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Abstract. In this paper, we introduce and study convex fuzzy cones of hypervector spaces (or simply
hyperspaces) as a generalization of both vector spaces and fuzzy vector spaces. We present a new char-
acterization of fuzzy subhyperspaces as decompositions of special subhyperspaces. Moreover, we explore
convex cones spanned by non-empty subsets of hypervector spaces over the real numbers field. We use
fuzzy convex cones to generate fuzzy subhyperspaces from fuzzy subsets. That is, for a given convex fuzzy
cone µ on a real hypervector space V, we determine the smallest fuzzy subhyperspace of V containing µ
and the largest fuzzy subhyperspace of V contained in µ.

1. Introduction

Uncertainty is an inherent aspect of real-life phenomena. In nearly every problem, some degree of
uncertainty naturally arises. Classical set theory is designed to handle only deterministic situations, and
therefore, it is inadequate for dealing with vague or imprecise information.

To address this limitation, the concept of fuzzy sets was introduced by Zadeh [28] in 1965 as a powerful
mathematical tool for modeling uncertainty. Fuzzy sets deal exclusively with the grade of membership,
representing partial belonging of elements to sets. They serve as a natural generalization of classical (crisp)
sets. In fact, classical sets can be seen as special cases of fuzzy sets under specific membership assignments.
This generalization explains the widespread applicability and popularity of fuzzy set theory compared to
classical set theory.

Following Zadeh’s foundational work, researchers extended fuzzy set theory to algebraic structures.
Rosenfeld [22] was among the first to apply fuzzy set theory to groups, which opened the door to the
development of fuzzy algebraic systems. Since then, numerous studies have been conducted on fuzzy
algebraic structures ([19], [20], [23]). In particular, fuzzy vector spaces have been actively studied by
scholars such as Katsaras and Liu [15], Nanda [21], Malik and Mordeson [17], and Kumar [16].

Parallel to these developments, algebraic hyperstructures, originally introduced by Marty [18] in 1934,
have emerged as a generalization of classical algebraic systems. In a hyperstructure, the hyperoperation
between two elements yields a set instead of a single element. This approach enables the modeling of
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more flexible and non-deterministic mathematical systems, where operations are multi-valued rather than
strictly functional. Algebraic hyperstructure is an important field of study not only in mathematics, but
also in applied sciences such as physics, chemistry, biology, engineering, artificial intelligence, computer
science, social science and etc. (for more details see [7], [8], [10] and [27]).

A class of hypervector spaces, which is a specific type of algebraic hyperstructures, was introduced and
studied by Tallini [25] in 1990. These spaces extend classical vector spaces by allowing scalar multiplication
to result in sets of vectors rather than a single vector. This theory has been investigated by the authors
[2], [14] and Sedghi [24]. Especially, the authors in [3] introduced and studied dimensions of hypervector
spaces.

In recent years, researchers have sought to unify the concepts of fuzziness and algebraic hyperstructures
(for more details see [9]), leading to the development of fuzzy hypervector spaces. These structures integrate
the flexibility of fuzzy sets with the multivalued operations inherent in hyperstructures. In particular, the
notion of fuzzy hypervector spaces have been studied extensively in the works of Ameri ([1], [4], [5], [6])
and Dehghan ([11], [12]).

The aim of this paper is to study convex fuzzy cones in hypervector spaces. To this end, we first
show that the fuzzy subhyperspaces introduced by Ameri [1] admit an important decomposition into
special subhyperspaces, which are distinct from level subhyperspaces. We also investigate the relationship
between affine fuzzy subsets of hypervector spaces and fuzzy superhyperplanes. Subsequently, we explore
several properties of cones as special subsets of real hypervector spaces, including the characterization of
convex cones generated by non-empty subsets. Furthermore, we generalize the concept of convex cones
to the fuzzy subhyperspaces. In particular, Proposition 5.5, provides a characterization of convex fuzzy
cones in terms of their level subsets. Finally, for a given convex fuzzy cone µ in a finite dimensional real
hypervector space V, we determine the smallest fuzzy subhyperspace containing µ, and the largest fuzzy
subhyperspace contained in µ, as established in Theorems 5.8, and 5.9.

2. Preliminaries

In this section, we present several fundamental definitions and previously established results that will
be used throughout the paper.

Definition 2.1. [25] Let K be a field, (V,+) an Abelian group and let P∗(V) denote the collection of all non-empty
subsets of V. A hypervector space over K is defined as a quadruple (V,+, ◦,K), where “◦” is an external hyperoperation

◦ : K × V −→ P∗(V),

satisfying the following axioms for all a, b ∈ K and x, y ∈ V:
(H1) a ◦ (x + y) ⊆ a ◦ x + a ◦ y, right distributive law,
(H2) (a + b) ◦ x ⊆ a ◦ x + b ◦ x, left distributive law,
(H3) a ◦ (b ◦ x) = (ab) ◦ x,
(H4) a ◦ (−x) = (−a) ◦ x = −(a ◦ x),
(H5) x ∈ 1 ◦ x,

where in (H1), a ◦ x+ a ◦ y = {p+ q : p ∈ a ◦ x, q ∈ a ◦ y}. Similarly it is in (H2). Also in (H3), a ◦ (b ◦ x) =
⋃

t∈b◦x
a ◦ t.

