can obtain

1M(L; )
n M(1; ¢)

Ku@; )| < [Ka(o:9)] + o) +

< 3lolicyo.e) -

|Ku(@;7) — o)

Ky(0;y) —o(y) + v (y 1+ ¢)) - v(w)'

< |Ku@;y) = Kalps )| + [po) — 00| + [Ku(pi ) = p()]
+ v()/ + = M (Z)))(l + qb)) -o(y)

< 4“U_p||c2[ooo) + [Kupy) = py)|
+ U( M((l (;b))(l +¢)) -o(y)|.

From the equality (17), we get

|K”(U; V) - Z’(7/)| < 4 “U - p”cz[o o) T Kn ((t - V)Z;V) ”pHcg[o,oo)

1M/(1;¢) ’
(33 0+ ) Il

ol e o)

According to the definition of Peetre’s K-functional, the desired result is obtained as follows

. M'(1;¢) ’
[Ku(w;) —0()| < 4Kv, (i) + A«1¢ﬁ1 ¢)
((“”'“ Bl ))
< 4Ll 6( )+ (PO ¢))2
- M(l; )
M/
+m1n[ 6(7/ (P) 1 (1 (z))) (1 (P)) ]||U||C§[O,oo)}
1M1 ¢)
n M(1;$)
where L is a positive constant and 6(y; ¢) := ((t - ) O

Lastly, we evidence the following Voronovskaja-type theorem.
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Theorem 3.5. Fory € [0, 00) and v,v’,v"” € Q[0, o), the equality is satisfied

M'(1;
fim 1 (K, (557) = 00) = ¥ )37 0+ 90+ 507 0) (12 + ) +17).

Proof. If we consider the Taylor’s expansion formula, we obtain

o) = o) +VOIE= )+ 30O =) + - )

where t € [0, ), u(t;7) € Q[0, ) and Pm u(t;y) = 0. Then, by applying K,(v; y) to both side of above

equality, we have
4 1 ’’
Ku(0;y)=0() = o/ ()Kult = y37) + 50" (Kl = )% )
K () E=)%7).
Multiplying with n and take limit as n — oo, we find
lim n (Ka(v;y) =o() = v'(y) lim nKu((t = y);7)
1 7 :
+50"() lim nKo((t = )% )
+ lim 7K, (u Gy E=p)s V)

M'(1;
= () M((l. :5))(1 +P)+ %v”(V) (re+o)+»?)
+ lim 7K, (L&) E=92y). (18)

In the last equality, we consider the Lemma 2.2. By means of the Cauchy-Schwarz inequality, we have

nK (e (57) (¢ = y)%5y) < \/nan ((t=7%) \/K W2 (&7); 7).
Since ltim p(ty) =0, y*(;y) € Q[0, ) and K, ((t -4 y) =0 (n‘z; qb), we find that
-y
lim K, (42 (57);7) = ¢2 (7;7) = 0
uniformly. Therefore, the equality (18) become as

M'(1; )
M(1; ¢)

lim 1 (K, (0;) = 0()) = /() (1+¢)+ %v"(y) (re+o)+r?).

Consequently, the proof is completed. [
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