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Abstract. In the present paper, we deal with the general quantitative estimates for the differences of
recently defined composition positive linear operators (p.l.o.) by Gupta with the most representative
operators used in approximation theory. The differences of these composition operators with various other
available composition operators and Szász operators of Durrmeyer type have been studied. The estimates
for the differences of operators having:

• different basis functions but same functional

• different basis functions and different functionals

• same basis function but different functionals

are calculated. Further the theoretical results are verified using numerical examples. Moreover the quanti-
tative estimates in terms of weighted modulus of continuity have also been discussed.

1. Introduction

Positive linear operators have been a cornerstone in approximation theory, providing valuable tools for
approximating functions. Over the years, numerous p.l.o. have been introduced and extensively stud-
ied, offering a variety of methods for function approximation. Notable among these are the Baskakov,
Szász–Mirakyan, and Durrmeyer operators, each with their own distinct properties and applications.
Szász-Baskakov operators and genuine-Durrmeyer type operators have further enriched the landscape of
approximation theory.
Several recent contributions have expanded the theory of positive linear operators by introducing novel op-
erator classes and refining their approximation behavior. Aral et al. [4] contributed quantitative Korovkin-
type theorems, establishing rigorous estimates based on new moduli of continuity and functional inequal-
ities. Bustamante [5] focused on generalized Baskakov operators that reproduce affine functions and
presented weighted approximation results, thereby refining classical approximation techniques through
weight-adjusted operator constructions. Gupta and Gupta [10] studied convergence estimates for compo-
sition operators and provided error bounds that support function approximation in constructive settings.
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Gupta et al. [14] introduced semi-exponential Gauss–Weierstrass operators, enhancing the classical frame-
work by combining exponential-type kernels with Gaussian structures to improve approximation accuracy.
Özsaraç et al. [18] proposed a modified Mellin convolution operator and investigated its approximation
behavior through information potential, offering a bridge between operator theory and information mea-
sures. Lastly, Özsaraç [17] further developed Mellin-Gauss–Weierstrass operators in the Mellin–Lebesgue
space, addressing convergence in weighted function spaces with emphasis on Mellin analysis. Collectively,
these works offer a rich foundation for further investigations into operator differences, convergence theo-
rems, and structure-preserving modifications. These developments also provide essential groundwork for
analyzing the difference of positive linear operators, particularly in assessing how modifications in their
structure affect convergence and approximation behavior.

Such studies are crucial as they provide deeper insights into the behavior and performance of these op-
erators in various approximation scenarios. The work by [1] Acu and Raşa (2016) set the stage by offering
new estimates for the differences of p.l.o. Subsequent research by [3] Aral et al. (2019) and [7] Gupta (2020)
expanded on these ideas, examining the differences of operators with different basis functions and their
impact on approximation quality.
In this paper, we extend this line of enquiry by focusing on the general quantitative estimates for the
differences of recently defined composition p.l.o. by Gupta [9] with the most representative operators used
in approximation theory. Specifically, we study the differences of these composition operators with various
other available composition operators, as well as with classical operators such as the Szász–Mirakyan, and
Durrmeyer operators. Additionally, we explore the Kantorovich variant of composition operators.

Our investigation is structured around three primary scenarios:

1. Different basis functions but same functional: We explore the differences of operators that utilize
different basis functions while maintaining the same functional.

2. Different basis functions and different functionals: We analyze the differences between operators that
differ in both their basis functions and functionals.

3. Same basis function but different functionals: We calculate the estimates for the differences of operators
that share the same basis function but employ different functionals.

To validate our theoretical results, we provide numerical examples demonstrating the practical implications
of our estimates. Furthermore, we discuss the quantitative estimates in terms of the weighted modulus of
continuity, offering a comprehensive view of the behavior of these operators under different conditions.
This study aims to contribute to the ongoing research in approximation theory by providing a detailed
analysis of the differences between various positive linear operators, thereby enhancing our understanding
of their capabilities and limitations in function approximation.

Studying the differences of operators, even after individual operators have been extensively studied, of-
fers several compelling reasons for further investigation. Here are additional solid reasons why studying
operator differences is valuable:

• Sensitivity Analysis:- Analyzing the differences between operators helps in conducting sensitivity
analysis. Understanding how small variations or perturbations in the operators affect their outcomes
is crucial for assessing the robustness and stability of mathematical models and algorithms.

• Error Propagation:- Studying operator differences provides insights into error propagation mecha-
nisms. By examining how errors in the input functions propagate through the operators and manifest
in the output, researchers can better understand the overall error behavior of computational methods.