V is called strongly right distributive, if we have equality in (H1). In a similar way we define the strongly left
distributive hypervector spaces. V is called strongly distributive, if it is strongly right and left distributive.

A non-empty subset W of V is called a subhyperspace of V, denoted by W ⩽ V, if W is itself a hypervector space
with the external hyperoperation on V, i.e. for all a ∈ K and x, y ∈W, x − y ∈W and a ◦ x ⊆W.

Example 2.2. [25] In (R2,+) define the external hyperoperation ◦ : R ×R2
−→ P∗(R2) by setting:

a ◦ x =
{

line ox if x , (0, 0),
{(0, 0)} if x = (0, 0).

Then (R2,+, ◦,R) is a hypervector space.
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Example 2.3. [4] In classical vector space (R3,+, .,R) we define the external hyperoperation ◦ : R×R3
−→ P∗(R3)

by a ◦ (x0, y0, z0) = l, where l is a line with the parametric equations:

l :


x = ax0,
y = ay0,
z = t.

Then V = (R3,+, ◦,R) is a strongly left distributive hypervector space and the z-axis is a subhyperspace of V.

In the sequel of this paper, V denotes a hypervector space over the field K, unless otherwise is specified.
Also, the zero of V is denoted by 0.

Definition 2.4. [1] A fuzzy subset µ of V, µ ∈ FS(V), is called a fuzzy subhyperspace of V, if for all a ∈ K and
x, y ∈ V, the following conditions are satisfied:

1) µ(x + y) ≥ µ(x) ∧ µ(y),
2) µ(−x) ≥ µ(x),
3)
∧

t∈a◦x
µ(t) ≥ µ(x).

Example 2.5. [12] Consider the hypervector space V = (R3,+, ◦,R) in Example 2.3. Define a fuzzy subset µ of V
by:

µ(x, y, z) =


t1 (x, y, z) ∈ {0} × {0} ×R,
t2 (x, y, z) ∈ (R × {0} ×R)\({0} × {0} ×R),
t3 otherwise,

where 0 ≤ t3 < t2 < t1 ≤ 1. Then µ is a fuzzy subhyperspace of V.

Theorem 2.6. [1] µ ∈ FS(V) is a fuzzy subhyperspace of V if and only if µα = {x ∈ V : µ(x) ≥ α} is a subhyperspace
of V, for all α ∈ Im µ. µα is called an α-level subhyperspace of V.

Definition 2.7. [5] Let µ, µ1, µ2 be fuzzy subsets of V and a ∈ K. We define µ1 +µ2 and a ◦µ to be the fuzzy subsets
of V, whose membership functions are given by:(

µ1 + µ2
)

(x) =
∨

x=x1+x2

(
µ1(x1) ∧ µ2(x2)

)
,

and

(a ◦ µ)(x) =


∨

x∈a◦t
µ(t) ∃t ∈ V; x ∈ a ◦ t,

0 otherwise.

3. A new characterization of fuzzy subhyperspaces

In this section, we present a novel structural characterization of fuzzy subhyperspaces as introduced
by Ameri [1]. Specifically, we demonstrate that such fuzzy subhyperspaces can be decomposed into a
sequence of nested special subhyperspaces, distinct from their level subhyperspaces. We also explore the
relationship between affine fuzzy subsets in hypervector spaces and fuzzy superhyperplanes.

A subset S of V is called linearly independent ([2]) if for every vectors v1, . . . , vn in S, and c1, . . . , cn ∈ K,
0 ∈ c1 ◦ v1 + · · · + cn ◦ vn, implies that c1 = · · · = cn = 0. S is called linearly dependent if it is not linearly
independent. A basis for V is a linearly independent subset of V such that spans V, i.e. V = ⟨S⟩, where

⟨S⟩ =

t ∈ V : t ∈
n∑

i=1

ai ◦ si, ai ∈ K, si ∈ S,n ∈N


= {t1 + · · · + tn : ti ∈ ai ◦ si, ai ∈ K, si ∈ S,n ∈N} .
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We say that V is finite-dimensional if it has a finite basis. If V is strongly left distributive, invertible (V is
said to be invertible if and only if u ∈ a ◦ v implies that v ∈ a−1

◦ u) and finite-dimensional, then every two
basis of V have the same cardinality. In this case the cardinal of any basis of V is called the dimension of
V and denoted by dim V. Note that some hypervector spaces V (some set W of vectors) may not have any
collection of linearly independent vectors. Such hypervector space (set) is called independentless. Clearly
if V is independentless, then V has not any basis and for such hypervector spaces dimension is not defined.

