
Filomat 39:25 (2025), 8747–8759
https://doi.org/10.2298/FIL2525747C

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

New representations of the g-Drazin inverse for anti-triangular
matrices

Huanyin Chena

aSchool of Big Data, Fuzhou University of International Studies and Trade, Fuzhou 350202, China

Abstract. We provide representations for the generalized Drazin inverse of an anti-triangular matrix of

the form
(

a b
1 0

)
in a Banach algebraA with commuting elements a, b ∈ A. In particular, a new formula

for the Drazin inverse of an anti-triangular matrix is established by employing Catalan numbers.

1. Introduction

LetA be a Banach algebra with identity 1 and M2(A) be the Banach algebra with identity I2 of all 2 × 2
matrices overA. An element a ∈ A has generalized Drazin inverse (g-Drazin inverse) if there exists x ∈ A
such that

ax2 = x, ax = xa, a − xa2
∈ A

qnil.

If such an x exists, it is unique and is denoted by ad. Here,Aqnil = {x ∈ A | 1+λx ∈ A is invertible for all λ ∈
C}. It is well known that x ∈ Aqnil if and only if lim

n→∞
||xn
||

1
n = 0. If we replace the quasinilpotent set Aqnil

with the set of all nilpotent elements inA, we refer to the unique x as the Drazin inverse of a, and denote it
by aD. Both the Drazin and g-Drazin inverses play significant roles in ring and matrix theory (see [6]) and
graph theory (see [15]).

It is intriguing to investigate the Drazin and g-Drazin inverses of the anti-triangular matrix M =(
a b
1 0

)
∈ M2(A). One motivation for exploring this problem is the quest for a closed-form solution

to systems of second-order linear differential equations, which can be expressed in the following vector-
valued form: Ax′′(t) + Bx′(t) + Cx(t) = 0 where A,B,C ∈ Cn×n (with A being potentially singular) and x is
an Cn-valued function. Clearly, the solutions to singular systems of differential equations are determined
by the Drazin inverse of the aforementioned anti-triangular matrix M (see [3, 4]). Recently, the generalized
Drazin inverse of block operator matrices is used to find general solutions for Cauchy problems for Riccati
and Lyapunov operator differential equations (see [1]). Although the Drazin and g-Drazin inverses of
anti-triangular matrices are valuable tools in the study of differential equations, finding representations for
such generalized inverses remains a challenging task.
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In 2005, Castro-González and Dopazo gave the representations of the Drazin inverse for a class of

complex matrices
(

I F
I 0

)
(see [10, Theorem 3.3]).

In 2011, Bu et al. investigated the Drazin inverse of the complex matrix
(

E F
I 0

)
under the condition

EF = FE (see [3, Theorem 3.3]).
In 2013, Xu, Song and Zhang studied an expression of the Drazin inverse of the operator matrix(

E F
I 0

)
∈ M2

(
B(X)

)
under the condition EF = FE, where B(X) is the Banach algebra of bounded linear

operators on a complex Banach space X (see [18, Theorem 3.8]).
In 2016, Yu, Wang and Deng characterized the Drazin invertibility of the anti-triangular operator matrix(

E F
I 0

)
∈M2

(
B(H)

)
under the conditions FπEFD = 0, FπEF = FπFE, where B(H) is the Banach algebra of

bounded linear operators on a complex Hilbert spaceH (see [20, Theorem 4.1]).
Recently, many authors have explored various conditions under which representations of the Drazin (or

g-Drazin) inverse of such anti-triangular matrices can be established. For additional references, we refer
the reader to [11, 12, 22, 24, 25, 27].

The motivation of this paper is to investigate the representation of the g-Drazin inverse of the anti-

triangular matrix M =

(
a b
1 0

)
in a Banach algebra A. We begin by examining the solvability of a

quadratic equation in the Banach algebraA using Catalan numbers Cn. Next, we study the representation
of M under the conditions ab = ba, a ∈ A is invertible and b ∈ Aqnil. We then employ the Morita context ring
and the Pierce decomposition of a Banach algebra element as tools to extend the previous special case to
the more general conditions ab = ba, a, b ∈ Ad. Consequently, the known results are extended to a broader
context within a Banach algebra. In particular, we establish a new formula for the Drazin inverse of an
anti-triangular matrix, employing Catalan numbers as a key tool. This formula offers a new approach to
addressing related difference equation problems in matrix structure.