• Inverse Problems:- By studying how differences in operators impact the solutions of inverse problems,
researchers can develop more effective regularization techniques and improve the accuracy of inverse
problem solutions.
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• Function Space Characterization:- Analyzing operator differences contributes to the characterization
of function spaces. By studying how operators behave differently on various function spaces, re-
searchers can gain a deeper understanding of the properties and structures of function spaces under
different operators.

• Algorithm Verification:- By comparing the outcomes of different operators on test functions or data
sets, researchers can verify the correctness of algorithms and ensure their reliability in practical
applications.

• Optimal Operator Selection:- Understanding the differences between operators helps in selecting the
most suitable operator for a given problem or application. By comparing the performance of different
operators through their differences, researchers can make informed decisions on the optimal choice
of operator.

• Regularization Techniques:- Analysis of operator differences is valuable for developing and refining
regularization techniques. By studying how differences in operators affect regularization methods,
researchers can enhance the regularization process and improve the stability and accuracy of solutions.

• Functional Analysis Insights:- By examining how operators interact and differ in their actions on
functions, researchers can deepen their understanding of functional spaces, operators, and related
mathematical structures.

• Interpolation and Approximation:- By analyzing how differences in operators impact interpolation
schemes and approximation methods, researchers can refine these techniques and enhance their
effectiveness in function reconstruction.

In conclusion, studying operator differences offers a rich source of information for sensitivity analysis, error
propagation, inverse problems, function space characterization, algorithm verification, optimal operator
selection, regularization techniques, functional analysis insights, and interpolation and approximation
theory. It plays a crucial role in advancing mathematical analysis, computational mathematics, and various
applied fields where operators are fundamental components of mathematical models and algorithms.
With the aid of Laguerre polynomials, Sucu et al. [19] established new discrete operators, constructing a
new series of p.l.o. that generalizes Szász operators. The operators are defined for x in [0,∞), α > −1 and
n ∈N as:

(Gαn f )(x) = e
−nx

2 2−α−1
∞∑

k=0

2−kLαk

(
−nx

2

)
f
(

k
n

)
. (1)

The modified Laguerre polynomials, denoted as Lαm(−x), are specified by means of confluent hypergeometric
series as:

Lαm(−x) :=
(α + 1)m

m! 1F1(−m;α + 1;−x), α > −1,

here (α)0 = 1 and (α)m = α(α + 1)...(α + m − 1). Also, Lαm(−y) can be expanded alternatively as:
m∑

s=0

(α +m)!
(α + s)!s!(m − s)!

ys and 1F1(−m;α + 1;−x) is given by:
m∑

s=0

(−m)s (−x)s

(α + 1)s s!
.

As defined in [15], we take Post-Widder operators as:

(Pn f )(x) :=
nn

xn
1
Γ(n)

∫
∞

0
e−nt/xtn−1 f (t)dt. (2)

Gupta defined composition operators in [9] given by:

(Mα
n f )(x) := (Pn ◦ Gαn f )(x). (3)
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Another representation of Mα
n is given by Theorem 4 in [9] as:

(Mα
n f )(x) =

1
(x + 2)n

∞∑
k=0

1
2α+k−n+1

f
(

k
n

)(
α + k

k

)
2F1

(
− k,n;α + 1;

−x
x + 2

)
, (4)

where 2F1

(
− k,n;α + 1; −x

x+2

)
=

k∑
m=0

(−k)m (n)m

(α + 1)m m!

( −x
x + 2

)m
.

Considering the compact form of the above operators as:

(Mα
n f )(x) =

∞∑
k=0

Bn,kF( f ), (5)

where Bn,k =
1

(x + 2)n

∞∑
k=0

1
2α+k−n+1

(
α + k

k

)
2F1

(
− k,n;α + 1;

−x
x + 2

)
and F( f ) = f

(
k
n

)
.

The integral operators due to Rathore (see [8]) are defined by:

(Wn f )(x) =
nnx

Γ(nx)

∫
∞

0
e−nttnx−1 f (t)dt. (6)

Operators Oαn as mentioned in [9] are defined by:

(Oαn f )(x) := (Wn ◦ Gαn f )(x). (7)

Theorem 7 in [9] gives an alternative representation of the above mentioned operators as:

(Oαn f )(x) =
∞∑

k=0

1
2α+k+nx+1

f
( k
n

)(α + k
k

)
2F1

(
nx, α + k + 1;α + 1;

−1
4

)
. (8)

Considering the compact form of the above operators as:

(Oαn f )(x) =
∞∑

k=0

Pn,k G( f ), (9)

where Pn,k =

∞∑
k=0

1
2α+k+nx+1

(
α + k

k

)
2F1

(
nx, α + k + 1;α + 1;

−1
4

)
and G( f ) = f

(
k
n

)
.