Lemma 3.1. Let V be finite-dimensional. If U and W are subhyperspaces of V such that U ⊊ W and dim W−dim U ⩾
2, then there exist subhyperspaces E1, . . . ,Ek of V, k = dim W − 1, such that U ⊊ E1 ⊊ · · · ⊊ Ek ⊊ W and
dim Ed = dim U + d, 1 ≤ d ≤ k.

Proof. Let β be a basis for U and x1 ∈ W \ U. Put E1 = ⟨β ∪ {x1}⟩. Then E1 is a subhyperspace of V
such that U ⊊ E1 ⊊ W and dim E1 = dim U + 1. If dim W = dim E1 + 1, then there is nothing to prove. If
dim W−dim E1 ≥ 2, then similarly by considering E2 = ⟨β∪{x1, x2}⟩, where x2 ∈W\E1, E2 is a subhyperspace
of V such that U ⊊ E1 ⊊ E2 ⊊ W and dim E2 = dim E1 + 1 = dim U + 2. By repeating the above, the proof is
completed.

The properties of affine subsets and affine fuzzy subsets of hypervector spaces have been studied ([12]). A
non-empty subset E of V is called affine if a ◦ x + (1 − a) ◦ y ⊆ E, for all x, y ∈ E, a ∈ K. It is clear that every
subhyperspace of V is an affine subset of V. A fuzzy subset µ of V is said to be affine if a◦µ+ (1− a)◦µ ⊆ µ,
for all a ∈ K.

Theorem 3.2. [12] Let V be a hypervector space over the field K. Then

1) every fuzzy subhyperspace of V is an affine fuzzy subset of V;
2) µ ∈ FS(V) is affine if and only if µα =

{
x ∈ V : µ(x) ≥ α

}
is affine, for all α ∈ [0, 1];

3) if V is strongly right distributive and µ is an affine fuzzy subset of V, such that µ(0) =
∨
t∈V
µ(t), then µ is a

fuzzy subhyperspace of V.
4) if V is strongly right distributive and µ ∈ FS(V), then µ is affine if and only if it is the translation of a fuzzy

subhyperspace ν of V, i.e. µ = ν + x0 for some x0 ∈ V, where (ν + x0)(x) = ν(x − x0).

Theorem 3.3. [2] Let V be invertible. Then for every v1, . . . , vn ∈ V, either v1, . . . , vn are linearly independent or for
some 1 ≤ j ≤ n, v j is in a linear combination of the others.

Theorem 3.4. Let V be invertible n-dimensional strongly right distributive and µ ∈ FS(V). Then µ is a fuzzy
subhyperspace of V if and only if there exist a sequence of nested subhyperspaces {0} = V0 ⊊ V1 ⊊ · · · ⊊ Vn = V of V
and α0, α1, . . . , αn ∈ [0, 1] such that dim Vi = di (0 ≤ i ≤ n), 0 ≤ d0 ≤ d1 ≤ · · · ≤ dn = n, 1 ≥ α0 ≥ α1 ≥ · · · ≥ αn ≥

0 and µ = α01V0 ∨ · · · ∨ αn1Vn .

Proof. Let µ = α01V0 ∨ · · · ∨ αn1Vn as stated above. Then every level subset of µ is a subhyperspace and so
is an affine subset of V. Thus by Theorem 3.2(2), µ is an affine fuzzy subset of V. Also,

µ(0) = (α01V0 ∨ . . . ∨ αn1Vn )(0)
= (α01V0 )(0) ∨ . . . ∨ (αn1Vn )(0)
= α0 ∨ . . . ∨ αn

= α0

=
∨
x∈V

µ(x).

Hence, by Theorem 3.2(3), µ is a fuzzy subhyperspace of V.
Conversely, let µ be a fuzzy subhyperspace of V. At first, we prove that µ can achieve at most n different
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values on V \ {0}. Suppose {x0, . . . , xn} ⊆ V \ {0} is not independentless and µ(x0) < µ(x1) < · · · < µ(xn). If
x0 ∈ ⟨x1, . . . , xn⟩, then x0 ∈ a′1 ◦ x1 + · · · + a′n ◦ xn, for some a′1, . . . , a

′
n ∈ K. By Definition 2.4, it follows that:

µ(x0) ≥
∧

t∈a′1◦x1+···+a′n◦xn

µ(t) ≥ µ(x1) ∧ · · · ∧ µ(xn),

which is impossible. Thus x0 < ⟨x1, . . . , xn⟩. Similarly, one can show that

x1 < ⟨x2, . . . , xn⟩, . . . , xn−1 < ⟨xn⟩.

