

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

New representations of the g-Drazin inverse for anti-triangular matrices

Huanyin Chena

^a School of Big Data, Fuzhou University of International Studies and Trade, Fuzhou 350202, China

Abstract. We provide representations for the generalized Drazin inverse of an anti-triangular matrix of the form $\begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ in a Banach algebra $\mathcal A$ with commuting elements $a,b\in\mathcal A$. In particular, a new formula for the Drazin inverse of an anti-triangular matrix is established by employing Catalan numbers.

1. Introduction

Let \mathcal{A} be a Banach algebra with identity 1 and $M_2(\mathcal{A})$ be the Banach algebra with identity I_2 of all 2×2 matrices over \mathcal{A} . An element $a \in \mathcal{A}$ has generalized Drazin inverse (g-Drazin inverse) if there exists $x \in \mathcal{A}$ such that

$$ax^2 = x$$
, $ax = xa$, $a - xa^2 \in \mathcal{A}^{qnil}$.

If such an x exists, it is unique and is denoted by a^d . Here, $\mathcal{A}^{qnil} = \{x \in \mathcal{A} \mid 1 + \lambda x \in \mathcal{A} \text{ is invertible for all } \lambda \in \mathbb{C}\}$. It is well known that $x \in \mathcal{A}^{qnil}$ if and only if $\lim_{n \to \infty} \|x^n\|^{\frac{1}{n}} = 0$. If we replace the quasinilpotent set \mathcal{A}^{qnil} with the set of all nilpotent elements in \mathcal{A} , we refer to the unique x as the Drazin inverse of a, and denote it by a^D . Both the Drazin and g-Drazin inverses play significant roles in ring and matrix theory (see [6]) and graph theory (see [15]).

It is intriguing to investigate the Drazin and g-Drazin inverses of the anti-triangular matrix $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \in M_2(\mathcal{A})$. One motivation for exploring this problem is the quest for a closed-form solution to systems of second-order linear differential equations, which can be expressed in the following vector-valued form: Ax''(t) + Bx'(t) + Cx(t) = 0 where $A, B, C \in \mathbb{C}^{n \times n}$ (with A being potentially singular) and x is an \mathbb{C}^n -valued function. Clearly, the solutions to singular systems of differential equations are determined by the Drazin inverse of the aforementioned anti-triangular matrix M (see [3, 4]). Recently, the generalized Drazin inverse of block operator matrices is used to find general solutions for Cauchy problems for Riccati and Lyapunov operator differential equations (see [1]). Although the Drazin and g-Drazin inverses of anti-triangular matrices are valuable tools in the study of differential equations, finding representations for such generalized inverses remains a challenging task.

2020 Mathematics Subject Classification. Primary 15A09; Secondary 39B42, 16U90.

Keywords. Drazin inverse; g-Drazin inverse; anti-triangular matrix; quadratic equation; Banach algebra.

Received: 06 May 2025; Revised: 01 July 2025; Accepted: 28 July 2025

Communicated by Dijana Mosić

Email address: huanyinchenfz@163.com (Huanyin Chen)

ORCID iD: https://orcid.org/0000-0001-8184-1327 (Huanyin Chen)

In 2005, Castro-González and Dopazo gave the representations of the Drazin inverse for a class of complex matrices $\begin{pmatrix} I & F \\ I & 0 \end{pmatrix}$ (see [10, Theorem 3.3]).

In 2011, Bu et al. investigated the Drazin inverse of the complex matrix $\begin{pmatrix} E & F \\ I & 0 \end{pmatrix}$ under the condition EF = FE (see [3, Theorem 3.3]).

In 2013, Xu, Song and Zhang studied an expression of the Drazin inverse of the operator matrix $\begin{pmatrix} E & F \\ I & 0 \end{pmatrix} \in M_2(\mathcal{B}(X))$ under the condition EF = FE, where $\mathcal{B}(X)$ is the Banach algebra of bounded linear operators on a complex Banach space X (see [18, Theorem 3.8]).

In 2016, Yu, Wang and Deng characterized the Drazin invertibility of the anti-triangular operator matrix $\begin{pmatrix} E & F \\ I & 0 \end{pmatrix} \in M_2(\mathcal{B}(\mathcal{H}))$ under the conditions $F^{\pi}EF^{D} = 0$, $F^{\pi}EF = F^{\pi}FE$, where $\mathcal{B}(\mathcal{H})$ is the Banach algebra of bounded linear operators on a complex Hilbert space \mathcal{H} (see [20, Theorem 4.1]).

