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A note on the approximate pseudospectrum of upper triangular
operator matrices
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aSchool of Mathematical Sciences, Inner Mongolia University, Hohhot, China

Abstract. We study the approximate pseudospectrum σap,ε(T ) of a 2×2 upper triangular bounded operator
matrix

T =

(
A B
0 D

)
: X ×X → X×X,

on a complex Banach space, focusing on its relationship with the approximate pseudospectrum σap,ε(A) and
σap,ε(D) of the diagonal entries. First, by constructing counterexamples, we show that in general there is
no simple inclusion between σap,ε(T ) and σap,ε(A) ∪ σap,ε(D). Next, we establish a sufficient condition: if
λ ∈ σap,ε(D) and R(B) ⊆ R(A − λI), then λ ∈ σap,ε(T ). Under this condition and an additional inequality
constraint, we obtain the equality σap,ε(T ) = σap,ε(A) ∪ σap,ε(D). In addition, when the coupling operator B
can be regarded as a sufficiently small perturbation, we show that σap,ε(T ) may be “sandwiched” between
appropriately expanded or contracted approximate pseudospectrum of the diagonal entries A and D.

1. Introduction

Let X be a Banach space and let B(X) denote the set of all bounded linear operators on X. The study of
the 2 × 2 upper triangular operator matrix

T =

(
A B
0 D

)
: X ×X → X×X,

where A,B,D ∈ B(X), arises naturally from the following observation: Let T ∈ B(X) and supposeM ⊂ X
is a closed invariant subspace for T. If there exists a closed subspace N ⊂ X such that X =M⊕N , then T
admits a 2 × 2 upper triangular operator matrix representation.
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The spectrum of a bounded linear operator is one of the central objects in operator theory, providing key
insights into its algebraic and analytic behavior. However, in many important applications, especially when
dealing with non-normal operators, spectral information alone may not suffice to capture the operator’s
true behavior under perturbations. This has led to the development of pseudospectrum, which offer a
useful tool for analyzing spectral instability and non-normal phenomena, was introduced and studied by
researchers, e.g., [4, 6, 9, 10, 12, 13].

Among several variants, the approximate pseudospectrum has emerged as an intermediate concept
between the spectrum and the classical pseudospectrum. For any ε > 0 and T ∈ B(X), the approximate
pseudospectrum is defined by

σap,ε(T) = σap(T) ∪
{
λ ∈ C : inf

∥x∥=1
∥(T − λI)x∥ < ε

}
,

where

σap(T) =
{
λ ∈ C : inf

∥x∥=1
∥(T − λI)x∥ = 0

}
.

The approximate pseudospectrum was further developed by Ammar et al. [1, 2], who established

σap,ε(T) =
⋃
∥E∥<ε

σap(T + E),

which emphasizes the perturbational sensitivity of the approximate point spectrum. Moreover, they
introduced the concept of the essential approximate pseudospectrum as follows

σeap,ε(T) =
⋂

K∈K (X)

σap,ε(T + K),

whereK (X) is the subspace of compact operators on X. In Banach spaces, Veeramani et al. [11] established
the upper hemicontinuity of the approximate pseudospectrum and demonstrated through counterexamples
that lower hemicontinuity is generally impossible. Recently, Ettayb [5] extended the theory of approximate
pseudospectrum to ultrametric Banach spaces.

This paper focuses on extending some of these ideas to upper triangular operator matrices T . For
the upper triangular operator matrix, it is well-known that the spectrum satisfies σ(T ) ⊆ σ(A) ∪ σ(D).
One might naturally expect that a similar relation holds for the approximate point spectrum, namely
σap(T ) ⊆ σap(A) ∪ σap(D). Indeed, this inclusion is valid, as was established by Hwang et al. [7]. However,
when considering the approximate pseudospectrum, the situation becomes more complex. Neither the
inclusion σap,ε(T ) ⊆ σap,ε(A)∪σap,ε(D) nor the reverse inclusion σap,ε(A)∪σap,ε(D) ⊆ σap,ε(T ) holds in general.
To illustrate this, we present two counterexamples:

Example 1.1 (showing σap,ε(T ) ⊈ σap,ε(A) ∪ σap,ε(D)). Let X = ℓ2(N), 0.75 < ε < 1, A = D = 0 (the zero
operator), and B = Sr be the right shift operator, defined by Sr(xn) = xn−1 for n ≥ 2, where {xn}

∞

n=1 ∈ X. Consider the
operator T defined by

T =

(
0 Sr
0 0

)
: X ×X −→ X×X.

