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New representations of the g-Drazin inverse for anti-triangular
matrices

Huanyin Chen?

“School of Big Data, Fuzhou University of International Studies and Trade, Fuzhou 350202, China

Abstract. We provide representations for the generalized Drazin inverse of an anti-triangular matrix of

the form q 0 in a Banach algebra A with commuting elements a,b € A. In particular, a new formula

for the Drazin inverse of an anti-triangular matrix is established by employing Catalan numbers.

1. Introduction

Let A be a Banach algebra with identity 1 and M,(A) be the Banach algebra with identity I, of all 2 x 2

matrices over A. An element a € A has generalized Drazin inverse (g-Drazin inverse) if there exists x € A
such that

ax? = x,ax = xa,a — xa® € A,
If such an x exists, it is unique and is denoted by a?. Here, A™! = {x ¢ A | 1+ Ax € Ais invertible for all A €
C}. It is well known that x € A" if and only if lim ||x"||37 = 0. If we replace the quasinilpotent set Al
n—00

with the set of all nilpotent elements in A, we refer to the unique x as the Drazin inverse of 4, and denote it
by aP. Both the Drazin and g-Drazin inverses play significant roles in ring and matrix theory (see [6]) and
graph theory (see [15]).

It is intriguing to investigate the Drazin and g-Drazin inverses of the anti-triangular matrix M =

( le (l; ) € M3(A). One motivation for exploring this problem is the quest for a closed-form solution

to systems of second-order linear differential equations, which can be expressed in the following vector-
valued form: Ax”(t) + Bx'(f) + Cx(t) = 0 where A, B, C € C"™" (with A being potentially singular) and x is
an C"-valued function. Clearly, the solutions to singular systems of differential equations are determined
by the Drazin inverse of the aforementioned anti-triangular matrix M (see [3, 4]). Recently, the generalized
Drazin inverse of block operator matrices is used to find general solutions for Cauchy problems for Riccati
and Lyapunov operator differential equations (see [1]). Although the Drazin and g-Drazin inverses of

anti-triangular matrices are valuable tools in the study of differential equations, finding representations for
such generalized inverses remains a challenging task.
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In 2005, Castro-Gonzalez and Dopazo gave the representations of the Drazin inverse for a class of
complex matrices ( § g ) (see [10, Theorem 3.3]).

In 2011, Bu et al. investigated the Drazin inverse of the complex matrix ( I; 1(; ) under the condition

EF = FE (see [3, Theorem 3.3]).

In 2013, Xu, Song and Zhang studied an expression of the Drazin inverse of the operator matrix
( ]f 1(-; ) € Mz(B(X)) under the condition EF = FE, where B(X) is the Banach algebra of bounded linear
operators on a complex Banach space X (see [18, Theorem 3.8]).

In 2016, Yu, Wang and Deng characterized the Drazin invertibility of the anti-triangular operator matrix
( ? 10: ) € MZ(B(‘H )) under the conditions F*EFP = 0, F*EF = F"FE, where B(H) is the Banach algebra of
bounded linear operators on a complex Hilbert space H (see [20, Theorem 4.1]).

Recently, many authors have explored various conditions under which representations of the Drazin (or
g-Drazin) inverse of such anti-triangular matrices can be established. For additional references, we refer
the reader to [11, 12, 22, 24, 25, 27].

The motivation of this paper is to investigate the representation of the g-Drazin inverse of the anti-
611 g in a Banach algebra A. We begin by examining the solvability of a
quadratic equation in the Banach algebra A using Catalan numbers C,. Next, we study the representation
of M under the conditions ab = ba,a € A s invertible and b € A", We then employ the Morita context ring
and the Pierce decomposition of a Banach algebra element as tools to extend the previous special case to
the more general conditions ab = ba,a,b € A?. Consequently, the known results are extended to a broader
context within a Banach algebra. In particular, we establish a new formula for the Drazin inverse of an
anti-triangular matrix, employing Catalan numbers as a key tool. This formula offers a new approach to
addressing related difference equation problems in matrix structure.