Recently, many authors have explored various conditions under which representations of the Drazin (or g-Drazin) inverse of such anti-triangular matrices can be established. For additional references, we refer the reader to [11, 12, 22, 24, 25, 27].

The motivation of this paper is to investigate the representation of the g-Drazin inverse of the anti-triangular matrix $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ in a Banach algebra \mathcal{A} . We begin by examining the solvability of a quadratic equation in the Banach algebra \mathcal{A} using Catalan numbers C_n . Next, we study the representation of M under the conditions ab = ba, $a \in \mathcal{A}$ is invertible and $b \in \mathcal{A}^{qnil}$. We then employ the Morita context ring and the Pierce decomposition of a Banach algebra element as tools to extend the previous special case to the more general conditions ab = ba, a, $b \in \mathcal{A}^d$. Consequently, the known results are extended to a broader context within a Banach algebra. In particular, we establish a new formula for the Drazin inverse of an anti-triangular matrix, employing Catalan numbers as a key tool. This formula offers a new approach to addressing related difference equation problems in matrix structure.

Throughout this paper, all Banach algebras are considered to be complex and possess an identity element. We use \mathcal{A}^{-1} , \mathcal{A}^D and \mathcal{A}^d to stand for the sets of all invertible, Drazin invertible and g-Drazin invertible elements in \mathcal{A} , respectively. For $a \in \mathcal{A}^d$, we define $a^\pi = 1 - aa^d$. Let $a, p^2 = p \in \mathcal{A}$. Then a has the Pierce decomposition given by $pap + pap^\pi + p^\pi ap + p^\pi ap^\pi$, which we denote in matrix form as $\begin{pmatrix} pap & pap^\pi \\ p^\pi ap & p^\pi ap^\pi \end{pmatrix}_p$. The inverse of x in the corner ring $p\mathcal{A}p$ is denoted by x_p^{-1} .

2. Key lemmas

In this section, we present some necessary lemmas which will be used in the sequel. We start by

Lemma 2.1. Let $a, b \in \mathcal{A}^d$. If ab = 0, then $a + b \in \mathcal{A}^d$ and

$$(a+b)^d = \sum_{i=0}^{\infty} (a^d)^{i+1} b^i b^{\pi} + \sum_{i=0}^{\infty} a^i a^{\pi} (b^d)^{i+1}.$$

Proof. See [6, Lemma 15.2.2]. □

Lemma 2.2. Let $a, b \in \mathcal{A}^d$. If $ab^2 = 0$ and aba = 0, then $a + b \in \mathcal{A}^d$ and

$$(a+b)^{d} = \sum_{i=0}^{\infty} (b^{d})^{i+1} a^{i} a^{\pi} + \sum_{i=0}^{\infty} b^{i} b^{\pi} (a^{d})^{i+1} + \sum_{i=0}^{\infty} b^{i} b^{\pi} (a^{d})^{i+2} b$$
$$+ \sum_{i=0}^{\infty} (b^{d})^{i+3} a^{i+1} a^{\pi} b - b^{d} a^{d} b - (b^{d})^{2} a a^{d} b.$$

Proof. See [6, Corollary 15.2.4] and [19, Theorem 2.1]. \square

Lemma 2.3. Let

$$x = \left(\begin{array}{cc} a & 0 \\ c & b \end{array}\right) \, or \, \left(\begin{array}{cc} b & c \\ 0 & a \end{array}\right).$$

Then

$$x^d = \left(\begin{array}{cc} a^d & 0 \\ z & b^d \end{array}\right) \ or \ \left(\begin{array}{cc} b^d & z \\ 0 & a^d \end{array}\right),$$

where
$$z = \sum\limits_{i=0}^{\infty} (b^d)^{i+2} c a^i a^{\pi} + \sum\limits_{i=0}^{\infty} b^i b^{\pi} c (a^d)^{i+2} - b^d c a^d$$
.

Proof. See [25, Lemma 2.3]. □

Lemma 2.4. Let \mathcal{A} be a Banach algebra and $a \in \mathcal{A}^{-1}$, $b \in \mathcal{A}^{qnil}$. If ab = ba, then the equation $ax + x^2 = b$ has a solution x such that $a + x \in \mathcal{A}^{-1}$, $x \in \mathcal{A}^{qnil}$.

