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Difference equations for a class of twice-iterated Hahn-Appell
sequences of polynomials

Mehmet Ali Ozarslan®, Duygu Malyali?®

“Department of Mathematics, Eastern Mediterranean University, via Mersin 10, Famagusta, 99628, Turkey

Abstract. In this article we consider a family of twice iterated Hahn-Appell polynomials (TI H-AP), which
includes the twice iterated and the usual versions of Appell, w-Appell and g-Appell polynomials. An
equivalence theorem for the definition including the explicit representation and the generating function
is given. Then determinantal representation, pure recurrence relation, lowering, rasing operators and
difference equation by means of Hahn difference operator are obtained for these polynomials. As an
application of the main results, we provide some results for 2-orthogonal Hahn-Appell polynomials in

terms of one-orthogonal version. In the last section, we introduce the Hahn-Bernoulli, Hahn-Euler, Hahn-
Genocchi and twice-iterated Hahn-Bernoulli-Euler polynomials.

1. Introduction

Hahn difference operator [8] has been considered in many recent papers [2],[7],[6] since it contains
the main operators of calculus and therefore the investigated problem can be solved in a more general

scale. More precisely, this operator includes the usual derivative, g-derivative, forward difference and delta
operators. It is given by,

f@T + w) - f(T)
q,wf W, qe [O,l],a)>0 (1)

where T # wy and wy := “’q.
There are 2 types of (g, w)-exponential (Hahn exponential) functions given by [24]

(t _;[ q("_((l_q)t_ ’ |(1 K])t w|<1
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and

o\ i (=Dt + 0;9)e
Eq (t) = [n]q! = (_w; q)oo , |a)|<1 (3)

which are the solutions of

Dyof®) = f(t), fO)=1

Dyof(t) = flgt +w), f(0)=1

respectively.
They satisfy the property

E;“(-tej () =1,

and in the special cases we have,
ety = Ej() =ep(t),  e)(t) =EN(t) =¢,
) =1+w)s,  EH=(1-w)s.

In (2) and (3), the symbols [n], (£); . [t]} 0, (@ 7)o, (a;4); and the symbols of g-calculus which are used
thoughout the paper are given as follows:
The g-analogue of the integer #;

a_@ -1
ny=1+g+¢+...+g" ' = .
[n], qg+q q e

The g-factorial is given by
1, j=0;
(@;9); = 111,21 = q"a), j=1;
H;.::O(]' - qma)/ ] = 0Q.

The g-binomial coefficient and the g-binomial formula are respectively defined as follows:

[n ] B (@ Dn
q

(m<n, n,melN).

mo (g Dnem( @ P

, i
(1-a)) = @q); =) [ " ] R G Vi
q

m=0

The polynomial bases of Hahn calculus are {(f)g,w}nzo and {[f]g,w}nzo which are given by,
(g =t — @)t = [2]gw)(t = [Blyw)-..(t = [n - 1] w), 4)

(1]}, = tqt + @)(@*t + [2)gw)...(q" "t + [n = 1]0). (5)
Applying Hahn difference operator to (4) and (5), we obtain:

Dq,m(t);,m = [n]”i(t ;lr;’l’
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Dq,m[t];,m = [n]q[qt + w];l;ul

where w > 0,9 € (0,1)and n > 1.
Taking into account the fact that the Appell polynomials defined by [3]

d/d; (Au(2)) = nA,—1(2)

has many applications in approximation theory, special function theory, analytic function theory and
numerical analysis [see in [20], [19], [23], [14], [16], [13], [22], [15]], recently the authors in [24] introduced
and investigated the H-AP through the definition

Dq,mpn(x) = [n]qpn—l(x)rn > 1 (6)

It has shown that these polynomials implicate the g-, usual and w—Appell polynomials. (see in [5] and [1]).
They can be given by an elegant generating relation

Aes(xt) = ) Au(; ;) 7)
n=0

tn
[n]q!

where A(t) is an analytic function at the origin given by

0 k

t
A(t) = zak[k_]q!‘

k=0

Recently, another dimension of research has been started on the TI AP which are defined by [11]
Xi 3 tn
MDA =) Ana@) . 8)
n=0

We should note that an equivalent definition of (8) has been given for the w-Appell polynomials in [18].
For the TI A type polynomials, we further refer the following papers ([11], [21], [17], [12] ).