One of the most popular p.l.o are Szász-Mirakyan [20] operators:

(Un f )(r) = e−nr
∞∑

k=0

(nr)k

k!
f
(

k
n

)
. (10)

Mazhar and Totik [3] introduced a modification of Szász operators of Durrmeyer type; these are called
Szász-Durrmeyer operators and are defined as follows:

(Sn f )(x) =
∞∑

k=0

Sk(nx) I( f ), (11)

here Sk(t) = (t)k

k! e−t and I( f ) = n
∫
∞

0
Sk(nt) f (t)dt.
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Gupta [9] recently worked in a similar direction in 2023 by introducing four new operators that are
centered on modified Laguerre polynomials and further extended the work of Sucu et al. [19]. This study
is primarily concerned with analyzing the approximation results of the operators listed below:

(Qαn f )(x) := (Sn ◦ Gαn f )(x). (12)

According to Theorem 9 in [9], Qαn can be written as:

(Qαn f )(x) = I0

(
2
√

2nx
√

3

) ∞∑
k=0

f
(

k
n

)
e−nx

2α+k

Lαk

(
−1
3

)
3
. (13)

Here I0(z) is modified Bessel’s function of first kind, Sn and Gαn are given by equations (11) and (1) respec-
tively.
Considering the compact form of the above operators as:

(Qαn f )(x) =
∞∑

k=0

An,k H( f ), (14)

where An,k = I0

(
2
√

2nx
√

3

) ∞∑
k=0

e−nx

2α+k

Lαk

(
−1
3

)
3

and H( f ) = f
(

k
n

)
.

Lemma 1.1. First few moments of the operators Mα
n are given by:

(i) (Mα
ne0)(x) = 1;

(ii) (Mα
ne1)(x) = x +

1 + α
n

;

(iii) (Mα
ne2)(x) = x2 +

3 + 4α + α2 + 5nx + 2αnx + nx2

n2 ;

(iv) (Mα
ne3)(x) = x3 +

1
n3

[
13 + 21α + 9α2 + α3 + 31nx + 21αnx + 3α2nx + 12nx2 + 3αnx2

+ 12n2x2 + 3αn2x2 + 2nx3 + 3n2x3

]
;

(v) (Mα
ne4)(x) = x4 +

1
n4

[
75 + 138α + 78α2 + 16α3 + α4 + 233nx + 208αnx + 54α2nx + 4α3nx

+ 133nx2 + 60αnx2 + 6α2nx2 + 133n2x2 + 60αn2x2 + 6α2n2x2 + 44nx3 + 8αnx

+ 66n2x3 + 12αn2x3 + 22n3x3 + 4αn3x3 + 6nx4 + 11n2x4 + 6n3x4
]
;

(vi) (Mα
ne6)(x) = x6 +

1
n6

[
(4683 + 10208α + 7845α2 + 2750α3 + 465α4 + 36α5 + α6 + 21305nx

+ 25986αnx + 11415α2nx + 2240α3nx + 195α4nx + 6α5nx + 19921nx2

+ 15180αnx2 + 3975α2nx2 + 420α3nx2 + 15a4nx2 + 19921n2x2 + 15180αn2x2

+ 3975α2n2x2 + 420α3n2x2 + 15α4n2x2 + 13060nx3 + 6180anx3 + 900α2nx3

+ 40α3nx3 + 19590n2x3 + 9270αn2x3 + 1350α2n2x3 + 60α3n2x3 + 6530n3x3

+ 3090αn3x3 + 450α2n3x3 + 20α3n3x3 + 5340nx4 + 1440αnx4 + 90α2nx4
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+ 9790n2x4 + 2640αn2x4 + 165α2n2x4 + 5340n3x4 + 1440αn3x4 + 90α2n3x4

+ 890n4x4 + 240αn4x4 + 15α2n4x4 + 1224nx5 + 144αnx5 + 2550n2x5 + 300αn2x5

+ 1785n3x5 + 210αn3x5 + 510n4x5 + 60αn4x5 + 51n5x5 + 6αn5x5 + 120nx6

+ 274n2x6 + 225n3x6 + 85n4x6 + 15n5x6)
]
.