Throughout this paper, all Banach algebras are considered to be complex and possess an identity element.
We use A−1,AD and Ad to stand for the sets of all invertible, Drazin invertible and g-Drazin invertible
elements in A, respectively. For a ∈ Ad, we define aπ = 1 − aad. Let a, p2 = p ∈ A. Then a has the Pierce

decomposition given by pap + papπ + pπap + pπapπ, which we denote in matrix form as
(

pap papπ

pπap pπapπ

)
p
.

The inverse of x in the corner ring pAp is denoted by x−1
p .

2. Key lemmas

In this section, we present some necessary lemmas which will be used in the sequel. We start by

Lemma 2.1. Let a, b ∈ Ad. If ab = 0, then a + b ∈ Ad and

(a + b)d =

∞∑
i=0

(ad)i+1bibπ +
∞∑

i=0

aiaπ(bd)i+1.

Proof. See [6, Lemma 15.2.2].

Lemma 2.2. Let a, b ∈ Ad. If ab2 = 0 and aba = 0, then a + b ∈ Ad and

(a + b)d =
∞∑

i=0
(bd)i+1aiaπ +

∞∑
i=0

bibπ(ad)i+1 +
∞∑

i=0
bibπ(ad)i+2b

+
∞∑

i=0
(bd)i+3ai+1aπb − bdadb − (bd)2aadb.
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Proof. See [6, Corollary 15.2.4] and [19, Theorem 2.1].

Lemma 2.3. Let

x =
(

a 0
c b

)
or

(
b c
0 a

)
.

Then

xd =

(
ad 0
z bd

)
or

(
bd z
0 ad

)
,

where z =
∞∑

i=0
(bd)i+2caiaπ +

∞∑
i=0

bibπc(ad)i+2
− bdcad.

Proof. See [25, Lemma 2.3].

Lemma 2.4. Let A be a Banach algebra and a ∈ A−1, b ∈ Aqnil. If ab = ba, then the equation ax + x2 = b has a
solution x such that a + x ∈ A−1, x ∈ Aqnil.

Proof. Let x =
∞∑

i=0
ciaαi bi+1, where ci ∈ C, αi ∈ Z. Choose αi = −(2i + 1), Since ab = ba, we have

ax + x2 =
∞∑

i=0
ciaαi+1bi+1 + [

∞∑
i=0

ciaαi bi+1][
∞∑

i=0
ciaαi bi+1]

= c0aα0+1b + [c1aα1+1 + c2
0a2α0 ]b2

+ [c2aα2+1 + c0c1aα0+α1 + c1c0aα1+α0 ]b3

+ [c3aα3+1 + c0c2aα0+α2 + c1c1aα1+α1 + c2c0aα2+α0 ]b4

+ · · ·

= c0b + [c1 + c2
0]a−2b2 + [c2 + c0c1 + c1c0]a−4b3

+ [c3 + c0c2 + c1c1 + c2c0]a−6b4 + · · ·
= b,

hence, we choose

c0 = 1, c1 = −1, c2 = 2, c3 = −5, c4 = 14, c5 = −42, · · ·
ci = −(c0ci−1 + c1ci−2 + · · · + ci−1c0)(i ∈N).

Let {Cn} be the series of Catalan numbers, i.e.,

C0 = 1,C1 = 1,C2 = 2,C3 = 5,C4 = 14,C5 = 42, · · · ,
Cn = C0Cn−1 + · · · + Cn−1C0(n ∈N).

Then c0 = C0, c1 = −C1. By induction, we claim that c2n = C2n, c2n+1 = −C2n+1(n ≥ 0). Hence, |cn| = Cn(n ≥ 1).
By using the asymptotic expression of the Catalan numbers Cn, we have

lim
n→∞

Cn/
( 4n

√
π(n)

3
2

)
= 1.

Therefore
lim
n→∞

n
√
|cn| = lim

n→∞

4

π
1

2n ( n
√

n)
3
2

= 4.