Motivated essentially by the above mentioned applicaitions and research dimensions, in the peresent
paper we introduce the TTH-AP. The main advantage of this definition is two folded. These new polynomials
includes the g-Hahn Appell polynomials in their special case, they include the TI versions of usual, w- and g-
Appell polynomials. Therefore, rather then proving similar results for each special case, this new definition
gives chance to establish a theory more efficiently.

We organise the paper as follows. In section 2, we consider a family of TI H-AP and obtain their explicit
form and generating function. Some equivalence theorems for the definition are also obtained. Futhermore,
the determinantal form of the TI HA sequences is derived in terms of the (H-AP) Hahn-Appell polynomials
and a circular theorem provided by TI HA sequences is proven. Lowering operators, rasing operators are
obtained, in section 3 and by using them we give the difference equation and the pure recurrence relation
contented by TI H-AP. As an application of these polynomials, in the fourth section we give the explicit
representation and determinantal form of the 2-orthogonal TI H-AP.

2. Twice-iterated Hahn-Appell Polynomials
Let Q,(x) be (H-A sequence) the Hahn-Appell sequence defined in [24]
= [n
@m=2Lhmm% ©)
k=0 L™ g

with
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(o) tn
al(t) = Z qnﬁ
n=0 ’

Now, we give the definition of the TI HA sequences as follows.

Definition 2.1. Let P,(x) be any polynomial given by

Pu(x) = ) p(n, @)} -
k=0

8692

(10)

(11)

with p(n, k) is the coefficients and (x)’;,w is a basis of Hahn Calculus which is given in (4) . Then Qx(x) be a H-A

sequence defined in (9) and the polynomials HAZ (%) defined by

HAP @) = Y pln, Q)
k=0

If the following relation holds true
Dywniy () = [nlguA, (),
HARZ(x) called the TI HA sequence of polynomials.

Theorem 2.2. [Equivalence Theorem]
The subsequent statements are mutually satisfying and can be derived from one another.

i) { HAE] (x) } is a TI HA sequence.
ii) { P,(x) } is a H-A sequence, then p(n, k) represents the coefficients,

n

P(Tl,k) = |:k:| Pn—k/
q

ay(t) is the determining function of P,(x) is defined by

0= Py

iii) The explicit form of the TI HA sequence { A (x) } is defined by

n k
AT = Y ) Pusie i@

k=0 1=0

iv) Generating function of TI H-AP { HA,[qz] (x) } is given by

(e8]

om0 = AP
n=0 '

(12)

(13)

(14)
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Proof. Firstly we prove that (1) «— (2). Let { 1A (x) } be a TI HA sequence. Applying the Hahn operator on both
side of (12) and recalling { HA[nzl(x) }and { Q(x) } are the H-A sequence, we have

Dy [#A7 )] = Dy ZP(n,k)Qk(x)l = [Z p(1, K)Dy . Q) .

k=0 k=0

From (13), we can obtain that;

(AR, () = | ), p(1, 0D, Qx
k=0

n [ n—1
=) pin, k)[quQk_ﬂx)} = | YT+ 1yl b+ 1DQk()|
k=1 L k=0

Therefore,

-1
wA2 (x) = [[L Y T+ Ugpn, ke + 1)Qk(x)} .
k=0

So, we obtain that

AP (x) = =Y pln, Q).
70 k=0
This gives fork = 0,1,2, ..., n that
e+ 1l _ 1k + Dp(n, k
m =p(n+1,k+1)pn, k).