Since all xi , 0, by Theorem 3.3, it follows that:

dim⟨x0, . . . , xn⟩ = 1 + dim⟨x1, . . . , xn⟩ = · · · = n + dim⟨xn⟩ = n + 1,

which is impossible, since dim V = n. Consequently, |Im µ| ≤ n + 1, µ achieves n values at vectors of V \ {0}
and the maximum is attained at 0.
Set µ(V) = {β0, . . . , βk}, where k ≤ n, βi > βi+1, 0 ≤ i ≤ k − 1. Put Wi = µβi , for any 0 ≤ i ≤ k. It is clear
that Wk = V. Then by Theorem 2.6, for all 0 ≤ i ≤ k, µβi is a subhyperspace of V, such that Wi ⊊ Wi+1 and
so dim Wi < dim Wi+1, 0 ≤ i ≤ k − 1. Now put dim Wi = di, 0 ≤ i ≤ k. Then 0 ≤ d0 ≤ d1 ≤ · · · ≤ dk = n.
For each 0 ≤ i ≤ k, suppose Vdi = Wi. Then by Lemma 3.1, for any d ∈ {0, . . . ,n} \ {d0, . . . , dk}, there exists
a subhyperspace Vd of dimension d such that the family {Vd}d∈{0,...,n} is nested, i.e. for all 0 ≤ d ≤ n − 1,
Vd ⊊ Vd+1. Now put

αd =


µ(0) = β0 d = d0
β1 d0 < d ≤ d1
...
βk dk−1 < d ≤ dn = n

Let x ∈ V. If d is the smallest integer such that x ∈ Vd, then x ∈ Wl+1 \Wl, for some 0 ≤ l ≤ k − 1, such that
dl < d ≤ dl+1. Thus βl+1 ≤ µ(x) < βl and so µ(x) = βl+1. On the other hand,

α01V0 (x) ∨ · · · ∨ αn1Vn (x) = αd1Vd (x) ∨ · · · ∨ αn1Vn (x) = αd ∨ · · · ∨ αn = αd = βl+1.

Thus the theorem is proved.

In the above decomposition of µ, n + 1 subhyperspace Vi are nested and some of these levels coincide, so
we can leave out those with the smaller dimension and keep the largest subhyperspace with the same level.
This gives the following formulation of representation theorem.

Corollary 3.5. The decomposition in Theorem 3.4, is minimal:
Let V be invertible n-dimensional strongly right distributive and µ ∈ FS(V). Then µ is a fuzzy subhyperspace of

V if and only if there exist nested subhyperspaces V0 ⊊ V1 ⊊ · · · ⊊ Vk = V of V, k ≤ n and α0, α1, . . . , αk ∈ [0, 1]
such that dim Vd < dim Vd+1, 0 ≤ d ≤ k− 1, α0 > α1 > · · · > αk and µ = α01V0 ∨ · · · ∨αk1Vk . In this decomposition
µ can not obtain with less components.

Definition 3.6. Let µ =
n∨

i=0
αi1Vi be a fuzzy subhyperspace of V. Then µ is called a fuzzy superhyperspace if and

only if dim Vn−1 = (dim V) − 1, i.e. there is a non-trivial (n − 1)-dimensional component in the decomposition of µ.
µ ∈ FS(V) is called a fuzzy superhyperplane if and only if it is the translation of some fuzzy superhyperspace.

Theorem 3.7. [13] Let V be invertible n-dimensional strongly left distributive and W ⩽ V such that dim W = d.
Then W is the intersection of (n − d) superhyperspaces in V (any subhyperspace of dimension n − 1 is called a
superhyperspace).
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Theorem 3.8. Let V be invertible n-dimensional strongly right distributive. Then every affine fuzzy subset µ of V
is a finite intersection of fuzzy superhyperplanes.

Proof. By Theorem 3.2(4), µ = µ′+x0, where µ′ is a fuzzy subhyperspace of V and x0 ∈ V. Thus by Corollary
3.5, there exist subhyperspaces V0 ⊊ V1 ⊊ · · · ⊊ Vk = V of V, k ≤ n and 1 ≥ α0 > α1 > · · · > αk ≥ 0 such

that µ′ =
k∨

i=0
αi1Vi . If dim Vk−1 = n − 1, then µ′ is a fuzzy superhyperspace and the proof is completed. If

0 ≤ dim Vk−1 < n − 1, then by Theorem 3.7, Vk−1 = W1 ∩ · · · ∩Wp, where W1, . . . ,Wp are superhyperspaces
of V. For all 1 ≤ i ≤ p put

µ′i = α01V0 ∨ · · · ∨ αk−11Wi ∨ αk1Vk .

Then for all 1 ≤ i ≤ p, µ′i is a fuzzy superhyperspace.
Now let x ∈ E and l be the smallest number that x ∈ Vl. If l ≤ k − 1, then for all 1 ≤ i ≤ p, µ′i (x) = αl and so
p∧

i=1
µ′i (x) = αl = µ′(x). Thus in this case µ′ =

p⋂
i=1
µ′i . If l = k, then x < Vk−1 and x < Wi0 , for some 1 ≤ i0 ≤ p

and so
p∧

i=1
µ′i (x) ≤ µ′i0 (x) = αk. Thus

p∧
i=1
µ′i (x) = αk = µ′i (x), since αk is the smallest value in Im (

p∧
i=1
µ′i ). Hence

µ′ =
p∧

i=1
µ′i and so

µ = (
p∧

i=1

µ′i ) + x0 =

p∧
i=1

(µ′i + x0),

and the proof is completed.