Clearly, we have

σap,ε(A) ∪ σap,ε(D) = {λ ∈ C : inf
∥x∥=1
∥λx∥ < ε} = {λ ∈ C : |λ| < ε}.

For the operator T and x = (x1, x2)T
∈ X × X, let us compute for λ = 1,

inf
∥x∥=1
∥(T − I)x∥ = inf

∥x1∥
2+∥x2∥

2=1

∥∥∥∥∥∥
(
−x1 + Srx2
−x2

)∥∥∥∥∥∥
= inf
∥x1∥

2+∥x2∥
2=1

(
∥ − x1 + Srx2∥

2 + ∥ − x2∥
2
) 1

2 .
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Choose x1 =
e2
√

2
and x2 =

e1
√

2
where ei = (0, · · · , 0, 1

i
, 0, · · · ) for i = 1, 2. Then we have

∥(T − I)x∥ =
1
√

2
< ε.

Thus, λ = 1 ∈ σap,ε(T ). However, 1 < {λ : |λ| < ε} which shows that

σap,ε(T ) ⊈ σap,ε(A) ∪ σap,ε(D).

Example 1.2 (showing σap,ε(A) ∪ σap,ε(D) ⊈ σap,ε(T )). Let X = ℓ2(N), ε < 1, A = Sr, B = P1 be the projection
operator defined by P1(x1, x2, x3, . . . ) = (x1, 0, 0, . . . ), where {xn}

∞

n=1 ∈ X and D = Sl be the left shift operator, defined
by Sl(xn) = xn+1 for n ≥ 1, where {xn}

∞

n=1 ∈ X. Let T be the operator defined by

T =

(
Sr P1
0 Sl

)
: X ×X −→ X×X.

If λ = 0, we can take x = e1 = (1, 0, 0, · · · ) with ∥x∥ = 1 such that

∥Dx∥ = ∥Slx∥ = 0.

Thus,

0 ∈ σap,ε(D) ⊆ σap,ε(A) ∪ σap,ε(D).

For the operator T and x = (x1, x2)T
∈ X × X, let us compute for λ = 0. Let P1(x2) = (x2,1, 0, · · · ), then

inf
∥x∥=1
∥T x∥ = inf

∥x1∥
2+∥x2∥

2=1

(
∥Srx1 + P1x2∥

2 + ∥Slx2∥
2
) 1

2

= inf
∥x1∥

2+∥x2∥
2=1

∥x1∥
2 + |x2,1|

2 +

∞∑
i=2

|x2,i|
2


1
2

= inf
∥x1∥

2+∥x2∥
2=1

(
∥x1∥

2 + ∥x2∥
2
) 1

2

= 1 > ε,

i.e., 0 < σap,ε(T ). In summary,

σap,ε(A) ∪ σap,ε(D) ⊈ σap,ε(T ).

For this reason, the paper provides sufficient (necessary) conditions for σap,ε(T ) to be contained in (to
contain) the union of σap,ε(A) and σap,ε(D). In addition, when the coupling operator B can be regarded
as a sufficiently small perturbation, we show that σap,ε(T ) may be “sandwiched” between appropriately
expanded or contracted approximate pseudospectrum of the diagonal entries A and D.

The remainder of the paper is organized as follows: Section 2 presents the preliminary results, while
Section 3 includes the main results and corollaries.

2. Preliminary

In this section, we introduce the preliminary results that will be used throughout the paper.

Proposition 2.1. (Proposition 2.3 in [1]) Let T ∈ B(X) and ε > 0, then
(i) σap(T) =

⋂
ε>0

σap,ε(T).
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(ii) If ε1 < ε2, then σap(T) ⊂ σap,ε1 (T) ⊂ σap,ε2 (T).
(iii) If λ ∈ σap,ε(T), then |λ| < ε + ∥T∥.
(iv) If α ∈ C and ε > 0, then σap,ε(T + α) = α + σap,ε(T).
(v) If α ∈ C\{0} and ε > 0, then σap,|α|ε(αT) = ασap,ε(T).

Similarly to the proof of [1, Theorem 3.6], we obtain the following lemma.

Lemma 2.2. Let ε > 0 and T,E ∈ B(X) such that ∥E∥ < ε. Then

σap,ε−∥E∥(T) ⊆ σap,ε(T + E) ⊆ σap,ε+∥E∥(T).

Similarly to the proof of [1, Theorem 3.7], we obtain the following lemma.

Lemma 2.3. Let T0 ∈ B(X) and V ∈ B(X) be invertible. Define T = V−1T0V. Then

σap(T) = σap(T0),

and for ε > 0 and k = ∥V−1
∥∥V∥, we have

σap, εk (T0) ⊆ σap,ε(T) ⊆ σap,kε(T0).