Lemma 1.2. First few moments of the operators Oαn are given by:

(i) (Oαne0)(x) = 1;

(ii) (Oαne1)(x) = x +
1 + α

n
;

(iii) (Oαne2)(x) = x2 +
3 + 4α + α2 + 6nx + 2αnx

n2 ;

(iv) (Oαne3)(x) = x3 +
13 + 21α + 9α2 + α3 + 45nx + 24αnx + 3α2nx + 15n2x2 + 3αn2x2

n3 ;

(v) (Oαne4)(x) = x4 +
1
n4

[
75 + 138α + 78α2 + 16α3 + α4 + 416nx + 276αnx + 60α2nx + 4α3nx

+ 210n2x2 + 72αn2x2 + 6α2n2x2 + 28n3x3 + 4αn3x3

]
;

(vi) (Oαne6)(x) = x6 +
1
n6

[
(4683 + 10208α + 7845α2 + 2750α3 + 465α4 + 36α5 + α6 + 60970nx

+ 48930αnx + 16380α2nx + 2700α3nx + 210α4nx + 6α5nx + 52125n2x2

+ 27390αn2x2 + 5490α2n2x2 + 480α3n2x2 + 15α4n2x2 + 13880n3x3 + 4740αn3x3

+ 540α2n3x3 + 20α3n3x3 + 1485n4x4 + 300αn4x4 + 15α2n4x4 + 66n5x5 + 6αn5x5)
]
.

Lemma 1.3. First few moments of the operators Qαn are given by:

(i) (Qαne0)(x) = 1;

(ii) (Qαne1)(x) = x +
2 + α

n
;

(iii) (Qαne2)(x) = x2 +
10 + 6α + α2 + 9nx + 2αnx

n2 ;

(iv) (Qαne3)(x) = x3 +
74 + 48α + 12α2 + α3 + 97nx + 33αnx + 3α2nx + 21n2x2 + 3αn2x2

n3 ;

(v) (Qαne4)(x) = x4 +
1
n4

[
730 + 490α + 144α2 + 20α3 + α4 + 1257nx + 520αnx + 78α2nx

+ 4α3nx + 403n2x2 + 96αn2x2 + 6α2n2x2 + 38n3x3 + 4αn3x3

]
;

(vi) (Qαne6)(x) = x6 +
1
n6

[
(133210 + 91574α + 30270α2 + 5950α3 + 690α4 + 42α5 + α6 + 338889nx

+ 168966αnx + 36855α2nx + 4280α3nx + 255α4nx + 6α5nx + 178771n2x2

+ 63870αn2x2 + 9105α2n2x2 + 600α3n2x2 + 15α4n2x2 + 33370n3x3 + 8130αn3x3

+ 690α2n3x3 + 20α3n3x3 + 2615n4x4 + 390αn4x4 + 15α2n4x4 + 87n5x5 + 6αn5x5)
]
.
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We now move onto the difference of positive linear operators that has been an active area of research
since last few years. Aral-Inoan-Raşa [3], Gupta et al. [7, 11, 12], Gupta-Tachev [21] discovered some
interesting results on difference of operators. The operators involved are usually on continuous functions
defined on real intervals and we consider the following weighted modulus of continuity:

Ω( f , δ) = sup
0≤h<δ, x∈[0,∞)

| f (x + h) − f (x)|
(1 + h2)(1 + x2)

.

Further C̃2[0,∞) denotes the closed subspace of C2[0,∞) for which lim
n→∞

| f (x)|
(1 + x2)

< C for some constant C

and ||.||2 = sup
x∈[0,∞)

| f (x)|
(1 + x2)

.

Theorem 1.4. [7] Let f ∈ C2[0,∞) with f ′′ ∈ C̃2[0,∞). Then, for any two p.l.o. X and Y, we have

|(X − Y)( f , x)| ≤
1
2
|| f ′′||2(β1(x) + β2(x)) + 8Ω( f ′′, δ1)(1 + β1(x))

+ 8Ω( f ′′, δ2)(1 + β2(x)) + 16Ω( f , δ3)(γ1(x) + 1)
+ 16Ω( f , δ4)(γ2(x) + 1),

where

β1(x) =
∞∑

k=0

Xn,k(1 + Fn(e1)2)TFn( f )
2 , β2(x) =

∞∑
k=0

Yn,k(1 + Gn(e1)2)TGn( f )
2 ,

δ4
1(x) =

∞∑
k=0

Xn,k(1 + Fn(e1)2)TFn( f )
6 , δ4

2(x) =
∞∑

k=0

Yn,k(1 + Gn(e1)2)TGn( f )
6 ,

δ4
3(x) =

∞∑
k=0

Xn,k(Fn(e1) − x)4, δ4
4(x) =

∞∑
k=0

Yn,k(Gn(e1) − x)4,

γ1(x) =
∞∑

k=0

Xn,k(1 + Fn(e1) − x)2, γ2(x) =
∞∑

k=0

Yn,k(1 + Gn(e1) − x)2.

and Xn,k, Yn,k are the basis functions of X and Y, Fn, Gn are the functionals respectively, er(t) = tr, r = 0, 1, 2, ...,TFn
r =

Fn[e1 − Fn(e1)]r, r ∈N.We consider here that δ1(x) ≤ 1, δ2(x) ≤ 1, δ3(x) ≤ 1, δ4(x) ≤ 1.