Throughout this paper, all Banach algebras are considered to be complex and possess an identity element.
We use A, AP and A? to stand for the sets of all invertible, Drazin invertible and g-Drazin invertible
elements in A, respectively. For a € A%, we define a™ = 1 —aa’. Leta,p* = p € A. Then a has the Pierce

pap  pap” ) .
14

triangular matrix M =

decomposition given by pap + pap™ + p™ap + p™ap™, which we denote in matrix form as ( phap  pap®

The inverse of x in the corner ring pAp is denoted by x, L

2. Key lemmas
In this section, we present some necessary lemmas which will be used in the sequel. We start by

Lemma 2.1. Leta,b e A’ Ifab=0, thena+b € A" and
(ﬂ + b)d — Z(ad)i+lbibn + Zﬂian(bd)i+1.
=0 i=0

Proof. See [6, Lemma 15.2.2]. [

Lemma 2.2. Leta,b € A% Ifab* = 0and aba = 0, then a + b € A4 and

(61 + b)d — i(bd)iﬂaian + f bibn(ud)iﬂ + f bibn(ad)i+2b
i i=0 i=0

=0
+ Z(bd)i+3ﬂi+1ﬂnb _ bdadb _ (bd)zaadb.
i=0
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Proof. See [6, Corollary 15.2.4] and [19, Theorem 2.1]. [

Lemma 2.3. Let

Then

o . . 0 . .
where z = Y. (b)) 2cala™ + Y, b'b"c(a?)*? — bca.
i=0 i=0

Proof. See [25, Lemma 2.3]. O

8749

Lemma 2.4. Let A be a Banach algebra and a € A, b € A™!. If ab = ba, then the equation ax + x> = b has a

solution x such that a + x € AL, x € AN,

(o]
Proof. Letx =} cia™ b*1, where c; € C, a; € Z. Choose a; = —(2i + 1), Since ab = ba, we have
i=0
ax + xz — Z cia‘*f“b”l + [Z Ciaaibzﬂ][z cia“fbl“]
i=0 i=0 i=0

i= i=l
coa®* b + [c1a*! + a0 ]b?

[c3 + coca + 101 + cacola—®b* + - -
b,

nm+ 1+ + + 1

hence, we choose

Co = 1,C1 = —1,C2 = 2,C3 = —5,C4 = 14,C5 = —42,"'
ci = —(coCi—1 + c1Ci—2 + -+ + ci—1c0)(i € N).

Let {C,} be the series of Catalan numbers, i.e.,

C=1C=1C=2C3=50C4=14,C5=42,---,
Cn = Cocn_l + -+ Cn_l(:o(i’l S N)

[c2a%* + coera®t® + cqcpa® 0 ]b3
[zt + coca®t2 + cc1a™1F + cycat? )bt

cob + [c1 + Ala2b? + [c2 + cocr + c1c0]a™b?

Then ¢y = Cy, c1 = —C;. By induction, we claim that ¢z, = Cay, cons1 = —Cansa1(n = 0). Hence, |c,| = Cy(n > 1).

By using the asymptotic expression of the Catalan numbers C,;, we have

n

lim C./ (W)

Therefore

. . 4
lim vlc,| = lim ——— =4.
n—oo n—oo ﬂﬂ({/ﬁ)i

Since b € A™! we have lim || b" ||117= 0. Since
n—oo

n — —1 2+1 n 1
VIl cua= @ Do || < Nfleal [Ta™ 77 VDA™ I

we deduce that
lim /|| c,a=@+Dpn+l || = 0.
n—o0
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This implies that ), c;a~®*Vpi*1 absolutely converges.
=0

oo o k
Accordingly, the equation ax +x? = b has a solution x = Y c;a®*Vbi*! wherecg = 1, cp41 = — Z cick—i(k >
i=0

0). Clearly, ¢, = (-1)"C, = (-1)" n,((i’fl), Since [Z cia" @ pilh = b[z cia”@p] and b € A, it follows
i=0

by [6, Lemma 15.1.1] that x = [Z cia” @Dy € AML Asa'x = xa”!, we see that 1 + a~'x € A~!; hence,
i=0
a+x=a[l+a'x] € AL This completes the proof. [J