Lemma 2.4. Let ε > 0 and

T0 =

(
A 0
0 D

)
: X ×X −→ X×X,

where A,D ∈ B(X). Then

σap,ε(T0) = σap,ε(A) ∪ σap,ε(D).

Proof. We begin by proving σap,ε(T0) ⊆ σap,ε(A) ∪ σap,ε(D). Let λ ∈ σap,ε(T0) and x = (x1, x2)T
∈ X × X with

∥x∥ = 1. Then

inf
∥x∥=1
∥(T0 − λI)x∥ = inf

∥x1∥
2+∥x2∥

2=1

(
∥(A − λI)x1∥

2 + ∥(D − λI)x2∥
2
) 1

2 < ε.

Define

α := inf
∥x′∥=1

∥(A − λI)x′∥,

β := inf
∥x′∥=1

∥(D − λI)x′∥.

Then, the inequalities

∥(A − λI)x′1∥ ≥ α∥x
′

1∥, ∥(D − λI)x′2∥ ≥ β∥x
′

2∥

hold for all x′1, x
′

2 ∈ X. Setting t = ∥x1∥
2
∈ [0, 1], we obtain the lower bound

∥(T0 − λI)x∥2 ≥ α2
∥x1∥

2 + β2
∥x2∥

2 = α2t + β2(1 − t).

Observe that the function t 7→ α2t + β2(1 − t) achieves its minimum at the endpoints of [0, 1], hence

min
{
α, β

}
≤ inf
∥x∥=1
∥(T0 − λI)x∥ < ε,

which implies λ ∈ σap,ε(A) ∪ σap,ε(D).
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Conversely, suppose the λ ∈ σap,ε(A) ∪ σap,ε(D). First case, if λ ∈ σap,ε(A) and x1 ∈ X with ∥x1∥ = 1. Then

inf
∥x1∥=1

∥(A − λI)x1∥ < ε.

Take the vectors x′ = (x1, 0)T
∈ X × X. We have

inf
∥x′∥=1

∥(T0 − λI)x′∥ = inf
∥x1∥=1

∥(A − λI)x1∥ < ε,

which implies

inf
∥x∥=1
∥(T0 − λI)x∥ < ε,

i.e., λ ∈ σap,ε(T0). Second case, if λ ∈ σap,ε(D) follows analogously by considering x = (0, x2)T. The equality

σap,ε(T0) = σap,ε(A) ∪ σap,ε(D)

is thus established.

Lemma 2.5. Let ε > 0 and

T =

(
A B
0 D

)
: X ×X −→ X×X,

where A,B,D ∈ B(X). Then

σap,ε(A) ⊆ σap,ε(T ).

Proof. Let λ ∈ σap,ε(A) and x1 ∈ X with ∥x1∥ = 1. Then

inf
∥x1∥=1

∥(A − λI)x1∥ < ε.

Take x = (x1, 0)T
∈ X × X. It follows that

inf
∥x∥=1
∥(T − λI)x∥ = inf

∥x1∥=1
∥(A − λI)x1∥ < ε

then λ ∈ σap,ε(T ).

3. Main Results

In this section, we introduce our main results and corollaries.

Theorem 3.1. Let ε > 0 and

T =

(
A B
0 D

)
: X ×X −→ X×X,

where A,B,D ∈ B(X). If λ ∈ σap,ε(T ), then at least one of the following holds:
(i) λ ∈ σap,ε(A) ∪ σap,ε(D);

(ii) there exists a unit vector (x1, x2)T
∈ X × X (i.e. ∥x1∥

2 + ∥x2∥
2 = 1) such that

∥(A − λI)x1 + Bx2∥ < ∥(A − λI)x1∥.
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Proof. We prove the contrapositive: if neither (i) nor (ii) holds, then

inf
∥x∥=1
∥(T − λI)x∥ ≥ ε,

i.e. λ < σap,ε(T ).
Assume (i) fails. That is,

λ < σap,ε(A) and λ < σap,ε(D).

By definition of the approximate pseudospectrum, we have

inf
∥x1∥=1

∥(A − λI)x1∥ ≥ ε and inf
∥x2∥=1

∥(D − λI)x2∥ ≥ ε.

Assume (ii) also fails. That is, for every unit vector x = (x1, x2)T
∈ X × X (so ∥x1∥

2 + ∥x2∥
2 = 1), we have

∥(A − λI)x1 + Bx2∥ ≥ ∥(A − λI)x1∥ ≥ ε∥x1∥.