2. Difference of operators/Quantitative Estimates

We compute the magnitude of difference of the two operators having the different basis functions. As
an application of Theorem 1 in [7] , we have the following quantitative estimates for the difference between
the operators in case 1 and case 2.

Case 1: Different basis functions but same functional.
We consider the difference of Mα

n and Oαn , that utilize different basis functions while maintaining the same
functional F( f ) = G( f ) = k

n .

Remark 2.1. We have F(e1) = k
n and for any r ∈N, we have by simple calculations

TF
r := F[e1 − F(e1)]r = 0.

Remark 2.2. We have G(e1) = k
n and for any r ∈N, we have by simple calculations

TG
r := G[e1 − G(e1)]r = 0.



H. Kaur, M. R. Goyal / Filomat 39:25 (2025), 8709–8723 8716

Theorem 2.3. Let f ∈ C2[0,∞) with f ′′ ∈ C̃2[0,∞). Then for Mα
n and Oαn

|(Mα
n −Oαn)( f , x)| ≤ 16Ω( f , δ3)(γ1(x) + 1) + 16Ω( f , δ4)(γ2(x) + 1), (15)

where

δ4
3(x) =

∞∑
k=0

Bn,k(F(e1) − x)4, δ4
4(x) =

∞∑
k=0

Pn,k(G(e1) − x)4,

γ1(x) =
∞∑

k=0

Bn,k(1 + F(e1) − x)2, γ2(x) =
∞∑

k=0

Pn,k(1 + G(e1) − x)2,

and er(t) = tr, r = 0, 1, 2, .... We consider here that δ3(x) ≤ 1, δ4(x) ≤ 1.

Proof. Following Theorem 1.4, Remark 2.1 and Remark 2.2, we get

β1(x) = β2(x) = δ1(x) = δ2(x) = 0.

Using Lemma 1.1 and Lemma 1.2

δ4
3(x) = (Mα

ne6)(x) − 4x(Mα
ne5)(x) + (6x2 + 1)(Mα

ne4)(x) − 4x(1 + x2)(Mα
ne3)(x) + x2(x2 + 6)(Mα

ne2)(x) − 3x4

=

∞∑
k=0

Bn,k(F(e1) − x)4,

δ4
4(x) = (Oαne6)(x) − 4x(Oαne5)(x) + (6x2 + 1)(Oαne4)(x) − 4x(1 + x2)(Oαne3)(x) + x2(x2 + 6)(Oαne2)(x) − 3x4

=

∞∑
k=0

Pn,k(G(e1) − x)4,

γ1(x) = 1 + x2 +
3 + 4α + α2 + 5nx + 2αnx + nx2

n2

=

∞∑
k=0

Bn,k(1 + F(e1) − x)2,

γ2(x) = 1 + x2 +
3 + 4α + α2 + 6nx + 2αnx

n2

=

∞∑
k=0

Pn,k(1 + G(e1) − x)2.

For another example under this case, we consider the difference of Oαn and Qαn , that utilize different basis
functions while maintaining the same functionals G( f ) = H( f ) = k

n .

Remark 2.4. We have H(e1) = k
n and for any r ∈N, we have by simple calculations

TH
r := H[e1 −H(e1)]r = 0.
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Theorem 2.5. Let f ∈ C2[0,∞) with f ′′ ∈ C̃2[0,∞). Then for Oαn and Qαn

|(Oαn −Qαn)( f , x)| ≤ 16Ω( f , δ3)(γ1(x) + 1) + 16Ω( f , δ4)(γ2(x) + 1), (16)

where

δ4
3(x) =

∞∑
k=0

Pn,k(G(e1) − x)4, δ4
4(x) =

∞∑
k=0

An,k(H(e1) − x)4,

γ1(x) =
∞∑

k=0

Pn,k(1 + G(e1) − x)2, γ2(x) =
∞∑

k=0

An,k(1 +H(e1) − x)2,

and er(t) = tr, r = 0, 1, 2, .... We consider here that δ3(x) ≤ 1, δ4(x) ≤ 1.

Proof. Here F(e1)2 =
(

1+α
n + x

)2
.