Since b ∈ Aqnil, we have lim
n→∞

∥ bn
∥

1
n= 0. Since

n
√
∥ cna−(2n+1)bn+1 ∥ ≤

n
√
|cn| ∥ a−1

∥
2+ 1

n
n
√
∥ b ∥ ∥ bn

∥
1
n ,

we deduce that
lim
n→∞

n
√
∥ cna−(2n+1)bn+1 ∥ = 0.
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This implies that
∞∑

i=0
cia−(2i+1)bi+1 absolutely converges.

Accordingly, the equation ax+x2 = b has a solution x =
∞∑

i=0
cia−(2i+1)bi+1,where c0 = 1, ck+1 = −

k∑
i=0

cick−i(k ≥

0). Clearly, cn = (−1)nCn = (−1)n (2n)!
n!(n+1)! . Since [

∞∑
i=0

cia−(2i+1)bi]b = b[
∞∑

i=0
cia−(2i+1)bi] and b ∈ Aqnil, it follows

by [6, Lemma 15.1.1] that x = [
∞∑

i=0
cia−(2i+1)bi]b ∈ Aqnil. As a−1x = xa−1, we see that 1 + a−1x ∈ A−1; hence,

a + x = a[1 + a−1x] ∈ A−1. This completes the proof.

Lemma 2.5. LetA be a Banach algebra and M =
(

a b
1 0

)
with a ∈ A−1, b ∈ Aqnil. If ab = ba, then M ∈ M2(A)d

and

Md =

(
(a + x)−1

− xy (a + x)−1x − xyx
y yx

)
,

where x =
∞∑

i=0
(−1)i (2i)!

i!(i+1)! a
−(2i+1)bi+1, y =

∞∑
i=0

(−1)i(a + x)−(i+2)xi.

Proof. In view of Lemma 2.4, the equation ax + x2 = b has a solution x such that a + x ∈ A−1 and x ∈ Aqnil.
Here,

x =
∞∑

i=0

(−1)i (2i)!
i!(i + 1)!

a−(2i+1)bi+1.

It is easy to verify that

M =
(

1 −x
0 1

) (
a + x 0

1 −x

) (
1 x
0 1

)
.

Since x ∈ Aqnil, we see that a + x ∈ A−1. Then
(

a + x 0
1 x

)
has g-Drazin inverse. Therefore M has g-Drazin

inverse. Exactly, we have

Md =

(
1 −x
0 1

) (
a + x 0

1 −x

)d (
1 x
0 1

)
=

(
1 −x
0 1

) (
(a + x)−1 0

y 0

) (
1 x
0 1

)
=

(
(a + x)−1

− xy (a + x)−1x − xyx
y yx

)
,

where y =
∞∑

i=0
(−1)i(a + x)−(i+2)xi.

Lemma 2.6. LetA be a Banach algebra and M =
(

a b
1 0

)
with a ∈ A, b ∈ A−1. Then M ∈M2(A)−1 and

M−1 =

(
0 1

b−1
−b−1a

)
.

Proof. Straightforward.

Let p2 = p ∈ A and letA1 = pAp,A2 = pπApπ. Let T be the ring of Morita context (M2(A1),M2(A2), φ, ψ),
i.e.,

T =

 M2(A1) M2

(
pApπ

)
M2

(
pπAp

)
M2(A2)


(φ,ψ)
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with the bimodule homomorphisms of the form

φ : M2

(
pApπ

)
×M2

(
pπAp

)
→M2(A1),

ψ : M2

(
pπAp

)
×M2

(
pApπ

)
→M2(A2).

Then we have a natural isomorphism of rings given by

ρ : M2(A) � T,(
a11 a12
a21 a22

)
7→


(

pa11p pa12p
pa21p pa22p

) (
pa11pπ pa12pπ

pa21pπ pa22pπ

)
(

pπa11p pπa12p
pπa21p pπa22p

) (
pπa11pπ pπa12pπ

pπa21pπ pπa22pπ

)


(φ,ψ)

.

Lemma 2.7. Let A be a Banach algebra and M =
(

a b
1 0

)
with a ∈ A−1, b ∈ Ad. If ab = ba, then M ∈ M2(A)d

and

Md =

(
z11 z12
z21 z22

)
with zi j formulated by

z11 = (abπ + x)−1bπ − xy,
z12 = bbd + (abπ + x)−1bπx − xyx,
z21 = bd + y,
z22 = −abd + yx,

where
x =

∞∑
i=0

(−1)i (2i)!
i!(i+1)! a

−(2i+1)bi+1bπ,

y =
∞∑

i=0
(−1)i(abπ + x)−(i+2)bπxi.