We now estimate

∥(T − λI)x∥ =
∥∥∥((A − λI)x1 + Bx2, (D − λI)x2

)T∥∥∥
=

(
∥(A − λI)x1 + Bx2∥

2 + ∥(D − λI)x2∥
2
) 1

2 .

From the spectral bound on D,

∥(D − λI)x2∥ ≥ ε∥x2∥.

Hence

∥(T − λI)x∥ ≥
(
ε2

(
∥x1∥

2 + ∥x2∥
2
)) 1

2
= ε,

so for every unit x, we conclude

inf
∥x∥=1
∥(T − λI)x∥ ≥ ε,

i.e. λ < σap,ε(T ).
By contraposition, we have shown that if λ ∈ σap,ε(T ), then at least one of (i) or (ii) must hold. This completes the

proof.

Theorem 3.2. Let ε > 0 and

T =

(
A B
0 D

)
: X ×X −→ X×X,

where A,B,D ∈ B(X). If λ ∈ σap,ε(D) and R(B) ⊆ R(A − λI), then λ ∈ σap,ε(T ).

Proof. Suppose λ ∈ σap,ε(D). By Lemma 2.5, the inclusion σap,ε(A) ⊆ σap,ε(T ) is immediate. Hence it suffices to
consider only the case λ ∈ σap,ε(D)nσap,ε(A).

By λ < σap,ε(A), we know R(A − λI) is closed and A − λI is bounded below. Hence the inverse

L := (A − λI)−1
∣∣∣
R(A−λI)

is a bounded operator from R(A−λI) ontoX. In particular, if R(B) ⊆ R(A−λI), then L(Bx′) is well-defined for every
x′ ∈ X. Fix any nonzero x2 ∈ X, there is a nonzero x1 ∈ X such that

x1 = −L
(
Bx2

)
i.e. (A − λI)x1 = −Bx2.
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Then by construction

(A − λI)x1 + Bx2 = −Bx2 + Bx2 = 0.

Take x = (x1, x2)T, we have

(T − λI)x =
(

0
(D − λI)x2

)
and therefore

∥(T − λI)x∥ = ∥(D − λI)x2∥.

We only know x might not be 1, so normalize:

u =
x1√

∥x1∥
2 + ∥x2∥

2
, v =

x2√
∥x1∥

2 + ∥x2∥
2
.

Suppose λ < σap,ε(T ), for every unit vector x′ ∈ X, we have

∥(T − λI)x′∥ ≥ ε.

Set y = (u, v)T, we have

∥(T − λI)y∥ =
1√

∥x1∥
2 + ∥x2∥

2
∥(D − λI)x2∥ ≥ ε.

Rearranging,

∥(D − λI)x2∥ ≥ ε
√
∥x1∥

2 + ∥x2∥
2 ≥ ε∥x2∥,

which implies

inf
∥x2∥=1

∥(D − λI)x2∥ ≥ ε, i.e. λ < σap,ε(D).

This completes the proof.

Corollary 3.3. Let ε > 0 and

T =

(
A B
0 D

)
: X ×X −→ X×X,

where A,B,D ∈ B(X). If the following two conditions are satisfied:
(i) For all λ ∈ σap,ε(D), it holds that R(B) ⊆ R(A − λI);

(ii) For all λ ∈ σap,ε(T ) and unit vector (x1, x2)T
∈ X × X, it holds that

∥(A − λI)x1 + Bx2∥ ≥ ∥(A − λI)x1∥.

Then

σap,ε(T ) = σap,ε(A) ∪ σap,ε(D).

Theorem 3.4. Let ε > 0 and

T =

(
A B
0 D

)
: X ×X −→ X×X,

where A,B,D ∈ B(X) such that ∥B∥ < ε, then

σap,ε−∥B∥(A) ∪ σap,ε−∥B∥(D) ⊆ σap,ε(T ) ⊆ σap,ε+∥B∥(A) ∪ σap,ε+∥B∥(D).
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Proof. [Proof 1 (Perturbation Theory via Lemma 2.2)] We view T as a perturbation of the diagonal operator T0 =(
A 0
0 D

)
, with the perturbation term E =

(
0 B
0 0

)
and ∥E∥ = ∥B∥. By Lemma 2.2, we have

σap,ε−∥B∥(T0) = σap,ε−∥E∥(T0) ⊆ σap,ε(T ) = σap,ε(T0 + E) ⊆ σap,ε+∥E∥(T0) = σap,ε+∥B∥(T0).