Lemma 2.5. Let A be a Banach algebra and M = ( le (l; ) witha € A, b € A™. If ab = ba, then M € My(A)"

and
M = ( @+x) ' —xy (a+x)"'x—xyx )
y yx '

where x = (1) g lza @0, y = T (1) (a + 9702

i=0

Proof. In view of Lemma 2.4, the equation ax + x> = b has a solution x such that a + x € A~! and x € A

Here,
i (20)! g~ Qi1+l
x—Z( )z'(z+1)' b

1 —x a+x 0 1 x
M= ( 0 1 )( 1 —x )( 0 1 )
Since x € AT, we see thata + x € A~!. Then ( ¢ —{ * 2 ) has g-Drazin inverse. Therefore M has g-Drazin

It is easy to verify that

inverse. Exactly, we have

1 —x a+x 0 ‘ 1 x
L )( 1 —x)(O 1)
(1 —x)((a+x)1 0)(1 x)
= lo 1 y oflo1
[ @+t =xy (a+x)‘1x—xyx)
- y yx ’

where y = Y\ (1)@ + x)"*2x. O
i=0

Lemma 2.6. Let A be a Banach algebra and M = ( 8 ) witha € A,b € AL, Then M € My(A)™! and

a
1

Proof. Straightforward. [
Let p2 =p e Aandlet A; = pAp, Ay = p"Ap™. Let T be the ring of Morita context (Ma (A1), M2(A2), @, ¥),

ie.,

T:( My (Ay) Mz(PﬂPn))
Mz(PnﬂP) M (A;y) (o)
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with the bimodule homomorphisms of the form

@ : My(pAp™) x Ma(p™Ap) — Ma(FAy),
U : My(p" Ap) X My(pAp™) — Ma(Ap).

Then we have a natural isomorphism of rings given by

p: Mz(ﬂ) =T,
panp  panp panp™  panp”
( apn  ap )'_) ( paxp  paxp ) ( panp™  paxnp" ) '
a1 ax pranp pranp pTanp™ prapp™
pranp  pranp ) ( pranp™  pTanp” ) o)

Lemma 2.7. Let A be a Banach algebra and M = ( 611 g ) witha € A, b € A%, If ab = ba, then M € My(A)*

and
M = 211 Z12
221 Zp
with z;; formulated by
zi1 = (ab™ +x)7" —xy,
ziz = bV + (ab™ +x)b"x — xyx,
Zy1 = bd +Y,
zyp = —ab® +yx,
where .
x = Y (_1)i%a—(2i+1)bi+1bnl

y o= Y(-1)(@b" +x) .

i=0

Proof. Letp = bb". Since ab = ba, we have
a=| ™ 0 ,b= b 0 € A.
0 an P 0 bg P

We note that every Pierce matrix relative to p is an element in A. Then

(5 0) (5 )

0 ap 0 bz

M= b 0 0 0o € My(A).
0 p" 0 0

Set Ay = pAp and A, = p"Ap™. Hence, we have

M; O
(8 4.,
0 M)
where
b b
M, = ( a; 01 ) € Mp(Ar), M, = ( ;721 02 ) € My (Ay).
Claim 1. My € Mp(A1)". Clearly, ay = abb?, by = b*b" € A;*. By Lemma 2.6, we have
0 bb?
eni( .}
1 1 b by



H. Chen / Filomat 39:25 (2025), 8747-8759 8752
Claim 2. M, € Ma(Ay). Clearly, a, = ab™ € A, by = bb™ € ﬂgml. By virtue of Lemma 2.5, we have

i ( (a2 + %)W" —xy (a2 + x)"b"x — xyx )
M; = ,
Y yx

where x = Z( 1)f 2L 2H'l)b”rl, y= )D:o‘ (—=1)i(az + x)~*Dp7x’, Therefore p(M) € T and
i=0

z'(z+1)‘

( 0 bb? ) 00

b7l —b_1ﬂ1 0 0

_ 1 1

[pM)I" = 0 0 (@ + )7 W™ —xy  (a+x)"0"x — xyx )
00 Y ¥ @

Thus, M € Mp(A)'. Obviously, we have b;! = (0*b")™ = b¥ € Ay and byay = b?babb? = ab?. By virtue of [23,
Lemma 3.3], we have