Now, through successive iterations of the preceding relation k times, we arrive at the following result:

3 [n +1][nly...[n =k + 1]y [n - k]! n+
Pt Lk ) = N W k. PR = [k 1} pn=k,0)
Hence
pln, ) = |Z] Pu-i (15)
q

Replacing (15) into (11), we have

n

P =) [Z] Pk (16)
q

k=0

Now, applying the Hahn derivative which is given in (1), on the both sides of (16) and by following the relation

Dq,(l) (x){; @ [k]q(x)q W

we get,

Dq,w (Pu(x)) = qw

[Z] Pn k(x)q a)] = l:;(l:| Pn—qu,a) ((x)g,a))
k= k=0 q

0
- n
‘7 [k] Pn- k(x)q @ [n]qpn—l(x)-

k=0
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Therefore, { P, (x) } is a H-A sequence.
Secondly, (2) «— (3). Take { Qn(x) } is a H-A sequence. From assertion (2) and the definition of TI H-AP, we
can write

M»

Qk(x) = [ ] dk-1 X)q w
1=0

and

n

AT = ) [’,Z] PrkQe().
q

k=0

Now, we substitute the Qk(x) in the above equation, it is clearly to see that

HAR () = 22[ ] [ ] Pk k(D

k=0 [=0

Finally, we prove that (3) «— (4). Using assertion (3), we get

o X2 k "
b |
=0 n=0 k=0 I=0 [”]q~

Now, by using Cauchy product, we get

0o " o n k
Al L ["] [k] nk k(O
;p”[n]q! ;qk[_]qlé( )Ww[l] !
= ay(t)ar(t)eg" (xt)
where

o0 f el tk © = tl
aa(f) = ;p”[n_]q!’ a(t) = kZqu[k—]q!, eg'(xt) = ;OC)‘ZWW'

where the result. [

Remark 2.3. Note that,

1. Choosing a(t) = 1 (or ax(t) = 1) in generating function of TI H-AP (14), we get H-AP which was given by (7)
in [24].

2. Letting q — 1 and w — 0in TI1 H-AP, we get TI Appell polynomials which was introduced in [10].

Letting g — 1 in TI H-AP, we get TI w-Appell polynomials.

4. Taking h — 0 in TI H-AP, we get TI g-appell polynomials which is obtained in [12].

W

Theorem 2.4. The determinantal representation of the TI HA sequence is given by
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Qo(x) Qi1(x) Qa(x)
Po ¢1 P2
0 ¢ [l
n 0 0 Po
21, (=1
1) = (g
0 0

[nzl]qun—Z [q]q‘?n—l
[ ], 00 [2],6n2

Qu1(x)  Qu(x)
ﬂbn—l an

(1;0 [n:‘]ngl

8695

where { yAP\(x) } is the TI HA sequence with the generating function (14) and ¢o,(1,...., are the Maclaurin

coefficients of the function [a>(t)]™".

Proof. Let the Maclaurin series of [ax(t)]™! be given by:

b k
Hlt = A
[ax(8)] kE_o Px ;!

By multiplying each side of the equation (14) by the reciprocal of [ax(t)], we obtain:

(1201 Y nAP 0o = (e e
n=0 7

which gives,

S t S ()
kz_] k—; ARl (e >[ 7 =m0,

H-AP generating relation is given by

n

a1 (b)ey (xt) = Z QWG

and substitute the above equation into the (17), we get

Y o ]f—i Ao ZQn()]

k=0 n=0 g

[2]

kZ¢
"Hw

=0
=2

n=0 k=0
; Qn(x [n]q!~

n

[
[e]
[

t" [n]q
[n]y! [ = Kklg'[K],!

] !