Proof. Let $x = \sum_{i=0}^{\infty} c_i a^{\alpha_i} b^{i+1}$, where $c_i \in \mathbb{C}$, $\alpha_i \in \mathbb{Z}$. Choose $\alpha_i = -(2i+1)$, Since ab = ba, we have

$$\begin{array}{lll} ax+x^2&=&\sum\limits_{i=0}^{\infty}c_ia^{\alpha_i+1}b^{i+1}+\big[\sum\limits_{i=0}^{\infty}c_ia^{\alpha_i}b^{i+1}\big]\big[\sum\limits_{i=0}^{\infty}c_ia^{\alpha_i}b^{i+1}\big]\\ &=&c_0a^{\alpha_0+1}b+\big[c_1a^{\alpha_1+1}+c_0^2a^{2\alpha_0}\big]b^2\\ &+&\big[c_2a^{\alpha_2+1}+c_0c_1a^{\alpha_0+\alpha_1}+c_1c_0a^{\alpha_1+\alpha_0}\big]b^3\\ &+&\big[c_3a^{\alpha_3+1}+c_0c_2a^{\alpha_0+\alpha_2}+c_1c_1a^{\alpha_1+\alpha_1}+c_2c_0a^{\alpha_2+\alpha_0}\big]b^4\\ &+&\cdots\\ &=&c_0b+\big[c_1+c_0^2\big]a^{-2}b^2+\big[c_2+c_0c_1+c_1c_0\big]a^{-4}b^3\\ &+&\big[c_3+c_0c_2+c_1c_1+c_2c_0\big]a^{-6}b^4+\cdots\\ &=&b, \end{array}$$

hence, we choose

$$c_0 = 1, c_1 = -1, c_2 = 2, c_3 = -5, c_4 = 14, c_5 = -42, \cdots$$

 $c_i = -(c_0c_{i-1} + c_1c_{i-2} + \cdots + c_{i-1}c_0)(i \in \mathbb{N}).$

Let $\{C_n\}$ be the series of Catalan numbers, i.e.,

$$C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, C_5 = 42, \cdots,$$

 $C_n = C_0 C_{n-1} + \cdots + C_{n-1} C_0 (n \in \mathbb{N}).$

Then $c_0 = C_0$, $c_1 = -C_1$. By induction, we claim that $c_{2n} = C_{2n}$, $c_{2n+1} = -C_{2n+1}$ ($n \ge 0$). Hence, $|c_n| = C_n$ ($n \ge 1$). By using the asymptotic expression of the Catalan numbers C_n , we have

$$\lim_{n\to\infty} C_n / \left(\frac{4^n}{\sqrt{\pi}(n)^{\frac{3}{2}}}\right) = 1.$$

Therefore

$$\lim_{n \to \infty} \sqrt[n]{|c_n|} = \lim_{n \to \infty} \frac{4}{\pi^{\frac{1}{2n}} (\sqrt[n]{n})^{\frac{3}{2}}} = 4.$$

Since $b \in \mathcal{A}^{qnil}$, we have $\lim_{n \to \infty} ||b^n||^{\frac{1}{n}} = 0$. Since

$$\sqrt[n]{\|\,c_n a^{-(2n+1)} b^{n+1}\,\|} \leq \sqrt[n]{|c_n|} \, \|\, a^{-1}\,\|^{2+\frac{1}{n}} \, \sqrt[n]{\|\,b\,\|} \, \|\, b^n\,\|^{\frac{1}{n}},$$

we deduce that

$$\lim_{n\to\infty} \sqrt[n]{\|c_n a^{-(2n+1)} b^{n+1}\|} = 0.$$

This implies that $\sum_{i=0}^{\infty} c_i a^{-(2i+1)} b^{i+1}$ absolutely converges.