0 0 b 0
0 (a+x)71" —xy 0 (a2+x)7"x —xyx

d
M byt 0 —bi'a; 0
0 vy 0 yx
_ 211 Z12
221 222
with z;; are formulated by
zi1 = (ab™ +x)7W" —xy,
ziz = bV + (ab™ +x)7b"x — xyx,
Z21 = bd +,
zm = —ab®+yx,
where .
x = 26( )z z'((zzil)'a 21+1)bi+1bn/
i=

y = E(—l)l(ab”+x)‘(i+2)bnxi.
i=0

This completes the proof. [J

Lemma 2.8. Let A be a Banach algebra and M = ( ;l g ) witha € AT b € A, If ab = ba, then M € Mp(A)*
and ]
. (0 ub
M= ( Fo—ap )
0 bb? . e
Proof. Let X = b —agpt | One directly verifies that

a b\(0 bb? bb? 0
Mx = (1 o)(bd —abd)‘( 0 bb”’)

0 b \[a b
= v —abd)(l o)ZXM'

M—(MX)M=(L118)(0 bb")( )
KA.

_ b 21.d )
a(1-bb") b- b )EM2 i,

Therefore M has g-Drazin inverse and M? = X, as desired. [J



H. Chen / Filomat 39:25 (2025), 8747-8759 8753
3. Main Results

We now present the main results of this paper, which extend [18, Theorem 3.8] and [20, Theorem 4.1]
to anti-triangular matrices in Banach algebras.

Theorem 3.1. Let A be a Banach algebra and M = ( g ) witha,b € A% Ifab = ba, then M € My(A)? and

a
1

_(a B
Md"(V 6)

with o, B,y, 0 formulated by

a = (@a%" +x)7L —xy,
aa?
B = aa'bt’ + (@*a'b" +x) Lx — xyx +a"bb’,
- nd
y = aa"b® +y+a"b",
6 = —a*a’b + yx —aa"b?.
where .
x = Zb(_l)iﬁéi)l!)! (ad)2i+1bi+1bnl
i=
_ v (20 —17i+2,d
y = l;)(—l)l[(a a“b” +x)

Proof. Letq = aa®. Since ab = ba, we have

Then
(ﬂl 0 b1 0
_ 0 (75 0 bz
M= S 0 0 € My(A).
0 g~ 0 0

Set Ay = gAq and A, = g7 Aq". By using the isomorphism p between the matrix ring M,(A) and the
the ring of Morita context (A, Ay, ¢, ) mentioned above, we have

M; 0
=% 5
0 M (@)

where

a bz

(@ b _
Ml = ( q 0 ) € M2(ﬂ1)1M2 - ( qn 0

Claim 1. My € My (A% Obviously, a1 € ﬂ;l, b e ﬂ‘f. In view of Lemma 2.7, we have

d_ | 211 Z12
M1 =\, .
21 222

) € Mp(Ay).

with z;; are formulated by

zn = (@a'" +x) - xy,

zip = aa®bb? + (@%ab™ + x);uldx - xyx,
z1 = aa®bl+y,

zp = —aka'bt? +yx,
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where

Claim 2. M, € My(Ay)*. Obviously, a; € ﬂgnil, b, € ﬂg . By virtue of Lemma 2.8, we derive that

Therefore p(M) € T and

Therefore

where

This completes the proof. [

X

y

o . 2‘ ! . .
ZE)(_l)z i!éii)l)! (ad)21+1 pitl b,
i=

aa

Y. (~1)[(@a®b" + x) 12
i=0

M§=( 0 belt )

d _ . 1d
bz ﬂ2b2

Md

0
MMW=(1 ) .
0 Mg @)

M =( f )eMz(?U,
0
= ( Z(l)l 0 ) _lel
0 4
212 T d
= =2z10 +a™bb?,
(5 )p 2
= a1 (?j =2zZy + a”bd
0 b2
0 P
_ 222 _ompd
= ( 0 —ﬂzbg) = 2Zy —aa™b