(17)

(18)
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We easily obtain that
n

Qux) =Y [Z] DA (3)
q

k=0
We obtain the system of equation with the unknowns HAZ (x) as follows

Qo(x) = PponA(x)
Q1(0) = P1AP (%) + ponr Al (x)

Q) = o)+ || GrAPi) + ol
q

Qu®) = Pur ) () + [ﬂ PuanAL () + .+ oA ().
q

From Cramer’s rule, we can write that

Po 0 0 0 Qo(x)
1 $o 0 0 Qi (x)
¢ [l Po 0 Qa(x)
¢ [, 1,01 0 Qs(x)
HAD) = | ' ' '
s [0 [grs o o G0 Qua
o [711],7(?’1171 [g]q(Pan [nﬁl]qul Qn(x)
Po 0 0 0 0"
P1 $o 0 0 0
¢2 [ﬁqﬁbl ¢o 0 0
¢ Blo2  [lén 0 0
ol : :
@—1 [”;1];@,2 ["El],ﬁn—s ¢'0 0
On Lln Bl@n2 o [LL01 o

8696

If we take transpose of the first determinant and observing that the second determinant is lower triangular, we
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have
Po ¢1 2¢2 qlbn_l Pn
0 g0 Blor o (710 [ én
0 0 b0 e ["gl]qun_g, [5],Pn-2
1 . . . . . . .
HALZ](x) ) (¢O)n+1 . . . . . . .
o . R A R
Qo) Qi(x) Q(x) ... .. Qualx)  Qul)
Qo(x) Qi(x) Qa(®) . oo Qualx)  Qul(x)
Po P1 2¢2 ?n_l Pn
0 ¢ [Llor o T2 []¢na
1y | O 0 L e G MY ] K
—W . . . . . .
0 . . L0 g0 Ll

As a result, we obtain the desired result which is given in the statement. []

Theorem 2.5. Let A (x)is the sequence defined by the determinantal form in the theorem (2.4). Then

Dy [#AT@)] = [n];n A2, ().

Proof. Firstly, applying the Hahn Calculus to the determinantal form of ;A (x) for n € N that

Dq,wQO(x) Dq,le(x) Dq,a)Q2(x) Dq,a)Qn—l(x) Dq,an(x)
Po ¢1 2(1)2 (11),1_1 o
0 RN T ) P
e 0 0 o o [ Pus [2] e
" | 0 a1

Now, applying the following equation due to the definition of Hahn A.P.
Dq,an(x) = [n]an—l(x)

and using the some mathematical applications, as a result we obtain the following equation with the
determinantal form of TI H-AP

Dy [AT ()] = [n],uA?, (x)
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Theorem 2.6. Circular Theorem satisfied by the TI HA sequence, therefore the following statements are equivalent :

{ HAE](x) }is a TI HA sequence.
2. The TI H-AP yA?(x) posses a generating function given by

(o)

ax(t)m (1) (x) Z 2]<x)[ T
=0

3. The determinantal form of TI H-AP yAP\(x) is defined in theorem (2.5).

Proof. The proof of (1) «— (2) follows from Theorem 2.1. The proof of (2) «— (3) follows from Theorem
2.2. The proof of (3) «— (1) follows from Theorem 2.3. [

3. Some properties of Twice-Iterated H-AP

Theorem 3.1. A reccurence relation of TI H-AP is given by

!
A1[12+1 (x) HAn (x) [x + (Poq - Yl]q Z (pkHA (x)qn -k [”]q

[n — k]!
+ pon Al (gx) + Z pkHA k(qX)
k=1
where ¢y = qk(ak +wtag) k=0,1,2,...and
qa2(t) =
a t 19
i)~ % (19
anl(t) . k
nl® ;ﬁ"t : (20)

1+t Y ptt =) pit,
k=0 k=0

Proof. Taking g-derivative on both sides of (14), we have

Dyl (Das(1)1e; ™ (xgt) + = [ (Daz(ties (x1)] = ZDqHAm(x)—.