Accordingly, the equation $ax + x^2 = b$ has a solution $x = \sum_{i=0}^{\infty} c_i a^{-(2i+1)} b^{i+1}$, where $c_0 = 1$, $c_{k+1} = -\sum_{i=0}^{k} c_i c_{k-i} (k \ge 0)$. Clearly, $c_n = (-1)^n C_n = (-1)^n \frac{(2n)!}{n!(n+1)!}$. Since $[\sum_{i=0}^{\infty} c_i a^{-(2i+1)} b^i] b = b [\sum_{i=0}^{\infty} c_i a^{-(2i+1)} b^i]$ and $b \in \mathcal{A}^{qnil}$, it follows by [6, Lemma 15.1.1] that $x = [\sum_{i=0}^{\infty} c_i a^{-(2i+1)} b^i] b \in \mathcal{A}^{qnil}$. As $a^{-1}x = xa^{-1}$, we see that $1 + a^{-1}x \in \mathcal{A}^{-1}$; hence, $a + x = a[1 + a^{-1}x] \in \mathcal{A}^{-1}$. This completes the proof. \square

Lemma 2.5. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a \in \mathcal{A}^{-1}$, $b \in \mathcal{A}^{qnil}$. If ab = ba, then $M \in M_2(\mathcal{A})^d$ and

$$M^{d} = \begin{pmatrix} (a+x)^{-1} - xy & (a+x)^{-1}x - xyx \\ y & yx \end{pmatrix},$$

where
$$x = \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a^{-(2i+1)} b^{i+1}$$
, $y = \sum_{i=0}^{\infty} (-1)^i (a+x)^{-(i+2)} x^i$.

Proof. In view of Lemma 2.4, the equation $ax + x^2 = b$ has a solution x such that $a + x \in \mathcal{A}^{-1}$ and $x \in \mathcal{A}^{qnil}$. Here,

$$x = \sum_{i=0}^{\infty} (-1)^{i} \frac{(2i)!}{i!(i+1)!} a^{-(2i+1)} b^{i+1}.$$

It is easy to verify that

$$M = \left(\begin{array}{cc} 1 & -x \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} a+x & 0 \\ 1 & -x \end{array}\right) \left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array}\right).$$

Since $x \in \mathcal{A}^{qnil}$, we see that $a + x \in \mathcal{A}^{-1}$. Then $\begin{pmatrix} a + x & 0 \\ 1 & x \end{pmatrix}$ has g-Drazin inverse. Therefore M has g-Drazin inverse. Exactly, we have

$$M^{d} = \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a+x & 0 \\ 1 & -x \end{pmatrix}^{d} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} (a+x)^{-1} & 0 \\ y & 0 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} (a+x)^{-1} - xy & (a+x)^{-1}x - xyx \\ y & yx \end{pmatrix},$$

where $y = \sum_{i=0}^{\infty} (-1)^i (a+x)^{-(i+2)} x^i$.

Lemma 2.6. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a \in \mathcal{A}$, $b \in \mathcal{A}^{-1}$. Then $M \in M_2(\mathcal{A})^{-1}$ and

$$M^{-1} = \left(\begin{array}{cc} 0 & 1 \\ b^{-1} & -b^{-1}a \end{array} \right).$$

Proof. Straightforward. □

Let $p^2 = p \in \mathcal{A}$ and let $\mathcal{A}_1 = p\mathcal{A}p$, $\mathcal{A}_2 = p^{\pi}\mathcal{A}p^{\pi}$. Let T be the ring of Morita context $(M_2(\mathcal{A}_1), M_2(\mathcal{A}_2), \varphi, \psi)$, i.e.,

$$T = \begin{pmatrix} M_2(\mathcal{A}_1) & M_2(p\mathcal{A}p^{\pi}) \\ M_2(p^{\pi}\mathcal{A}p) & M_2(\mathcal{A}_2) \end{pmatrix}_{(\varphi,\psi)}$$

with the bimodule homomorphisms of the form

$$\varphi: M_2(p\mathcal{A}p^{\pi}) \times M_2(p^{\pi}\mathcal{A}p) \to M_2(\mathcal{A}_1),$$

$$\psi: M_2(p^{\pi}\mathcal{A}p) \times M_2(p\mathcal{A}p^{\pi}) \to M_2(\mathcal{A}_2).$$

Then we have a natural isomorphism of rings given by

$$\rho: M_{2}(\mathcal{A}) \cong T,$$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto \begin{pmatrix} \begin{pmatrix} pa_{11}p & pa_{12}p \\ pa_{21}p & pa_{22}p \end{pmatrix} & \begin{pmatrix} pa_{11}p^{\pi} & pa_{12}p^{\pi} \\ pa_{21}p^{\pi} & pa_{22}p^{\pi} \end{pmatrix} \\ \begin{pmatrix} p^{\pi}a_{11}p & p^{\pi}a_{12}p \\ p^{\pi}a_{21}p & p^{\pi}a_{22}p \end{pmatrix} & \begin{pmatrix} p^{\pi}a_{11}p^{\pi} & p^{\pi}a_{12}p^{\pi} \\ p^{\pi}a_{21}p^{\pi} & p^{\pi}a_{22}p^{\pi} \end{pmatrix} \end{pmatrix}_{(\varphi,\psi)} .$$