Following Theorem 1.4, Remark 2.2 and Remark 2.4 we get β1(x) = β2(x) = δ1(x) = δ2(x) = 0.
Following Lemma 1.2 and Lemma 1.3

δ4
3(x) = (Oαne6)(x) − 4x(Oαne5)(x) + (6x2 + 1)(Oαne4)(x) − 4x(1 + x2)(Oαne3)(x) + x2(x2 + 6)(Oαne2)(x) − 3x4

=

∞∑
k=0

Pn,k(G(e1) − x)4,

δ4
4(x) = (Qαne6)(x) − 4x(Qαne5)(x) + (6x2 + 1)(Qαne4)(x) − 4x(1 + x2)(Qαne3)(x) + x2(x2 + 6)(Qαne2)(x) − 3x4

=

∞∑
k=0

An,k(H(e1) − x)4,

γ1(x) = 1 + x2 +
3 + 4α + α2 + 6nx + 2αnx

n2

=

∞∑
k=0

Pn,k(1 + G(e1) − x)2,

γ2(x) = 1 + x2 +
10 + 6α + α2 + 9nx + 2αnx

n2

=

∞∑
k=0

An,k(1 +H(e1) − x)2.

Case 2: Different basis functions and different functionals.
Considering the difference of Oαn and Sn, that utilize different basis functions

Pn,k =

∞∑
k=0

1
2α+k+n+1

(
α + k

k

)
2F1

(
nx, α + k + 1;α + 1;

−1
4

)
, Sk(t) = (t)k

k! e−t and different functionals G( f ) = k
n ,

I( f ) = n
∫
∞

0
Sk(nt) f (t)dt respectively.

Remark 2.6. We have I(e1) = k+1
n and for any r ∈N, we have by simple calculations

TI
2 := I[e1 − I(e1)]2 =

k + 1
n2 ,
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TI
6 := I[e1 − I(e1)]6 =

µ6

n6 ,

where µ6 = (k + 6)(k + 5)(k + 4)(k + 3)(k + 2)(k + 1).

Theorem 2.7. Let f ∈ C2[0,∞) with f ′′ ∈ C̃2[0,∞). Then for Oαn and Sn

|(Oαn − Sn)( f , x)| ≤
1
2
|| f ′′||2β2(x) + 8Ω( f ′′, δ2)(1 + β2(x))

+ 16Ω( f , δ3)(γ1(x) + 1) + 16Ω( f , δ4)(γ2(x) + 1),

where

β2(x) =
∞∑

k=0

Sk(1 + I(e1)2)TI( f )
2 , δ4

2(x) =
∞∑

k=0

Sk(1 + I(e1)2)TI( f )
6 ,

δ4
3(x) =

∞∑
k=0

Pn,k(G(e1) − x)4, δ4
4(x) =

∞∑
k=0

Sk(I(e1) − x)4,

γ1(x) =
∞∑

k=0

Pn,k(1 + G(e1) − x)2, γ2(x) =
∞∑

k=0

Sk(1 + I(e1) − x)2.

and er(t) = tr, r = 0, 1, 2, ...,TI
r = I[e1 − I(e1)]r, r ∈N.We consider here that δ2(x) ≤ 1, δ3(x) ≤ 1, δ4(x) ≤ 1.

Proof. Following Theorem 1.4 and Remark 2.2, we get β1(x) = δ1(x) = 0.
From Remark 2.6, we have

β2(x) =
k + 1

n2

(
1 +

n2x2 + 3nx + 1
n2

)
=

∞∑
k=0

Sk(1 + I(e1)2)TI( f )
2 ,

δ4
2(x) =

(k + 6)(k + 5)(k + 4)(k + 3)(k + 2)(k + 1)
n6

(
1 +

n2x2 + 3nx + 1
n2

)
=

∞∑
k=0

Sk(1 + I(e1)2)TI( f )
6 ,

δ4
3(x) = (Oαne6)(x) − 4x(Oαne5)(x) + (6x2 + 1)(Oαne4)(x) − 4x(1 + x2)(Oαne3)(x) + x2(x2 + 6)(Oαne2)(x) − 3x4

∞∑
k=0

Pn,k(G(e1) − x)4,

δ4
4(x) = (Sne6)(x) − 4x(Sne5)(x) + (6x2 + 1)(Sne4)(x) − 4x(1 + x2)(Sne3)(x) + x2(x2 + 6)(Sne2)(x) − 3x4

=

∞∑
k=0

Sk(I(e1) − x)4,

γ1(x) = 1 + x2 +
3 + 4α + α2 + 6nx + 2αnx

n2

=

∞∑
k=0

Pn,k(1 + G(e1) − x)2,
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γ2(x) = 1 + x2 +
4x
n
+

2
n2

=

∞∑
k=0

Sk(1 + I(e1) − x)2.