Applying the product rule of the g-derivative, we get

a1(qH)Dylax(H)1e; " (xqt) + AP ) —— + Dylar (H]ax(t)]e; " (xqt)
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which gives

i Dyalt) o4t gty D110
ZH oy (x >— = m(qhax(qt)e; " (xqt) aizw raOm e ‘Z‘lt’

X [21
1+a)tZ ()[]

Multipling both sides by 1 + wt we get,

SN Dyax(t) ¥~ ARl £
(+wn ), 0 i = (oD 2 P ey RNy
a(t) v "
+ (1 + ot Dyt Af]x—.
ran=m L )[n]q!
Letting,
anz(t) > K
= ait”,
ax(qt) kz;‘ ¢
D, ﬂl(i’ =
m(t) ;‘ﬁk
and
a1 + wt) Z apth = Z otk
k=0 k=0
with ¢ = qk((xk + wtag), k=0,1,2,...and
A+wd) pt =) pit
k=0 k=0
Hence we get,
oo . o] n 2] oo o] s 2] t_
Lot Loy« o L ("x)[l'”ZOHA” RmE
_ AR P
= (1+ i) Z& HA )
For the right handside,

# -1
(1+a)t)ZHA 1(x)— ZH Ll (x) []'+thHA[2(x) T

AR ( 2] t
Z (¥ +wZHA [ nl nl,

n=0
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Then,
Z Prt* Z g'rAY (x ; Pkt Z HAZ (qx)m +x Z HAD (x)#
k=0 n=0 n= n=0
- Z:(; (1A% () + winl AR ()] T

Using the Cauchy product, we find that

izd)kHA[z}k(x) k] 1 ZZ‘O"H nk(@ [n k] Pt iHA 7) [t_

n=0 k=0 n=0 k=0
- t
=) [5400 + @bl 0] oo
= nl,!

Upon equating the coefficients of 7+ s We get forn=0,1,2,... that

D PrA " k[ = +ZpkHA[2 A, = ]k] ;A ()

k=0
= pAP () + wlnlpAP ()

or equivalently

n+1(x) = HA[Z](x [x + ¢oq" - a)[n]q] + pOHA ](qx + Z pkHA k(qx)
k=1

1 !
+ Z ﬂkaAE,Z_]k(x)qn_k%'
k=1 T

whence the result. [J

Theorem 3.2. The shift operators of of the TI H-AP and the difference equation of the TI H-AP are given by

n n
L = x + dog" — wlnl, + poT, + Z oug" Dk, + 2 pkD; , Ty,
k=1

k=1
1
L, =—D
" [n]q e
and
n
Dy + Goq" = wlnly) + DypoTy + Y | i *DEL + Z pDET, — [+ 1, | nAP () = 0
k=1
respectively,

where T, f(x) = f(gx) and ¢1, (2, ..., Pk are the same as in the statements of the Theorem 3.1. and

1+t ) gt =) pit
k=0 k=0

8700

(21)

(22)

(23)

(24)
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Proof. Recalling that

L
[n]q
we easily see
L, = L
[n],

It is clear that:

A[z ) = [ e k+1L;—k+2“‘L;] HA(x)

Dy AP (x) = pA? (x),

Dy

= L 1 1 2l
B [[Tl -k+ 1]!1 Dq,(u [n—k+ Z]q D'ir“)'“ [n]q Dq,a)] HA; (%)
[n k]q o]
WwHA (x
[n]q. (x).

Considering the above equality in the recurrence relation, we get

AL () =r AR ) [x + pog” — wlnly] + porAl <qx>+Z¢qumHA”<x>q""

k=1
+ Z peDk 1A ().

Let T is the g-scaling factor operator defined by T, f(x) = f(qx). Thus,
An(gx) = TqAn(x)-

HAL
Then, we can see that,

n n
L =x+og" - wlnly + poT, + Y " *Dk,, + Y pkDE, Ty,
k=1

k=1

Next, by applying the factorization method:

Lyl [1A7 )] = AP ),

n+1
we get
) " ;
me x + ¢og" — wlnl, + poT, + ka org" Dk, + kz; DT,

Using product rule of g-calculus, we get

k=1

o (¥) = |2+ og” = wlnly + poTy + qukq” “Dj + Z D, Ty | AT ().