8754

Corollary 3.2. Let A be a Banach algebra and M = ( le g ) witha,b € AP. If ab = ba, then M € My(A)P and

with o, B, y, 0 are formulated by

SR ™ R
1l

where

y

w=(5 5)

(@aPb™ +x) ), — xy,

aaPbbP + (@*aPb™ + x) |, x — xyx +a"bb®,
aaPbP + y + a™bP,

—a*aPbP + yx — aa™bP.

nd)-1 o

— Y (-1) i‘é?i)l!)' (aP)2+1pi+1pn,
) I(i+1)!
nd®)-1 o

= Y (1T@alb + )
i=0

Proof. Evidently, z € AP if and only if z € A and a — a%a® € A is nilpotent. In this case, zP = z. Therefore
we complete the proof by Theorem 3.1. O



H. Chen / Filomat 39:25 (2025), 8747-8759 8755

Since every complex matrix can be viewed as a matrix within the Banach algebra C"" comprising
all n X n matrices, Corollary 3.2 introduces a new formula for the Drazin inverse of an anti-triangular
complex matrix, utilizing Catalan numbers as a pivotal tool. This formula presents a fresh method for
tackling related difference equation problems concerning matrix structures. We give a numerical example
to illustrate Corollary 3.2.

Example 3.3.
LetM = ( 2 g ) € C%¢ where
1 0 O 0 0 0
A=]10 0 0 |,B=10 0 0.
0 -1 0 01 0

Then we have

1 00
AP = [0 0 0 |[,BP=0,
0 0O
0 00
A" = |0 1 0 |,B =1L
0 01
Since AB = BA = 0, we have
ind(B)—-1 - @iy ) .
X = Z (_1)1 i!(i+i)! AD)21+1B1+1B77 — 0’
i1 o
Y = Z (_1)1[(A2ADBT[ + X)/—&D]HZ}G = AD.
i=0
Hence,
= (A2APB™+ X)L, - XY = AP,
= AAPBBP + (A’APB™ + X);‘}L‘UX - XYX + A™BBP =,

AAPBP +Y + A™BP = AP,
—A2APBD + YX - AA™BP = 0.

> = [ >
[

By virtue of Corollary 3.2, we have

A
D _
o=

B m
SN—
Il
—_—
S
T ©
S o
~——

We are now ready to prove:

Theorem 3.4. Let A be a Banach algebra and M = ( 411 8 ) with a,b,b™a € A%, If b™ab? = 0 and b™(ab) = b™(ba),
then M € My(A)? and
Md — sz[l _ PPd](Qd)Hl,
i=0
where

b™a b"b a
0 Y
bbla b2 i 0 by

Q - bbd 0 )/ Q - ( )



with o, B, y, 0 formulated by

where

Proof. Let M = P + Q, where
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= (O +x),! -y,

(ra*a’ +x),! x—xyx,
Y

yx.

IR ™ R

.Z‘ (_1)1' i!((izi)ll)l (bnad)2i+l pitl br,

1=l

(=1 [(b"a2a® + x)7!

i+2.40
b”aud] X

<
I
Mgl

i=0

ba b"b bbia V7
P=( o0 )'Q:( 0 )

Step 1. P has g-Drazin inverse. By hypothesis, we verify that

In light of Theorem 3.1, we have

with a, 8,7, 0 are formulated by

where

(b™a)(b™b) = b™(ab) = b™(ba) = (b"b)(b™a).

(a8
#=(58)

— T 42 d -1
a = (b azad + x)b_nlwd - xy,
B = (b"a%a® +x), . X —xyx,
y =Y
o = yx
x = EZ)(_l)i i!((l?i)l!)l(bnad)2i+1bi+1bn/
_ v i 24 1 it24i
y = gb(—l) [(b"a%a® +x),; 17X
Step 2. Q has g-Drazin inverse. By virtue of Lemma 2.6,
i (0 bb?
Q - ( bd —bda .
Step 3. Since PQ = 0, it follows by Lemma 2.1 that
M = (P+Q)
— Z(Pd)iﬂQiQn + Z Pipn(Qd)i+1
i=0 i=0
— Z PiPn(Qd)i*'l.
i=0