Here (Snei)(x) are the moments of Szász-Durrmeyer operators as mentioned in [13].

Defining New Operator Oαn-Kantorovich: Defining the new operatorKαn :

(Kαn f )(x) =
∞∑

k=0

Pn,k J( f ), (17)

where Pn,k is the basis function of the operator Oαn and J( f ) = n
∫ k+1

n

k
n

f (t)dt.

Considering the difference of Oαn and Kαn , that utilize same basis functions

Pn,k =

∞∑
k=0

1
2α+k+n+1

(
α + k

k

)
2F1

(
nx, α + k + 1;α + 1;

−1
4

)
, and different functionals

G( f ) = k
n , J( f ) = n

∫ k+1
n

k
n

f (t)dt. respectively.

Case 3: Same basis function but different functionals.

Remark 2.8. We have J(e1) =
2k + 1

2n
and for any r ∈N, we have by simple calculations

TJ
2 := J[e1 − J(e1)]2 =

1
12n2 ,

TJ
6 := J[e1 − J(e1)]6 =

1
448n6 .

LetPn,k ∈ C[0,∞),Pn,k ≥ 0, k ∈ K,where K be a set of non-negative integers such that
∞∑

k=0

Pn,k = e0. Then for

each k ∈ K, let G( f ) : E[0,∞)→ R and J( f ) : E[0,∞)→ Rwhere E[0,∞) is a space of real-valued continuous
functions on [0,∞) containing the polynomials. Eb[0,∞) will be the space of all f ∈ E[0,∞) with

|| f || := sup | f (x) : x ∈ [0,∞)| < ∞.

Let D[0,∞) be the set of all f ∈ E[0,∞) for which
∞∑

k=0

Pn,k G( f ) ∈ C[0,∞) and

∞∑
k=0

Pn,k J( f ) ∈ C[0,∞).

Theorem 2.9. [1] Consider Oαn andKαn , defined for f ∈ D[0,∞) with f ′′ ∈ Eb[0,∞). Then

|(Oαn −K
α
n )( f , x)| ≤

1
2
|| f ′′||β(x) + ω1( f , δ). (18)

where

β(x) =
∞∑

k=0

Pn,k

(
TG( f )

2 + TJ( f )
2

)
and ω1 is first order modulus of smoothness with

δ := sup |G(e1) − J(e1)|.
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Proof.

|(Oαn −K
α
n )( f , x)| ≤

∞∑
k=0

Pn,k|G( f ) − J( f )|

≤

∞∑
k=0

Pn,k

(
|G( f ) − f (G(e1))| + |J( f ) − f (J(e1))| + | f (G(e1)) − f (J(e1))|

)
≤

1
2

∞∑
k=0

Pn,k

[(
TG( f )

2 + TJ( f )
2

)
|| f ′′|| + ω1( f , |G(e1) − J(e1)|)

]
≤

1
2
|| f ′′||β(x) + ω1( f , δ).

3. Voronovskaya type inequalities for the difference of two positive linear operators

In this section, we investigate the quantitative Voronovskaya theorem for the difference of operators.

Remark 3.1. If µOαn
m represents the mth central moments of the operator Oαn where, µOαn

m = (Oαn(t − x)m; x) then,

µOαn
0 = 1, µOαn

1 = 0,

µOαn
2 =

x(1 − x) + (1 + α)
n

, µOαn
3 =

(1 − 2x)(1 + α)
n2 ,

µOαn
4 =

x2(1 − x2) + 6x(1 − x)(1 + α) + 3(1 + α)(2 + α)
n2 ,

µOαn
5 =

(1 − 2x)(1 − x)(1 + α)
n3 , µOαn

6 =
(1 + 6x(1 − x) + 3x2)(1 + α)

n4 .

Remark 3.2. [6] If µUn
m represents the mth central moments of the operator Un where, µUn

m = (Un(t − x)m; x) then,

µUn
0 = 1, µUn

1 = 0,

µUn
2 =

x
n
, µUn

3 =
x
n2 ,

µUn
4 =

3x2

n2 +
x
n3 , µUn

5 =
10x2

n3 +
x
n4 ,

µUn
6 =

15x3

n3 +
25x2

n4 +
x
n5 .

Theorem 3.3. Let f ∈ C2[0,∞) with f ′′ ∈ C̃2[0,∞). For Oαn and Un such that(
Oαn −Un

)(
(t − x)i; x

)
= 0 for i = 0, 1, the following inequality holds true:

∣∣∣∣(Oαn −Un)( f (t); x)
∣∣∣∣ ≤ | f ′′(x)|

2
x(2 − x) + 1 + α

n
+ 16(1 + x2)

x(2 − x) + 1 + α
n

(19)

×Ω

(
f ′′;

(
x

n4(1 + α)
+

(1 + 6x + 22x2)
n3 +

15x3

n2(1 + α)

)1/4 )
.