AP (x) = pAZ ().

n
Dy + §0q" = wlnly) + DypoTy + Y | i *DEL + Z pDSEIT, — [+ 1],

8701
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4. 2-orthogonal Hahn-Appell Polynomials
Recall that the d-orthogonal H-AP ( see in [24], Theorem 8 ) are given by

(25)

(11 (1= ) = @) Do (a1 = ) = @) Desef"(01) = ) P )50, 0) ] T
n=0

where x1,%,...,x5 € C' = C/ {0, wp} with 0<g<1 and w > 0. Now consider the 1-orthogonal H-AP given by

(e8]

a0 (xt) = (1 (1 - ) — w); ot (xt) = Y P, (50, q>[ o (26)

n=0

a0 (xt) = (Ha(1 — ) — ); Pt (xt) = prflz“”’)[;_;"
]

The TI H-AP corresponding to the above a;(t) and a,(f) will be

a1 (Hax(tes” (xt) = (Hx1(1 = 9) = w); oo (t(x2(1 = ) = @); Py (xt)

=) Pt
n=0

where clearly from (25), Py x,x,)(X; @, q) is the 2-orthogonal H-AP. We will state some results for the 2-
orthogonal H-AP by using some of the our main theorems of the preceding sections. Let

(27)

tn
[n]q! )

Qn (x) = Pn,(xl,x2)(x/' w, Q)

and

A o _t"
w0 = G (1—q> D Z‘P" TRk

A 1 V.o "
0= G~ e

Recall that [24];

() = Z[n S q)x Do

We can see that;

. 1 <1> PN
w)= (Hq = D% = x1))eo ;¢ [n]'_,;;(l—q ) [t

n

5 1 o " o
a, (t) (t(q 1)(1mq _ xz))oo ;QD [1’1] 1 Z(l q 2)) ]

Then
w

o = (G2 -, o = (g, R =01 (28)



M. A. Ozarslan, D. Malyal: / Filomat 39:25 (2025), 8689-8709 8703

where = = wy.
1=q
Then the determinantal form of the 2-orthogonal H-AP is given by means of 1-orthogonal H-AP as

follows:

Poy,(x;0,9) Piy(6w,q9) Poo(w,q) ... . Puaxn(w,q9) Puy(xw,q)
§) o (1) ) i
%0 qb%l) noa i) ")
n— n
0 ; 1, S
1 -1 1 1
1y 0 0 { B e 4 A
P )X 0,9) = W ) L. i i
0
) ) ) .. o o
0 . : .0 ( [,,6%
Poy (x;0,9) Piy(vw,q9) Poyn(w,q) ... .. Ppan(w,q) Puy(xw,q)
® ) @ @ @
% ¢32> nae (1?”_1@ " @)
n— n
0 0 [1]q 1 [ 1 ]q(l)n—z [1]qq',)n71
@ -11 4@ )
1y 0 0 ¢ e 502, B,
- ((sz))n_'_l . . . .
) . ) .. o g
0 . . .0 ¢ [, 05

where ¢S) and cj)ﬁ,z) are given in (28).
The explicit form of the 2-orthogonal TI HA sequence is given by

n k
Py ) (X @0, 9) = Z Z Ak Gr-1(X);

k=0 1=0
n k n—-k k-1
(n—k)(n—k-1) w (k=D k=I-1) w ( )
= T —-: T\ x| (o
7 (1 —q ) 7 (1 —q )
k=0 1=0
n n—k+1 k=21
(n=k+])(n—k+1-1) ) (k=21)(k=2I-1) [0 ( )
By A S T S
1- 1-
1=0 1 1

Corollary 4.1. It is asserted that, a reccurence relation satisfied by 2-orthogonal H-AP is given by