Lemma 2.7. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a \in \mathcal{A}^{-1}$, $b \in \mathcal{A}^d$. If ab = ba, then $M \in M_2(\mathcal{A})^d$ and

$$M^d = \left(\begin{array}{cc} z_{11} & z_{12} \\ z_{21} & z_{22} \end{array}\right)$$

with z_{ij} formulated by

$$\begin{array}{rcl} z_{11} & = & (ab^{\pi} + x)^{-1}b^{\pi} - xy, \\ z_{12} & = & bb^{d} + (ab^{\pi} + x)^{-1}b^{\pi}x - xyx, \\ z_{21} & = & b^{d} + y, \\ z_{22} & = & -ab^{d} + yx, \end{array}$$

where

$$x = \sum_{i=0}^{\infty} (-1)^{i} \frac{(2i)!}{i!(i+1)!} a^{-(2i+1)} b^{i+1} b^{\pi},$$

$$y = \sum_{i=0}^{\infty} (-1)^{i} (ab^{\pi} + x)^{-(i+2)} b^{\pi} x^{i}.$$

Proof. Let $p = bb^d$. Since ab = ba, we have

$$a = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}_p$$
, $b = \begin{pmatrix} b_1 & 0 \\ 0 & b_2 \end{pmatrix}_p \in \mathcal{A}$.

We note that every Pierce matrix relative to p is an element in \mathcal{A} . Then

$$M = \left(\begin{array}{ccc} \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} & \begin{pmatrix} b_1 & 0 \\ 0 & b_2 \end{pmatrix} \\ \begin{pmatrix} p & 0 \\ 0 & p^{\pi} \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right) \in M_2(\mathcal{A}).$$

Set $\mathcal{A}_1 = p\mathcal{A}p$ and $\mathcal{A}_2 = p^{\pi}\mathcal{A}p^{\pi}$. Hence, we have

$$\rho(M) = \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix}_{(\omega, b)},$$

where

$$M_1=\left(\begin{array}{cc}a_1&b_1\\p&0\end{array}\right)\in M_2(\mathcal{A}_1), M_2=\left(\begin{array}{cc}a_2&b_2\\p^\pi&0\end{array}\right)\in M_2(\mathcal{A}_2).$$

Claim 1. $M_1 \in M_2(\mathcal{A}_1)^d$. Clearly, $a_1 = abb^d$, $b_1 = b^2b^d \in \mathcal{A}_1^{-1}$. By Lemma 2.6, we have

$$M_1^d = M_1^{-1} = \begin{pmatrix} 0 & bb^d \\ b_1^{-1} & -b_1^{-1}a_1 \end{pmatrix}.$$

Claim 2. $M_2 \in M_2(\mathcal{A}_2)^d$. Clearly, $a_2 = ab^{\pi} \in \mathcal{A}_2^{-1}$, $b_2 = bb^{\pi} \in \mathcal{A}_2^{qnil}$. By virtue of Lemma 2.5, we have

$$M_2^d = \left(\begin{array}{ccc} (a_2 + x)^{-1} b^\pi - xy & (a_2 + x)^{-1} b^\pi x - xyx \\ y & yx \end{array} \right),$$

where $x = \sum_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} a_2^{-(2i+1)} b_2^{i+1}$, $y = \sum_{i=0}^{\infty} (-1)^i (a_2 + x)^{-(i+2)} b^{\pi} x^i$. Therefore $\rho(M) \in T^d$ and

$$[\rho(M)]^d = \begin{pmatrix} \begin{pmatrix} 0 & bb^d \\ b_1^{-1} & -b_1^{-1}a_1 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} (a_2 + x)^{-1}b^{\pi} - xy & (a_2 + x)^{-1}b^{\pi}x - xyx \\ y & yx \end{pmatrix} \end{pmatrix}_{(\varphi,\psi)}.$$