This completes the proof. [

Corollary 3.5. Let A bea Banach algebra and M = (

then M € My(A)P and

a b
10

ind(P)
2 Pl[I _ PPD](QD)H—l,
i=0

MP =

8756

)with a,b,b%a € AP. Ifb™abP = 0and b™(ab) = b™(ba),
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where
(bbb, (a B
P (5 8)
[ bbPa WP 5 [ 0 b
Q - bbD 0 )/Q _(bD —bDlZ)

with a, B,y, 0 formulated by

! ("a*a® +x),! , —xy,

B = (%P +x)! x—xyx,
Yy =V

o = yx

where

x = Z{)(_l)ii!((izi)l!)[(bnaD)2i+1bi+1bn,
1=

y oi (—1)i[(b”{12{1D + x);ﬂlﬂaD]Hzxi‘
i=0

Proof. This is the specific information obtained from Theorem 3.4. O

It is convenient at this stage to derive the following:

Theorem 3.6. Let A be a Banach algebra and M = ( ch Z ) with a,d, bc € A°. If abc = bea, bdc = 0 and bd? =0,
then M € My(A)? and
M = i(Qd)HlPi(I — PP+ iQiQn(Pd)iH + iQi(I — QOH((PY+2Q
" li(Qd)Hspm(I _ PPd)(IQ_— QPiQ - (Qd)lz_deQ,
where

a
b
0
o - (g

with o, B, y, 0 formulated by

pi— a’a+af + Bya+ B a’b+pyb .
7 T\ cyaa+ cy +copa+cd® cyab+cdyb |’

),de(g ;d)

QLo o

a = (@a'(bo)" +x) | —xy,
B = aa(bc)(be)! + (@®a’(be)™ + x) L x — xyx +a” (be)(be)?,
y = aa’(bc)! +y +a(be)?,
6 = —a*a%(bc)? + yx — aa™(be)®.
where -
x = gb(_l)i i!((1'2+l>11)! (ad)2i+1(bc)i+1(bc)n’
y = fo (<1)/[(@2a(be)" + x)11*2x'
a b 0 0 .
Proof. LetP = R and Q = 0 4l In view of Theorem 3.1, we have
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Here, a, 8,7, 6 are formulated by

= (@a'(be)" +x) "\ ~xy,

= aa’(be)(be)’ + (a%a (be)™ + x) L x — xyx + a™ (be)(be)’,
aa’(bc)® + y + a™(bc)?,

= —a%a’(bc)’ + yx — aa™(be)’.

R ™ R

where

=
Il

§ (_1)i _(20)! (ad)2i+1 (bc)i+1 (bo)™,

i(i+1)!

v o= L@l + 941

i=0
a bc a b 10
1 0 1 0J\0 c )
a b)Y (10 a b
c 0) " \0 cJ\1 0F)
By using Cline’s formula (see [16, Theorem 2.2]), P has g-Drazin inverse and
d

10 a bc)fa b

d

P ‘(0 c)[(l O)](l 0)
10 “la b
0 ¢ 10
a aa+[3 ab
cy ya+6 yb

aa+aﬁ+ﬁya+ﬁé a’b+ Byb
cyaa + cyf + coya+ & cyab + cdyb

One easily verifies that

Obviously, we have

One easily checks that
PQ?

1l
———

PQP =

_ ( de ):o.

According to Lemma 2.2, we derive that
m (P + Q)
Z(Qd)iﬂpipn + Z QiQn(Pd)iH + Z QiQn(Pd)i+2Q
i=0 i=0 i=0
Z (Qd)i+3pi+1PnQ _ QdeQ _ (Qd)ZPPdQ,
i=0

+

as asserted. [

Acknowledgement

The author thanks the referees for their careful reading and insightful comments, which helped improve
this paper.



H. Chen / Filomat 39:25 (2025), 8747-8759 8759

References

(1]
[2]
(3]
[4]
[5]
[6]
[7]
(8]

[9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

A. Bezai and F. Lombarkia, On the operator equation AX — XB + XDX = C, Rend. Circ. Mat. Palermo, 11, 72(2023), 4179-4187.
https://doi.org/10.1007/s12215-023-00887-3.