Pt 21,50 (% 0, 0) = Py 1) (5.0, ) [ + Pog” = @Il | + PoPy ey ) (4 0, )

n n
e g
+ Z ¢kPn—k,(x1,xz)(X} w, Q)q k—ZM + ; kan—k,(x1,xz)(qx,' w, Q)

= [ -




M. A. Ozarslan, D. Malyal: / Filomat 39:25 (2025), 8689-8709 8704

since a1 (t) and ay(t) defined in (26),(27) and

A + wt) Z ath = Z Pitt
k=0 k=0

and

o)

(1 + wt) i Bitt =) pitt.
k=0

k=0

with ¢ = q*(ax + wtay), k =0,1,2, ... . On the otherhand

Dyn(t)  axgh —ax(t) 1201 =g/ Hxa(1 = q) — w) = [T20(1 - g't(x2(1 - 9) - )

ax(q) (g - Dtax(qh) (7 - DETTZ0(1 - g H(x2(1 - 9) — w)
0= -w 0 vy
= =Xy — —— = axt”.
1-¢g 1-¢g kz_;‘
We see that

aozxz—l%i, a=0 for k=1,2,3..

Moreover

(1 + wt) (xz - 10)_51) = ot® + 1t + daf? + 3t + ..

2
[ w°t
xz——l_q + xpt — T2 = Pot® + Prt' + Pat® + Pt + ...,

which gives

2
Qo = X2 — L, P1 = X0 — cu_, ¢r=0, k=2,3,..
—q

1 1-g
Also,
Dyr(t)  ar(gh) —m(t)  TIRe(1 =g/ ta(1—q) — @) — [12p(1 - g/t (1 - q) - w)
ai(t) (g -Dta(t) (=Dt IT20(1 - gtx1(1 - 9) — w)
x(l-9)-w

T T—g-@-q) -

n(l-g-w = o "
= Zﬁntn
n=0

where

b = (11— q) - )"
" (1-9)

for n=0,1,2,..
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00 k+1 00
1+ wt) Z (11~ g) ~ ) = Z otk
k=0

(1-9) e
Moreover,
Y (Bt + i) = Bo+ Y Bt + ) it
k=0 k=1 k=0

=Po+ Z(ﬁk + W)t
k=1

=po+ ), pit
k=1

We obtain that, By = po and pg = Pr + wPi-1.
Therefore, we can give the reccurence relation as follows

w
Pris 0,603 @0, 9) = P ) (x50, ) [x . q)qn - a)[n]ﬂ]
x(l-9)—w
T @)

[n]q! )

w w2 n-k
+ (xz - ﬂ + X2 — m) (Pnk,(xl,xz)(qx/ w, 5])5] [n — k]q'

+ixum—w—ww4+<na—m—mk

w P, x1,x)\GX; W, q).
-9 -9 ) i (500

k=0

Corollary 4.2. From (4.1), difference equation of 2-orthogonal H-AP is given by

n 1
P 21,00 (% @, 9) = Py 0 (%5 @, 9) [X +po" = wlnly + po+ ) uDh+ ) PkTq]
k=1 k=0

where

w @
QbO:xZ_Tq/ ¢1=x2a)—1_ , qbk:(), k=23, ..

q
and
oo = x(1-9) -w oy = (r1(1 - ¢) — w)¥*! . w(xl(l —q) — w)
° 1-q 1-9) 1-9)
. [n]! .
D} P 1,00 @, ) = [n_—k]q!P”—k:(xl,Xz)(x' w, q).

T, f(x) = f(gx) and P10 (6 @, GX) = TP, ) (X5 @, 9).

5. Some Special Hahn Appell and Twice Iterated Hahn-Appell Polynomials

In this section, we introduce some of polynomials, namely the Hahn-Bernoulli, Hahn-Euler, Hahn-
Genocchi and twice-iterated Hahn-Bernoulli-Euler polynomials. These definitions provides more general
form of the usual ones, and we believe that they will attrach the attention of many researchers.