4. Convex cones

The concepts of convex and balanced subsets of hypervector spaces were previously studied by the first
author in [11] and [12]. In this section, we examine the properties of cones as a special class of subsets
in real hypervector spaces. We show that every subhyperspace in a real hypervector space forms a cone,
and every cone is necessarily balanced. Furthermore, we construct the convex cone spanned by non-empty
subsets of real hypervector spaces and identify the smallest and largest subhyperspaces associated with a
given convex cone.
Let K be a field. Then the mapping | | : K → R is called a valuation on K if and only if for all a, b ∈ K, the
followings hold:

1) |a| ≥ 0 and we have equality iff a = 0;
2) |ab| = |a| |b|;
3) |a + b| ≤ |a| + |b|.

A field K together with a valuation is called a valued field.
Let V be a hypervector space over valued field K. Then a non-empty subset E of V is called

1. convex if a ◦ x + (1 − a) ◦ y ⊆ E, for all x, y ∈ E, a ∈ K, |a| ≤ 1,
2. balanced if a ◦ E ⊆ E, for all a ∈ K, |a| ≤ 1.

A particular type of convex sets in real hypervector spaces is the convex cones.

Definition 4.1. Let V be a real hypervector space. Then a non-empty subset C ⊆ V is called a cone if

∀a ∈ R+, ∀x ∈ C, a ◦ x ⊆ C.
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It is clear that in a real hypervector space V, every subhyperspace is a cone, and every cone is balanced,
when equipped with the standard absolute value onR. The next examples show, in general, there is not any
other relation between the concepts cone, subhyperspace and balanced subset of real hypervector spaces.

Example 4.2. Consider the hypervector space (R2,+, ◦,R) in Example 2.2, with any valuation on R. Then for all
r1, r2 ∈ R+, such that r1 < r2, the sub B = {(x, y) ∈ R2; r1x ≤ y ≤ r2x} ⊆ R2 is a cone and balanced, but not a
subhyperspace.

Example 4.3. Consider the real hypervector space V = (R2,+, ◦,R), where ◦ : R × R2
−→ P∗(R2) defined by

a◦ (x, y) = ax×R with the usual absolute value | · | onR. Then the sub B = {(x, y) ∈ R2; 0 ≤ x ≤ 1} ⊆ R2 is balanced
but is neither a subhyperspace nor a cone.

Proposition 4.4. Let V be a real hypervector space. Then

1. For any x ∈ V, the set C = R+ ◦ x =
⋃

a∈R+
a ◦ x is a cone of V.

2. If C is a cone, then C =
⋃

a∈R+,x∈C
a ◦ x.

Proof. 1) If b ∈ R+ and t ∈ R+◦x, then t ∈ a0◦x, for some a0 ∈ R+ and so b◦t ⊆ b◦(a0◦x) = (ba0)◦x ⊆ R+◦x = C.
Thus R+ ◦ x is a cone.
2) If x0 ∈ C, then x0 ∈ 1 ◦ x0 ⊆

⋃
a∈R+,x∈C

a ◦ x. Conversely, a ◦ x ⊆ C, for all a ∈ R+ and x ∈ C. Thus⋃
a∈R+,x∈C

a ◦ x ⊆ C.

Definition 4.5. A convex cone in a real hypervector space V is a cone which is a convex set.

Example 4.6. The set C = {(x, y) ∈ R2 : x ≥ 0} is a convex cone of the hypervector space in Example 4.3, but it is
not a subhyperspace.

Theorem 4.7. A subset C of real hypervector space V = (V,+, ◦,R) is a convex cone if and only if it is closed under
addition and positive external hyperoperation, i.e.

∀x, y ∈ C, a ∈ R+; x + y ∈ C and a ◦ x ⊆ C.

Proof. Let C be a convex cone and x, y ∈ C. Then 1
2 ◦ (x + y) ⊆ 1

2 ◦ x + 1
2 ◦ y ⊆ C. Thus x + y ∈ 1 ◦ (x + y) =

2 ◦ ( 1
2 ◦ (x + y)) ⊆ C. Conversely, if x, y ∈ C and a ∈ R+ such that |a| ≤ 1, then (1 − a) ◦ x ⊆ C and a ◦ y ⊆ C.

Hence (1 − a) ◦ x + a ◦ y ⊆ C, which means that C is convex.

Corollary 4.8. A subset C of real hypervector space V = (V,+, ◦,R) is a convex cone if and only if a1◦x1+· · ·+an◦xn ⊆

C, for all a1, . . . , an ∈ R+ and x1, . . . , xn ∈ C.

Corollary 4.9. Let S be a non-empty subset of real hypervector space V = (V,+, ◦,R). Then

C =

t ∈
n∑

i=1

ai ◦ xi : ai ∈ R
+, xi ∈ S,n ∈N


is the smallest convex cone containing S.