Thus, $M \in M_2(\mathcal{A})^d$. Obviously, we have $b_1^{-1} = (b^2b^d)^{-1} = b^d \in \mathcal{A}_1$ and $b_1a_1 = b^2b^dabb^d = ab^d$. By virtue of [23, Lemma 3.3], we have

$$M^{d} = \begin{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & (a_{2} + x)^{-1}b^{\pi} - xy \end{pmatrix} & \begin{pmatrix} bb^{d} & 0 \\ 0 & (a_{2} + x)^{-1}b^{\pi}x - xyx \end{pmatrix} \\ & \begin{pmatrix} b_{1}^{-1} & 0 \\ 0 & y \end{pmatrix} & \begin{pmatrix} -b_{1}^{-1}a_{1} & 0 \\ 0 & yx \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix}$$

with z_{ij} are formulated by

$$\begin{array}{rcl} z_{11} & = & (ab^{\pi} + x)^{-1}b^{\pi} - xy, \\ z_{12} & = & bb^{d} + (ab^{\pi} + x)^{-1}b^{\pi}x - xyx, \\ z_{21} & = & b^{d} + y, \\ z_{22} & = & -ab^{d} + yx, \end{array}$$

where

$$x = \sum_{i=0}^{\infty} (-1)^{i} \frac{(2i)!}{i!(i+1)!} a^{-(2i+1)} b^{i+1} b^{\pi},$$

$$y = \sum_{i=0}^{\infty} (-1)^{i} (ab^{\pi} + x)^{-(i+2)} b^{\pi} x^{i}.$$

This completes the proof. \Box

Lemma 2.8. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a \in \mathcal{A}^{qnil}$, $b \in \mathcal{A}^d$. If ab = ba, then $M \in M_2(\mathcal{A})^d$ and

$$M^d = \left(\begin{array}{cc} 0 & bb^d \\ b^d & -ab^d \end{array}\right).$$

Proof. Let $X = \begin{pmatrix} 0 & bb^d \\ b^d & -ab^d \end{pmatrix}$. One directly verifies that

$$MX = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & bb^{d} \\ b^{d} & -ab^{d} \end{pmatrix} = \begin{pmatrix} bb^{d} & 0 \\ 0 & bb^{d} \end{pmatrix}$$

$$= \begin{pmatrix} 0 & bb^{d} \\ b^{d} & -ab^{d} \end{pmatrix} \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} = XM,$$

$$MX^{2} = (MX)X = X,$$

$$M - (MX)M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} bb^{d} & 0 \\ 0 & bb^{d} \end{pmatrix} \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} a(1 - bb^{d}) & b - b^{2}b^{d} \\ 1 - bb^{d} & 0 \end{pmatrix} \in M_{2}(\mathcal{A})^{qnil}.$$

Therefore *M* has g-Drazin inverse and $M^d = X$, as desired. \square

3. Main Results

We now present the main results of this paper, which extend [18, Theorem 3.8] and [20, Theorem 4.1] to anti-triangular matrices in Banach algebras.

Theorem 3.1. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a, b \in \mathcal{A}^d$. If ab = ba, then $M \in M_2(\mathcal{A})^d$ and

$$M^d = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right)$$

with α , β , γ , δ formulated by

$$\begin{array}{rcl} \alpha & = & (a^2 a^d b^\pi + x)_{aa^d}^{-1} - xy, \\ \beta & = & aa^d bb^d + (a^2 a^d b^\pi + x)_{aa^d}^{-1} x - xyx + a^\pi bb^d, \\ \gamma & = & aa^d b^d + y + a^\pi b^d, \\ \delta & = & -a^2 a^d b^d + yx - aa^\pi b^d. \end{array}$$

where

$$x = \sum_{i=0}^{\infty} (-1)^{i} \frac{(2i)!}{i!(i+1)!} (a^{d})^{2i+1} b^{i+1} b^{\pi},$$

$$y = \sum_{i=0}^{\infty} (-1)^{i} [(a^{2} a^{d} b^{\pi} + x)_{aa^{d}}^{-1}]^{i+2} x^{i}.$$

Proof. Let $q = aa^d$. Since ab = ba, we have

$$a = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}_q, b = \begin{pmatrix} b_1 & 0 \\ 0 & b_2 \end{pmatrix}_q.$$

Then

$$M = \left(\begin{array}{ccc} \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} & \begin{pmatrix} b_1 & 0 \\ 0 & b_2 \end{pmatrix} \\ \begin{pmatrix} q & 0 \\ 0 & q^{\pi} \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right) \in M_2(\mathcal{A}).$$