Using Lemma 2.4, we obtain

σap,ε−∥B∥(A) ∪ σap,ε−∥B∥(D) ⊆ σap,ε(T ) ⊆ σap,ε+∥B∥(A) ∪ σap,ε+∥B∥(D).

We now present an alternative proof based directly on the definition of the approximate pseudospectrum.

Proof. We begin by proving σap,ε−∥B∥(A) ∪ σap,ε−∥B∥(D) ⊆ σap,ε(T ). Let λ ∈ σap,ε−∥B∥(A) ∪ σap,ε−∥B∥(D). If λ ∈
σap,ε−∥B∥(A), by Lemma 2.5 and (ii) of Proposition 2.1 we conclude λ ∈ σap,ε(T ). If λ ∈ σap,ε−∥B∥(D), then for any
x2 ∈ X with ∥x2∥ = 1,

inf
∥x2∥=1

∥(D − λI)x2∥ < ε − ∥B∥.

Take x = (0, x2)T
∈ X × X. Then

∥(T − λ)x∥ = (∥Bx2∥
2 + ∥(D − λI)x2∥

2)
1
2 ≤ ∥B∥ + ∥(D − λI)x2∥.

Thus,

inf
∥x∥=1
∥(T − λ)x∥ ≤ ∥B∥ + inf

∥x2∥=1
∥(D − λI)x2∥ ≤ ∥B∥ + ε − ∥B∥ = ε.

Consequently, λ ∈ σap,ε(T ). Now, we will prove that σap,ε(T ) ⊆ σap,ε+∥B∥(A) ∪ σap,ε+∥B∥(D). Let λ ∈ σap,ε(T ) and
x = (x1, x2)T

∈ X × X with ∥x∥ = 1,

inf
∥x∥=1
∥(T − λI)x∥ = inf

∥x1∥
2+∥x2∥

2=1

(
∥(A − λI)x1 + Bx2∥

2 + ∥(D − λI)x2∥
2
) 1

2 < ε.

Define α and β as in Lemma 2.4. An analogous argument yields

min
{
α, β

}
≤ inf
∥x∥=1
∥(T − λI)x∥ < ε + ∥B∥,

which immediately implies λ ∈ σap,ε+∥B∥(A) ∪ σap,ε+∥B∥(D). Consequently,

σap,ε−∥B∥(A) ∪ σap,ε−∥B∥(D) ⊆ σap,ε(T ) ⊆ σap,ε+∥B∥(A) ∪ σap,ε+∥B∥(D).

Remark 3.5. Under the condition ∥B∥ < ε, the off-diagonal term B is a small perturbation relative to the ε-level of
the approximate pseudospectrum. Consequently, the approximate pseudospectrum of T is ”sandwiched” between the
approximate pseudospectrum of the diagonal components expanded by ∥B∥.

Lemma 3.6. Let ε > 0, and

T =

(
A B
0 D

)
: X ×X −→ X×X,

where A,B,D ∈ B(X). Let X ∈ B(X) such that AX − XD = B, then

σap(T ) = σap(A) ∪ σap(D),

and for k = ∥
(

I −X
0 I

)
∥∥

(
I X
0 I

)
∥, we have

σap, εk (A) ∪ σap, εk (D) ⊆ σap,ε(T ) ⊆ σap,kε(A) ∪ σap,kε(D).
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Proof. Let V =
(
I X
0 I

)
, it is immediate that V−1 =

(
I −X
0 I

)
and

V−1
T0V =

(
A AX − XD
0 D

)
=

(
A B
0 D

)
= T .

By Lemma 2.3, we have

σap(T ) = σap(T0),

and for ε > 0 and k = ∥V−1
∥∥V∥, we have

σap, εk (T0) ⊆ σap,ε(T ) ⊆ σap,kε(T0).

Using Lemma 2.4, we obtain

σap(T ) = σap(A) ∪ σap(D),

and

σap, εk (A) ∪ σap, εk (D) ⊆ σap,ε(T ) ⊆ σap,kε(A) ∪ σap,kε(D).

The conclusion below follows directly from Lemma 3.6 and the Sylvester-Rosenblum Theorem [8] (see
also [3]).

Corollary 3.7. Let ε > 0 and

T =

(
A B
0 D

)
: X ×X −→ X×X,

where A,B,D ∈ B(X). If σ(A) ∩ σ(D) = ∅, then

σap(T ) = σap(A) ∪ σap(D),

and for k = ∥
(

I −X
0 I

)
∥∥

(
I X
0 I

)
∥, we have

σap, εk (A) ∪ σap, εk (D) ⊆ σap,ε(T ) ⊆ σap,kε(A) ∪ σap,kε(D).
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