C. Bu; C. Feng and S. Bai, Representations for the Drazin inverses of the sum of two matrices and some block matrices, Applied
Math. Comput., 218(2012), 20226-20237.

C. Bu; K. Zhang and J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, Linear
Multilinear Algebra, 59(2011), 863-877.

S.L. Campbell, The Drazin inverse and systems of second order linear differential equations, Linear Multilinear Algebra, 14(1983),
195-198.

H. Chen and M. Sheibani, The g-Drazin inverses of special operator matrices, Oper. Matrices, 15(2021), 151-162.

H. Chen and M. Sheibani, Theory of Clean Rings and Matrices, Singapore: World Scientific, 2023.

H. Chen and M. Sheibani, The generalized Drazin inverse of an operator matrix with commuting entries, Georgian Math. J.,
31(2024), 195-204.

H. Chen and M. Sheibani, The g-Drazin inverses of anti-triangular block operator matrices, Applied Math. Comput., 463(2024)
128368.

H. Chen and M. Sheibani, The Drazin inverse for perturbed block-operator matrices, Filomat, 38(2024), 2311-2321.

N. Castro-Gonzalez and E. Dopazo, Representations of the Drazin inverse for a class of block matrices, Linear Algebra Appl.,
400(2005), 253-269.

D.S. Cvetkovi¢-Ili¢, Some results on the (2,2,0) Drazin inverse problem, Linear Algebra Appl., 438(2013), 4726-4741.

C. Deng and Y. Wei, A note on the Drazin inverse of an anti-triangular matrix, Linear Algebra Appl., 431(2009), 1910-1922.

E. Dopazo and M.F. Martinez-Serrano, Further results on the representation of the Drazin inverse of a 2 X 2 block matrix, Linear
Algebra Appl., 432(2010), 1896-1904.

J. Li and H. Wang, Generalized Drazin invertibility of the product and sum of bounded linear operators, Acta Anal. Funct. Appl.,
22(2020), 33-43.

Y. Li; L. Sun and C. Bu, The resistance distance of a dual number weighted graph, Discrete Applied Math., 375(2025), 154-165.

Y. Liao; J. Chen and J. Cui, Cline’s formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37(2014), 37-42.

X. Liu; X. Qin and J. Benitez, New additive results for the generalized Drazin inverse in a Banach algebra, Filomat, 30(2016),
2289-2294.

Q. Xu; C. Song and L. Zhang, Solvability of certain quadratic operator equations and reprefenttions of Drazin inverses, Linear
Algebra Appl., 439(2013), 291-309.

H. Yang and X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Applied Math., 235(2011),
1412-1417.

A. Yu; X. Wang and C. Deng, On the Drazin inverse of anti-triangular block matrix, Linear Algebra Appl., 489(2016), 274-287.

D. Zhang; D. Mosi¢ and L. Chen, On the Drazin inverse of anti-triangular block matrices, Electron. Res. Arch., 30(2022), 2428-2445.
D. Zhang; Y. Jin and D. Mosi¢, Generalizations of certain conditions for Drazin inverse expressions of anti-triangular partitioned
matrices, Aequationes Math., 98(2024), 1081-1098.

D. Zhang; D. Mosi¢ and L. Guo, The Drazin inverse of the sum of four matrices and its applications, Linear Multilinear Algebra,
68(2020), 133-151.

D. Zhang; Y. Zhao; D. Mosi¢ and V.N. Katsikis, Exact expressions for the Drazin inverse of anti-triangular matrices, J. Comput.
Appl. Math., 428(2023), Article ID 115187, 16 p.

D. Zhang; Y. Zhao; D. Mosi¢, The generalized Drazin inverse of the sum of two elements in a Banach algebra, J. Comput. Appl.
Math., 470(2025), 116701.

H. Zou; D. Mosi¢ and J. Chen, Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and
its applications, Turk. ]. Math., 41(2017), 548-563.

H. Zou; J. Chen and D. Mosi¢, The Drazin invertibility of an anti-triangular matrix over a ring, Stud. Sci. Math. Hung., 54(2017),
489-508.