Proof. Let p = bbd. Since ab = ba, we have

a =
(

a1 0
0 a2

)
p
, b =

(
b1 0
0 b2

)
p
∈ A.

We note that every Pierce matrix relative to p is an element inA. Then

M =


(

a1 0
0 a2

) (
b1 0
0 b2

)
(

p 0
0 pπ

) (
0 0
0 0

)
 ∈M2(A).

SetA1 = pAp andA2 = pπApπ. Hence, we have

ρ(M) =
(

M1 0
0 M2

)
(φ,ψ)

,

where

M1 =

(
a1 b1
p 0

)
∈M2(A1),M2 =

(
a2 b2
pπ 0

)
∈M2(A2).

Claim 1. M1 ∈M2(A1)d. Clearly, a1 = abbd, b1 = b2bd
∈ A

−1
1 . By Lemma 2.6, we have

Md
1 =M−1

1 =

(
0 bbd

b−1
1 −b−1

1 a1

)
.
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Claim 2. M2 ∈M2(A2)d. Clearly, a2 = abπ ∈ A−1
2 , b2 = bbπ ∈ Aqnil

2 . By virtue of Lemma 2.5, we have

Md
2 =

(
(a2 + x)−1bπ − xy (a2 + x)−1bπx − xyx

y yx

)
,

where x =
∞∑

i=0
(−1)i (2i)!

i!(i+1)! a
−(2i+1)
2 bi+1

2 , y =
∞∑

i=0
(−1)i(a2 + x)−(i+2)bπxi. Therefore ρ(M) ∈ Td and

[ρ(M)]d =


(

0 bbd

b−1
1 −b−1

1 a1

) (
0 0
0 0

)
(

0 0
0 0

) (
(a2 + x)−1bπ − xy (a2 + x)−1bπx − xyx

y yx

)


(φ,ψ)

.

Thus, M ∈M2(A)d. Obviously, we have b−1
1 = (b2bd)−1 = bd

∈ A1 and b1a1 = b2bdabbd = abd. By virtue of [23,
Lemma 3.3], we have

Md =


(

0 0
0 (a2 + x)−1bπ − xy

) (
bbd 0
0 (a2 + x)−1bπx − xyx

)
(

b−1
1 0
0 y

) (
−b−1

1 a1 0
0 yx

)


=

(
z11 z12
z21 z22

)
with zi j are formulated by

z11 = (abπ + x)−1bπ − xy,
z12 = bbd + (abπ + x)−1bπx − xyx,
z21 = bd + y,
z22 = −abd + yx,

where
x =

∞∑
i=0

(−1)i (2i)!
i!(i+1)! a

−(2i+1)bi+1bπ,

y =
∞∑

i=0
(−1)i(abπ + x)−(i+2)bπxi.

This completes the proof.

Lemma 2.8. Let A be a Banach algebra and M =
(

a b
1 0

)
with a ∈ Aqnil, b ∈ Ad. If ab = ba, then M ∈ M2(A)d

and

Md =

(
0 bbd

bd
−abd

)
.

Proof. Let X =
(

0 bbd

bd
−abd

)
. One directly verifies that

MX =

(
a b
1 0

) (
0 bbd

bd
−abd

)
=

(
bbd 0
0 bbd

)
=

(
0 bbd

bd
−abd

) (
a b
1 0

)
= XM,

MX2 = (MX)X = X,

M − (MX)M =

(
a b
1 0

)
−

(
bbd 0
0 bbd

) (
a b
1 0

)
=

(
a(1 − bbd) b − b2bd

1 − bbd 0

)
∈M2(A)qnil.

Therefore M has g-Drazin inverse and Md = X, as desired.
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3. Main Results

We now present the main results of this paper, which extend [18, Theorem 3.8] and [20, Theorem 4.1]
to anti-triangular matrices in Banach algebras.