Proof. Let a ∈ R+ and t ∈ C. Then

a ◦ t ⊆ a ◦

 n∑
i=1

ai ◦ xi

 ⊆ n∑
i=1

(aai) ◦ xi ⊆ C,
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and so C is a cone. Also, if t, t′ ∈ C and a ∈ R such that |a| ≤ 1, then t ∈
∑n

i=1 ai ◦ xi and t′ ∈
∑m

j=1 a′j ◦ x′j, where
ai, a′j ∈ R

+ and xi, x′j ∈ S. Thus

a ◦ t + (1 − a) ◦ t′ ⊆ a ◦
n∑

i=1

ai ◦ xi + (1 − a) ◦
m∑

j=1

a′j ◦ x′j

⊆

n∑
i=1

(aai) ◦ xi +

m∑
j=1

((1 − a)a′j) ◦ x′j

⊆ C.

Hence, C is convex. Also for all x ∈ S, x ∈ 1 ◦ x and so x ∈ C, which implies that S ⊆ C. Now suppose C′

is a convex cone containing S and t ∈ C. Then t ∈
∑n

i=1 ai ◦ xi, for some ai ∈ R+, xi ∈ S and n ∈ N. Thus
t ∈
∑n

i=1 ai ◦ xi ⊆ C′, by Theorem 4.7, and so C ⊆ C′.

If S is a non-empty subset of real hypervector space V = (V,+, ◦,R), then the convex cone

Cone S =

t ∈
n∑

i=1

ai ◦ xi : ai ∈ R
+, xi ∈ S,n ∈N


is called the convex cone spanned by S.

Theorem 4.10. Let C be a convex cone of real hypervector space V = (V,+, ◦,R) containing 0. Then C−C = {x− y :
x, y ∈ C} is the smallest subhyperspace of V containing C and (−C) ∩ C is the largest subhyperspace of V contained
in C.

Proof. By Theorem 4.7, C is closed under addition and positive external hyperoperation. If x−y, x′−y′ ∈ C−C,
then (x − y) − (x′ − y′) = (x + y′) − (y + x′) ∈ C − C. Now let x − y ∈ C − C and a ∈ R. If a ≥ 0, then
a ◦ (x − y) ⊆ a ◦ x − a ◦ y ⊆ C − C. If a < 0, then

a ◦ (x − y) = (−a) ◦ ((−1) ◦ (x − y))
⊆ (−a) ◦ ((−1) ◦ x + (−1) ◦ (−y))
= (−a) ◦ (1 ◦ y − 1 ◦ x)
⊆ (−a) ◦ (1 ◦ y) − (−a) ◦ (1 ◦ x)
= (−a) ◦ y − (−a) ◦ x
⊆ C − C.

Thus C−C ⩽ V. Clearly, C ⊆ C−C. Now if C′ is a subhyperspace of V containing C, then for all x− y ∈ C−C,
x− y ∈ C′ −C′ ⊆ C′, and so C−C ⊆ C′, i.e. C−C is the smallest subhyperspace of V containing C. Similarly,
the second part of the theorem is proved.

5. Convex fuzzy cones

The concept of convex fuzzy subsets in hypervector spaces was studied by the first author in [12]. In
this section, we introduce the notion of fuzzy cones in real hypervector spaces as a specific class of convex
fuzzy subsets, and study several of their properties. We also present characterizations for the smallest
fuzzy subhyperspace containing a convex fuzzy cone, as well as the largest fuzzy subhyperspace contained
within it.

Let V be a hypervector space over valued field K. Then a fuzzy subset µ of V is called convex if
a ◦ µ + (1 − a) ◦ µ ⊆ µ, for all a ∈ K with |a| ≤ 1.

Theorem 5.1. [12] Let V be a hypervector space over valued field K and µ ∈ FS(V). Then the following conditions
are equivalent:
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1. µ is convex;
2. ∀x, y ∈ V, ∀a ∈ K, |a| ≤ 1,

∧
t∈a◦x+(1−a)◦y

µ(t) ≥ µ(x) ∧ µ(y);

3. for all α ∈ [0, 1], µα is a convex subset of V.

Proposition 5.2. [12] Let V be a hypervector space over valued field K and
{
µi
}
i∈I be a family of convex fuzzy subsets

of V. Then
⋂
i∈I
µi is a convex fuzzy subset of V.

Definition 5.3. A fuzzy subset µ of real hypervector space V is called a fuzzy cone if

∀x ∈ V, a ∈ R+,
∧
t∈a◦x

µ(t) ≥ µ(x).

µ ∈ FS(V) is called convex fuzzy cone if it is convex and fuzzy cone.

Proposition 5.4. If µ is a fuzzy cone of real hypervector space V, then
∧

t∈a◦x
µ(t) = µ(x), for all x ∈ V, a ∈ R+.

Proof. If x ∈ V and a ∈ R+, then∧
t∈a◦x

µ(t) ≥ µ(x)

≥

∧
y∈1◦x

µ(y)

=
∧

y∈a−1◦(a◦x)

µ(y)

=
∧

y∈a−1◦z,z∈a◦x

µ(y)

≥

∧
z∈a◦x

µ(z).