M. A. Ozarslan, D. Malyali / Filomat 39:25 (2025), 8689-8709 8706

Definition 5.1. Hahn-Bernoulli Polynomials The Hahn-Bernoulli Polynomials are defined by the generating
relation

wt(xt)

(29)

t
& -1 [n 1 )

Defining Hahn-Bernoulli numbers as

wt(t)_l kZ‘ kwq[n] |’

clearly

B (0;w,q) = kwq

The explicit form of the Hahn-Bernoulli polynomials can be obtained from (29) and Cauchy product that
BIn{(x; w, Q) = Z [k] Bf(u 4 x)Z,;)k
k=0 L™ g
Definition 5.2. Hahn-Euler Polynomials The Hahn-Euler polynomials are defined by

“’f<t>+1 e (xt) = ZE (g [1" (0

Introducing the Hahn-Euler numbers E;! ;0

“’t(t)+1 Z kwq[n] 1

we clearly see that

E} 0 w,q) = E{fw,q.

The explicit form of the Hahn-Euler polynomials can be obtained from (30) and Cauchy product that

Eg(x/'wﬂ) = Z [k] kmq( )
q

k=0

Definition 5.3. Hahn-Genocchi Polynomials The Hahn-Genocchi polynomials are defined by

o (f) e (xt) = ZSGH(x w, q)[ T (31)

Defining the Hahn-Genocchi numbers G, | g by the generating relation

e

“’t(t)+1 Z kw‘i

it is clearly seen that

Gl (0;w,q) =

k w,q°
The explicit form of the Hahn-Genocchi polynomials can be obtained from (31) and Cauchy product that

Glx;w,q) =) [k] Gyl k.
q

k=0



M. A. Ozarslan, D. Malyali / Filomat 39:25 (2025), 8689-8709 8707

Definition 5.4. Twice Iterated Hahn-Bernoulli-Euler Polynomials Twice Iterated Hahn-Bernoulli-Euler Poly-
nomials represent a further extension and combination of the Hahn-Bernoulli and Hahn-Euler polynomials. We
introduce the Twice Iterated Hahn-Bernoulli-Euler polynomials by

t 2 YN -
[%‘”(t) - 1][64”(» v 1]eqt("t) = Lol o 2

n=0

Corollary 5.5. The Twice Iterated Hahn-Bernoulli-Euler polynomials B,EHE,%,]](X; w, q) have the representation

BEHLq(x/(U ‘1) ZZ[ ] [ ] n—k,w,q an(x)qw'

k=0 1=0

where

_ t _ 2 wt _ . ! t_]
BO= w1 FO= gy 400 = Ly

Proof. The proof follows from Theorem (2.2) and definitons (29) and (30). [J

Remark 5.6. More general Twice Iterated Hahn Bernoulli and Twice Iterated Hahn Euler polynomials can be defined

by

A(t)———— wf(t) e ut) = ZGBLZq(x , q)[ At (33)
and

AB——— wt(t) <xt>—2E w0 ] . (34)

respectively. Clearly

1. By setting A(t) = 1 in equation (33), we can derive equation (29).
2. By setting A(t) =1 in equation (34), we can derive equation (30).

3. If we take A(t) = "(t)+1 in (33), we can obtain the twice iterated Hahn-Bernoulli-Euler polynomials (32).

6. Conclusion

In this paper, we consider the TI Hahn Appell polynomials and prove an equivalence theorem for the
definition. We obtain their determinantal representation, recurrence relation and difference equation. As
an application of our main theorems, we state some results for the 2-orthogonal Hahn Appell polynomals
including determinantal form, explicit representation, reccurence relation and difference equation. We
further, introduce the Hahn-Euler, Hahn-Genocchi and twice iterated Hahn-Bernoulli-Euler polynomials.
We should mention that the r-iterated version can be considered through the generating relation

Ha(t)e("t(x Z A[’l(x ]

i=1

and the results of this paper can be extended for this new definition.
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