Theorem 3.1. LetA be a Banach algebra and M =
(

a b
1 0

)
with a, b ∈ Ad. If ab = ba, then M ∈M2(A)d and

Md =

(
α β
γ δ

)
with α, β, γ, δ formulated by

α = (a2adbπ + x)−1
aad − xy,

β = aadbbd + (a2adbπ + x)−1
aad x − xyx + aπbbd,

γ = aadbd + y + aπbd,
δ = −a2adbd + yx − aaπbd.

where
x =

∞∑
i=0

(−1)i (2i)!
i!(i+1)! (a

d)2i+1bi+1bπ,

y =
∞∑

i=0
(−1)i[(a2adbπ + x)−1

aad ]i+2xi.

Proof. Let q = aad. Since ab = ba, we have

a =
(

a1 0
0 a2

)
q
, b =

(
b1 0
0 b2

)
q
.

Then

M =


(

a1 0
0 a2

) (
b1 0
0 b2

)
(

q 0
0 qπ

) (
0 0
0 0

)
 ∈M2(A).

Set A1 = qAq and A2 = qπAqπ. By using the isomorphism ρ between the matrix ring M2(A) and the
the ring of Morita context (A1,A2, φ, ψ) mentioned above, we have

ρ(M) =
(

M1 0
0 M2

)
(φ,ψ)

,

where

M1 =

(
a1 b1
q 0

)
∈M2(A1),M2 =

(
a2 b2
qπ 0

)
∈M2(A2).

Claim 1. M1 ∈M2(A1)d. Obviously, a1 ∈ A
−1
1 , b1 ∈ A

d
1. In view of Lemma 2.7, we have

Md
1 =

(
z11 z12
z21 z22

)
with zi j are formulated by

z11 = (a2adbπ + x)−1
aad − xy,

z12 = aadbbd + (a2adbπ + x)−1
aad x − xyx,

z21 = aadbd + y,
z22 = −a2adbd + yx,
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where

x =
∞∑

i=0
(−1)i (2i)!

i!(i+1)! (a
d)2i+1bi+1bπ,

y =
∞∑

i=0
(−1)i[(a2adbπ + x)−1

aad ]i+2xi.

Claim 2. M2 ∈M2(A2)d. Obviously, a2 ∈ A
qnil
2 , b2 ∈ A

d
2. By virtue of Lemma 2.8, we derive that

Md
2 =

(
0 b2bd

2
bd

2 −a2bd
2

)
.

Therefore ρ(M) ∈ Td and

[ρ(M)]d =

(
Md

1 0
0 Md

2

)
(φ,ψ)

.

Therefore

Md =

(
α β
γ δ

)
∈M2(A),

where

α =

(
z11 0
0 0

)
p
= z11,

β =

(
z12 0
0 b2bd

2

)
p
= z12 + aπbbd,

γ =

(
z21 0
0 bd

2

)
p
= z21 + aπbd,

δ =

(
z22 0
0 −a2bd

2

)
p
= z22 − aaπbd.

This completes the proof.

Corollary 3.2. LetA be a Banach algebra and M =
(

a b
1 0

)
with a, b ∈ AD. If ab = ba, then M ∈M2(A)D and

MD =

(
α β
γ δ

)
with α, β, γ, δ are formulated by

α = (a2aDbπ + x)−1
aaD − xy,

β = aaDbbD + (a2aDbπ + x)−1
aaD x − xyx + aπbbD,

γ = aaDbD + y + aπbD,
δ = −a2aDbD + yx − aaπbD.

where

x =
ind(b)−1∑

i=0
(−1)i (2i)!

i!(i+1)! (a
D)2i+1bi+1bπ,

y =
ind(b)−1∑

i=0
(−1)i[(a2aDbπ + x)−1

aaD ]i+2xi.

Proof. Evidently, z ∈ AD if and only if z ∈ Ad and a − a2ad
∈ A is nilpotent. In this case, zD = zd. Therefore

we complete the proof by Theorem 3.1.
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Since every complex matrix can be viewed as a matrix within the Banach algebra Cn×n comprising
all n × n matrices, Corollary 3.2 introduces a new formula for the Drazin inverse of an anti-triangular
complex matrix, utilizing Catalan numbers as a pivotal tool. This formula presents a fresh method for
tackling related difference equation problems concerning matrix structures. We give a numerical example
to illustrate Corollary 3.2.