Proposition 5.5. If µ is a fuzzy subset of real hypervector space V, then the following conditions are equivalent:

1. µ is a convex fuzzy cone;
2. ∀x, y ∈ V, ∀a, a′ ∈ R+, |a| ≤ 1,

∧
t∈a◦x+(1−a)◦y

µ(t) ≥ µ(x) ∧ µ(y) and
∧

t∈a′◦x
µ(t) ≥ µ(x);

3. for all α ∈ [0, 1], µα is a convex cone of V.

Proof. 1⇔ 2) It follows from Theorem 5.1, and Definition 5.4.
2 ⇔ 3) By Theorem 5.1, µ is convex if and only if µα is convex. Now if µ is a fuzzy cone, α ∈ [0, 1], y ∈ µα
and z ∈ a ◦ y, then µ(z) ≥

∧
t∈a◦y
µ(t) ≥ µ(y) ≥ α and so z ∈ µα, i.e. a ◦ µα ⊆ µα, which means that µα is a cone.

Conversely, let a ∈ R+ such that 0 < a ≤ 1, x ∈ V and t ∈ a ◦ x. Put µ(x) = α. Then x ∈ µα and so a ◦ x ⊆ µα.
Thus t ∈ µα and µ(t) ≥ α. Hence

∧
t∈a◦x
µ(t) ≥ α.

Proposition 5.6. The intersection of an arbitrary family {µi}i∈I of (convex) fuzzy cones is a (convex) fuzzy cone.
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Proof. By Proposition 5.2,
⋂
i∈I
µi is convex. Also

∧
t∈a◦x

⋂
i∈I

µi

 (t) =
∧
t∈a◦x

∧
i∈I

µi(t)


=
∧
i∈I

∧
t∈a◦x

µi(t)


≥

∧
i∈I

µi(x)

=

⋂
i∈I

µi

 (x),

for all a ∈ R+ and x ∈ V.

Similar to other structures, the previous proposition allows us to define the cone of a fuzzy subset.

Definition 5.7. Let µ be a fuzzy subset of real hypervector space V. Then the convex fuzzy cone of µ, denoted by
Cone µ, is the infimum of all convex fuzzy cones of V containing µ, i.e. the smallest convex fuzzy cone of V containing
µ.

Theorem 5.8. Let V be an invertible n-dimensional strongly right distributive real hypervector space and µ be a
convex fuzzy cone of V such that µ(0) =

∨
x∈V
µ(x). Then µ − µ ∈ FS(V) defined by

(µ − µ)(x) =
∨

x=x1−x2

(µ(x1) ∧ µ(x2)),

is the smallest fuzzy subhyperspace of V containing µ.

Proof. At first we shall construct the smallest fuzzy subhyperspace of V from µ (the intersection of all fuzzy
subhyperspaces of V containing µ) and then show that it is equal to µ − µ.
By Proposition 5.5, for all α ∈ [0, 1], µα is a convex cone containing 0, since µ(0) =

∨
x∈V
µ(x). Suppose

Vα = ⟨µα⟩. Then {Vα}α∈I is a chain of at most n + 1 different subhyperspaces of V with the largest element
V = V0 = ⟨µ0⟩. Denote this chain by W0 ⊆W1 ⊆ · · · ⊆Wk, where k ≤ n. Now we partition I in k + 1 subsets

Ii = {α ∈ I : Vα =Wi}, 0 ≤ i ≤ k.

Put αi =
∨

Ii, for all 0 ≤ i ≤ k. Then by Representation Theorem (Corollary 3.5), ν =
k∨

i=0
αi1Wi is a fuzzy

subhyperspace of V. Also, if x ∈ V and µ(x) = α, then α ∈ Ii, for some 0 ≤ i ≤ k and so

ν(x) ≥ αi =
∨

Ii ≥ α = µ(x).

Now by construction of αi’s and Wi’s it follows that ν is the smallest fuzzy subhyperspace of V containing
µ.
Finally, we show that ν = µ − µ. Let x ∈ Wi \Wi−1, for some 0 ≤ i ≤ k. Then ν(x) = αi and by Theorem 4.10,
x = y0 − z0 for some y0, z0 ∈ µα. Thus

(µ − µ)(x) =
∨

x=y−z

(µ(y) − µ(z))

≥ µ(y0) − µ(z0)
≥ α ∧ α

= α.
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Hence (µ − µ)(x) ≥
∨

Ii = αi = ν(x). Note that for all α ∈ Ii−1, there exist no y, z ∈ µα such that x = y − z,
since x <Wi−1. By repeating the above it follows that for all α > αi, there are no y, z ∈ µα such that x = y− z.
Then (µ − µ)(x) = αi = ν(x).

Theorem 5.9. Let V be an invertible n-dimensional strongly right distributive real hypervector space and µ be a
convex fuzzy cone of V such that µ(0) =

∨
x∈V
µ(x). Then µ ∧ (−µ) ∈ FS(V) defined by (µ ∧ (−µ))(x) = µ(x) ∧ µ(−x)

is the largest fuzzy subhyperspace of V contained in µ.