Set $\mathcal{A}_1 = q\mathcal{A}q$ and $\mathcal{A}_2 = q^{\pi}\mathcal{A}q^{\pi}$. By using the isomorphism ρ between the matrix ring $M_2(\mathcal{A})$ and the the ring of Morita context $(\mathcal{A}_1, \mathcal{A}_2, \varphi, \psi)$ mentioned above, we have

$$\rho(M) = \begin{pmatrix} M_1 & 0 \\ 0 & M_2 \end{pmatrix}_{(\varphi,\psi)},$$

where

$$M_1 = \begin{pmatrix} a_1 & b_1 \\ q & 0 \end{pmatrix} \in M_2(\mathcal{A}_1), M_2 = \begin{pmatrix} a_2 & b_2 \\ q^{\pi} & 0 \end{pmatrix} \in M_2(\mathcal{A}_2).$$

Claim 1. $M_1 \in M_2(\mathcal{A}_1)^d$. Obviously, $a_1 \in \mathcal{A}_1^{-1}$, $b_1 \in \mathcal{A}_1^d$. In view of Lemma 2.7, we have

$$M_1^d = \left(\begin{array}{cc} z_{11} & z_{12} \\ z_{21} & z_{22} \end{array}\right)$$

with z_{ij} are formulated by

$$z_{11} = (a^{2}a^{d}b^{\pi} + x)_{aa^{d}}^{-1} - xy,$$

$$z_{12} = aa^{d}bb^{d} + (a^{2}a^{d}b^{\pi} + x)_{aa^{d}}^{-1}x - xyx,$$

$$z_{21} = aa^{d}b^{d} + y,$$

$$z_{22} = -a^{2}a^{d}b^{d} + yx,$$

where

$$\begin{array}{rcl} x & = & \sum\limits_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} (a^d)^{2i+1} b^{i+1} b^{\pi}, \\ y & = & \sum\limits_{i=0}^{\infty} (-1)^i [(a^2 a^d b^{\pi} + x)_{aa^d}^{-1}]^{i+2} x^i. \end{array}$$

Claim 2. $M_2 \in M_2(\mathcal{A}_2)^d$. Obviously, $a_2 \in \mathcal{A}_2^{qnil}$, $b_2 \in \mathcal{A}_2^d$. By virtue of Lemma 2.8, we derive that

$$M_2^d = \left(\begin{array}{cc} 0 & b_2 b_2^d \\ b_2^d & -a_2 b_2^d \end{array} \right).$$

Therefore $\rho(M) \in T^d$ and

$$[\rho(M)]^d = \begin{pmatrix} M_1^d & 0 \\ 0 & M_2^d \end{pmatrix}_{(\varphi,\psi)}.$$

Therefore

$$M^d = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in M_2(\mathcal{A}),$$

where

$$\alpha = \begin{pmatrix} z_{11} & 0 \\ 0 & 0 \end{pmatrix}_{p} = z_{11},$$

$$\beta = \begin{pmatrix} z_{12} & 0 \\ 0 & b_{2}b_{2}^{d} \end{pmatrix}_{p} = z_{12} + a^{\pi}bb^{d},$$

$$\gamma = \begin{pmatrix} z_{21} & 0 \\ 0 & b_{2}^{d} \end{pmatrix}_{p} = z_{21} + a^{\pi}b^{d},$$

$$\delta = \begin{pmatrix} z_{22} & 0 \\ 0 & -a_{2}b_{2}^{d} \end{pmatrix}_{p} = z_{22} - aa^{\pi}b^{d}.$$

This completes the proof. \Box

Corollary 3.2. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a, b \in \mathcal{A}^D$. If ab = ba, then $M \in M_2(\mathcal{A})^D$ and

$$M^D = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right)$$

with α , β , γ , δ are formulated by

$$\begin{array}{rcl} \alpha & = & (a^2 a^D b^\pi + x)_{aa^D}^{-1} - xy, \\ \beta & = & aa^D bb^D + (a^2 a^D b^\pi + x)_{aa^D}^{-1} x - xyx + a^\pi bb^D, \\ \gamma & = & aa^D b^D + y + a^\pi b^D, \\ \delta & = & -a^2 a^D b^D + yx - aa^\pi b^D. \end{array}$$

where

$$x = \sum_{i=0}^{ind(b)-1} (-1)^{i} \frac{(2i)!}{i!(i+1)!} (a^{D})^{2i+1} b^{i+1} b^{\pi},$$

$$y = \sum_{i=0}^{ind(b)-1} (-1)^{i} [(a^{2}a^{D}b^{\pi} + x)_{aa^{D}}^{-1}]^{i+2} x^{i}.$$