Proof. By Taylor’s series, we have

(Oαn −Un)( f (t); x) =
f ′′(x)

2!
(Oαn −Un)

(
(t − x)2; x

)
+ (Oαn −Un)

(
R2( f ; t, x); x

)
,
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where R2( f ; t, x) is given by

R2( f ; t, x) =
(t − x)2

2

(
f ′′(ξ) − f ′′(x)

)
, ξ ∈ (t, x). (20)

Using
(
Oαn −Un

)(
(t − x)i; x

)
= 0 for i = 0, 1, and the equation (2.5) at page 28 in [2] we have:∣∣∣∣(Oαn −Un

)
( f (t); x)

∣∣∣∣
≤
| f ′′(x)|

2!
(Oαn +Un)

(
(t − x)2; x

)
+ 8(1 + x2)Ω( f ′′; δ)

×

{(
Oαn +Un

)(
|t − x|2 +

|t − x|6

δ4 ; x
)}

≤
| f ′′(x)|

2!
(Oαn +Un)

(
(t − x)2; x

)
+ 8(1 + x2)Ω( f ′′; δ)(Oαn +Un)

(
(t − x)2; x

)(
1 +

(Oαn +Un)
(
(t − x)6; x

)
δ4(Oαn +Un)

(
(t − x)2; x

) ).
Choosing δ =

(
(Oαn +Un)((t − x)6; x)
(Oαn +Un)((t − x)2; x)

)1/4

and using µ(Oαn+Un)
m (x) = (Oαn +Un)((t − x)m; x):

|(Oαn −Un)( f (t); x)| ≤
f ′′(x)

2!
µOαn+Un

2 (x) + 16(1 + x2)µOαn+Un

2 (x)Ω
(

f ′′;
(
µOαn+Un

6 (x)

µOαn+Un
2 (x)

)1/4)
. (21)

From Remark 3.1 and Remark 3.2, we calculate

µOαn+Un

2 (x) =
x(2 − x) + 1 + α

n
,

µOαn+Un

6 (x) =
x
n5 +

1 + 6x + 22x2

n4 +
(1 + 6x − 3x2)α

n4 +
15x3

n3 .

Here x(2 − x) + 1 + α ≥ (1 + α) for x ∈ [0, 1]. Hence

µOαn+Un

6 (x)

µOαn+Un
2 (x)

≤
x

n4(x(2 − x) + 1 + α)
+

(1 + 6x + 22x2)
n3(x(2 − x) + 1 + α)

+
(1 + 6x − 3x2)α

n3(x(2 − x) + 1 + α)
+

15x3

n2(x(2 − x) + 1 + α)

µOαn+Un

6 (x)

µOαn+Un
2 (x)

≤
x

n4(1 + α)
+

(1 + 6x + 22x2)
n3 +

15x3

n2(1 + α)
.

Therefore∣∣∣∣(Oαn −Un)( f (t); x)
∣∣∣∣ ≤ | f ′′(x)|

2
x(2 − x) + 1 + α

n
+ 16(1 + x2)

x(2 − x) + 1 + α
n

×Ω

(
f ′′;

(
x

n4(1 + α)
+

(1 + 6x + 22x2)
n3 +

15x3

n2(1 + α)

)1/4 )
.
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4. Numerical results

This section deals with some numerical examples to validate the theoretical results.
Example 1 Let f (x) = x4

− 5.5x3 + 10.5x2
− 5x for which the convergence of the difference of operators

Eαn( f , x) = |(Qαn − Oαn)( f , x)| has to be shown. The impact of varying α is demonstrated in Figure 1 for the
function f , Qαn and Oαn for n = 100. For n ∈ {100, 120, 150}, the absolute values of the differences are illus-
trated in Figure 2.

Q100
2 O100

10.5 f

1 2 3 4

-3

-2

-1

0

1

2

3

Figure 1: Approximation process by Qαn and Oαn for n = 100.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

E150
0.5 E120

3 E100
10

Figure 2: Difference of operators Eαn for n ∈ {100, 120, 150} and α ∈ {0.5, 3, 10}.
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[18] F. Özsaraç, A. M. Acu, A. Aral, I. Raşa, On the modification of Mellin convolution operator and its associated information potential,

Numer. Funct. Anal. Optim. 44 (2023), 1194–208.
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