Proof. The proof is similar to the proof of Theorem 5.8.
By Proposition 5.5, for all α ∈ [0, 1], µα is a convex cone containing 0, since µ(0) =

∨
x∈V
µ(x). From Theorem

4.10, there exists a largest subhyperspace Vα ⊆ µα. Let {Vα}α∈I be the chain of subhyperspaces of V and
W0 ⊆ W1 ⊆ · · · ⊆ Wk, k ≤ n, be the at most n + 1 different ones. Here we have again a partition of I in

Ii = {α ∈ I : Vα = Wi}, 0 ≤ i ≤ k. Suppose αi =
∨

Ii, 0 ≤ i ≤ k and ν =
k∨

i=0
αi1Wi . Then by Representation

Theorem (Corollary 3.5) and by construction of αi’s and Wi’s, ν is the largest fuzzy subhyperspace of V
contained in µ. Now we show that ν = µ ∩ (−µ). Let x ∈ Wi \Wi−1, for some 0 ≤ i ≤ k. Then ν(x) = αi ∈ Ii
and by Theorem 4.10, Wi = µαi ∩ (−µαi ). Thus

(µ ∩ (−µ))(x) = µ(x) ∧ µ(−x)) ≥ αi ∧ αi = αi = ν(x).

It is clear that for all α ∈ Ii−1, µ(x) < α or µ(−x) < α. Thus in this case
∧

Ii−1 = αi and so (µ ∧ (−µ))(x) = αi =
ν(x).

6. Conclusion

In real hypervector spaces, every subhyperspace is a cone, and every cone is balanced. In this paper,
we introduced the concept of convex cones spanned by non-empty subsets of real hypervector spaces.
Through some examples, we demonstrated that cones, subhyperspaces, and balanced subsets are generally
distinct concepts. Moreover, the smallest subhyperspace of V containing C and the largest subhyperspace
of V contained in C is achieved, for a convex cone C of a real hypervector space V.

In the context of hypervector spaces, a convex fuzzy cone combines elements of convexity with fuzzy
representations. A fuzzy cone is a generalization of a cone in vector spaces, where instead of precise points,
we deal with fuzzy sets, allowing for degrees of membership. In the paper, a characterization of fuzzy
convex cones of real subhyperspaces based on its level subsets was given. Also, for a convex fuzzy cone
µ of a real finite dimensional hypervector space V, the smallest (resp. largest) fuzzy subhyperspace of V
containing (resp. contained in) µwas obtained.

Convex fuzzy cone can have the following applications:
- It can be used to model constraints in optimization problems, allowing for more flexible and realistic

solutions that account for uncertainty or imprecision.
- In fields like economics, inventory management, and resource allocation, convex fuzzy cones help in

making decisions based on incomplete or uncertain information.
- Fuzzy logic concepts, including fuzzy cones, are utilized in algorithms for processing images and

recognizing patterns where traditional binary classifications may fail.
For further research, the following topics are suggested:
- Fuzzy Set Theory: Investigate foundational texts that cover the principles of fuzzy sets, fuzzy relations,

and fuzzy logic.
- Topology and Functional Analysis: Explore the topological properties of fuzzy cones and their con-

nections to functional spaces. This includes studying compactness, connectedness, and continuity within
hypervector spaces.

- Fuzzy Geometry: Investigate how geometric concepts are extended in a fuzzy context. This includes
studying fuzzy distances, fuzzy metrics, and their implications in the discussion of convexity.
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- Algebraic Structures: Delve into the algebraic properties of fuzzy cones in the framework of lattice
theory and ordered sets. This gives insights into the categorical aspects and morphisms between fuzzy
structures.

- Convex Analysis: Examine how traditional convex analysis can be extended to the fuzzy context. This
involves studying fuzzy convex functions and their generalizations and the implications for optimization.

- Optimization: In operations research, fuzzy optimization techniques can be employed to deal with
uncertainty in parameters. Study models such as fuzzy linear programming, fuzzy multi-objective opti-
mization, and decision-making under fuzzy constraints.

- Artificial Intelligence: Explore applications of fuzzy logic in AI, especially in expert systems, decision
support systems, and machine learning. Fuzzy rules and inference systems often use concepts akin to fuzzy
cones for reasoning under uncertainty.

- Economics and Game Theory: Investigate how fuzzy set theory and convex fuzzy cones can be applied
to economic models, particularly in areas such as fuzzy game theory, where multiple players make decisions
based on uncertain information.

- Control Systems: In engineering, study how fuzzy logic can be applied to control systems, especially
in systems where precise models are difficult to obtain. Fuzzy control mechanisms can utilize concepts
from convex fuzzy cones to create flexible systems.

- Image Processing and Pattern Recognition: Research applications in computer vision where fuzzy
techniques improve the handling of noise and uncertainty in image data. Techniques like fuzzy clustering
and fuzzy neural networks often employ these principles.
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