Example 3.3.

Let M =
(

A B
I3 0

)
∈ C6×6, where

A =

 1 0 0
0 0 0
0 −1 0

 ,B =
 0 0 0

0 0 0
0 1 0

 .
Then we have

AD =

 1 0 0
0 0 0
0 0 0

 ,BD = 0,

Aπ =

 0 0 0
0 1 0
0 0 1

 ,Bπ = I3.

Since AB = BA = 0, we have

X =
ind(B)−1∑

i=0
(−1)i (2i)!

i!(i+1)! (A
D)2i+1Bi+1Bπ = 0,

Y =
ind(B)−1∑

i=0
(−1)i[(A2ADBπ + X)−1

AAD ]i+2Xi = AD.

Hence,
Λ = (A2ADBπ + X)−1

AAD − XY = AD,
Ξ = AADBBD + (A2ADBπ + X)−1

AAD X − XYX + AπBBD = 0,
Γ = AADBD + Y + AπBD = AD,
∆ = −A2ADBD + YX − AAπBD = 0.

By virtue of Corollary 3.2, we have

MD =

(
Λ Ξ
Γ ∆

)
=

(
AD 0
AD 0

)
.

We are now ready to prove:

Theorem 3.4. LetA be a Banach algebra and M =
(

a b
1 0

)
with a, b, bπa ∈ Ad. If bπabd = 0 and bπ(ab) = bπ(ba),

then M ∈M2(A)d and

Md =

∞∑
i=0

Pi[I − PPd](Qd)i+1,

where

P =

(
bπa bπb
bπ 0

)
,Pd =

(
α β
γ δ

)
,

Q =

(
bbda b2bd

bbd 0

)
,Qd =

(
0 bbd

bd
−bda

)
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with α, β, γ, δ formulated by
α = (bπa2ad + x)−1

bπaad − xy,
β = (bπa2ad + x)−1

bπaad x − xyx,
γ = y,
δ = yx.

where
x =

∞∑
i=0

(−1)i (2i)!
i!(i+1)! (b

πad)2i+1bi+1bπ,

y =
∞∑

i=0
(−1)i[(bπa2ad + x)−1

bπaad ]i+2xi.

Proof. Let M = P +Q, where

P =
(

bπa bπb
bπ 0

)
,Q =

(
bbda b2bd

bbd 0

)
.

Step 1. P has g-Drazin inverse. By hypothesis, we verify that

(bπa)(bπb) = bπ(ab) = bπ(ba) = (bπb)(bπa).

In light of Theorem 3.1, we have

Pd =

(
α β
γ δ

)
with α, β, γ, δ are formulated by

α = (bπa2ad + x)−1
bπaad − xy,

β = (bπa2ad + x)−1
bπaad x − xyx,

γ = y,
δ = yx.

where
x =

∞∑
i=0

(−1)i (2i)!
i!(i+1)! (b

πad)2i+1bi+1bπ,

y =
∞∑

i=0
(−1)i[(bπa2ad + x)−1

bπaad ]i+2xi.

Step 2. Q has g-Drazin inverse. By virtue of Lemma 2.6,

Qd =

(
0 bbd

bd
−bda

)
.

Step 3. Since PQ = 0, it follows by Lemma 2.1 that

Md = (P +Q)d

=
∞∑

i=0
(Pd)i+1QiQπ +

∞∑
i=0

PiPπ(Qd)i+1

=
∞∑

i=0
PiPπ(Qd)i+1.

This completes the proof.

Corollary 3.5. LetA be a Banach algebra and M =
(

a b
1 0

)
with a, b, bπa ∈ AD. If bπabD = 0 and bπ(ab) = bπ(ba),

then M ∈M2(A)D and

MD =

ind(P)∑
i=0

Pi[I − PPD](QD)i+1,
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where

P =

(
bπa bπb
bπ 0

)
,PD =

(
α β
γ δ

)
,

Q =

(
bbDa b2bD

bbD 0

)
,QD =

(
0 bbD

bD
−bDa

)
with α, β, γ, δ formulated by

α = (bπa2aD + x)−1
bπaaD − xy,

β = (bπa2aD + x)−1
bπaaD x − xyx,

γ = y,
δ = yx.

where
x =

∞∑
i=0

(−1)i (2i)!
i!(i+1)! (b

πaD)2i+1bi+1bπ,

y =
∞∑

i=0
(−1)i[(bπa2aD + x)−1

bπaaD ]i+2xi.

Proof. This is the specific information obtained from Theorem 3.4.

It is convenient at this stage to derive the following:

Theorem 3.6. LetA be a Banach algebra and M =
(

a b
c d

)
with a, d, bc ∈ Ad. If abc = bca, bdc = 0 and bd2 = 0,

then M ∈M2(A)d and

Md =
∞∑

i=0
(Qd)i+1Pi(I − PPd) +

∞∑
i=0

QiQπ(Pd)i+1 +
∞∑

i=0
Qi(I −QQd)(Pd)i+2Q

+
∞∑

i=0
(Qd)i+3Pi+1(I − PPd)Q −QdPdQ − (Qd)2PPdQ,

where

P =

(
a b
c 0

)
,Pd =

(
α2a + αβ + βγa + βδ α2b + βγb

cγαa + cγβ + cδγa + cδ2 cγαb + cδγb

)
;

Q =

(
0 0
0 d

)
,Qd =

(
0 0
0 dd

)
.

with α, β, γ, δ formulated by

α = (a2ad(bc)π + x)−1
aad − xy,

β = aad(bc)(bc)d + (a2ad(bc)π + x)−1
aad x − xyx + aπ(bc)(bc)d,

γ = aad(bc)d + y + aπ(bc)d,
δ = −a2ad(bc)d + yx − aaπ(bc)d.

where
x =

∞∑
i=0

(−1)i (2i)!
i!(i+1)! (a

d)2i+1(bc)i+1(bc)π,

y =
∞∑

i=0
(−1)i[(a2ad(bc)π + x)−1

aad ]i+2xi.

Proof. Let P =
(

a b
c 0

)
and Q =

(
0 0
0 d

)
. In view of Theorem 3.1, we have

(
a bc
1 0

)d

=

(
α β
γ δ

)
.
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Here, α, β, γ, δ are formulated by

α = (a2ad(bc)π + x)−1
aad − xy,

β = aad(bc)(bc)d + (a2ad(bc)π + x)−1
aad x − xyx + aπ(bc)(bc)d,

γ = aad(bc)d + y + aπ(bc)d,
δ = −a2ad(bc)d + yx − aaπ(bc)d.

where
x =

∞∑
i=0

(−1)i (2i)!
i!(i+1)! (a

d)2i+1(bc)i+1(bc)π,

y =
∞∑

i=0
(−1)i[(a2ad(bc)π + x)−1

aad ]i+2xi.

One easily verifies that (
a bc
1 0

)
=

(
a b
1 0

) (
1 0
0 c

)
,(

a b
c 0

)
=

(
1 0
0 c

) (
a b
1 0

)
.

By using Cline’s formula (see [16, Theorem 2.2]), P has g-Drazin inverse and

Pd =

(
1 0
0 c

) [ ( a bc
1 0

)d ]2
(

a b
1 0

)
=

(
1 0
0 c

) (
α β
γ δ

)2 (
a b
1 0

)
=

(
α β
cγ cδ

) (
αa + β αb
γa + δ γb

)
=

(
α2a + αβ + βγa + βδ α2b + βγb

cγαa + cγβ + cδγa + cδ2 cγαb + cδγb

)
.

Obviously, we have

Qd =

(
0 0
0 dd

)
,Qπ =

(
1 0
0 dπ

)
.

One easily checks that

PQ2 =

(
a b
c 0

) (
0 0
0 d2

)
=

(
0 bd2

0 0

)
= 0,

PQP =

(
a b
c 0

) (
0 0
0 d

) (
a b
c 0

)
=

(
bdc 0
0 0

)
= 0.

According to Lemma 2.2, we derive that

Md = (P +Q)d

=
∞∑

i=0
(Qd)i+1PiPπ +

∞∑
i=0

QiQπ(Pd)i+1 +
∞∑

i=0
QiQπ(Pd)i+2Q

+
∞∑

i=0
(Qd)i+3Pi+1PπQ −QdPdQ − (Qd)2PPdQ,

as asserted.
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