Proof. Evidently, $z \in \mathcal{A}^D$ if and only if $z \in \mathcal{A}^d$ and $a - a^2 a^d \in \mathcal{A}$ is nilpotent. In this case, $z^D = z^d$. Therefore we complete the proof by Theorem 3.1. \square

Since every complex matrix can be viewed as a matrix within the Banach algebra $\mathbb{C}^{n\times n}$ comprising all $n\times n$ matrices, Corollary 3.2 introduces a new formula for the Drazin inverse of an anti-triangular complex matrix, utilizing Catalan numbers as a pivotal tool. This formula presents a fresh method for tackling related difference equation problems concerning matrix structures. We give a numerical example to illustrate Corollary 3.2.

Example 3.3.

Let
$$M = \begin{pmatrix} A & B \\ I_3 & 0 \end{pmatrix} \in \mathbb{C}^{6 \times 6}$$
, where

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{array}\right), B = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

Then we have

$$A^{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, B^{D} = 0,$$

$$A^{\pi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, B^{\pi} = I_{3}.$$

Since AB = BA = 0, we have

$$\begin{array}{rcl} X & = & \sum\limits_{i=0}^{ind(B)-1} (-1)^i \frac{(2i)!}{i!(i+1)!} (A^D)^{2i+1} B^{i+1} B^\pi = 0, \\ Y & = & \sum\limits_{i=0}^{ind(B)-1} (-1)^i [(A^2 A^D B^\pi + X)_{AA^D}^{-1}]^{i+2} X^i = A^D. \end{array}$$

Hence,

$$\begin{array}{lll} \Lambda & = & (A^2A^DB^\pi + X)_{AA^D}^{-1} - XY = A^D, \\ \Xi & = & AA^DBB^D + (A^2A^DB^\pi + X)_{AA^D}^{-1}X - XYX + A^\pi BB^D = 0, \\ \Gamma & = & AA^DB^D + Y + A^\pi B^D = A^D, \\ \Delta & = & -A^2A^DB^D + YX - AA^\pi B^D = 0. \end{array}$$

By virtue of Corollary 3.2, we have

$$M^{D} = \left(\begin{array}{cc} \Lambda & \Xi \\ \Gamma & \Delta \end{array}\right) = \left(\begin{array}{cc} A^{D} & 0 \\ A^{D} & 0 \end{array}\right).$$

We are now ready to prove:

Theorem 3.4. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a, b, b^{\pi}a \in \mathcal{A}^d$. If $b^{\pi}ab^d = 0$ and $b^{\pi}(ab) = b^{\pi}(ba)$, then $M \in M_2(\mathcal{A})^d$ and

$$M^{d} = \sum_{i=0}^{\infty} P^{i} [I - PP^{d}] (Q^{d})^{i+1},$$

where

$$P = \begin{pmatrix} b^{\pi}a & b^{\pi}b \\ b^{\pi} & 0 \end{pmatrix}, P^{d} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix},$$

$$Q = \begin{pmatrix} bb^{d}a & b^{2}b^{d} \\ bb^{d} & 0 \end{pmatrix}, Q^{d} = \begin{pmatrix} 0 & bb^{d} \\ b^{d} & -b^{d}a \end{pmatrix}$$

with α , β , γ , δ formulated by

$$\begin{array}{rcl} \alpha & = & (b^{\pi}a^{2}a^{d} + x)_{b^{\pi}aa^{d}}^{-1} - xy, \\ \beta & = & (b^{\pi}a^{2}a^{d} + x)_{b^{\pi}aa^{d}}^{-1}x - xyx, \\ \gamma & = & y, \\ \delta & = & yx. \end{array}$$

where

$$\begin{array}{rcl} x & = & \sum\limits_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} (b^{\pi}a^d)^{2i+1} b^{i+1} b^{\pi}, \\ y & = & \sum\limits_{i=0}^{\infty} (-1)^i \big[(b^{\pi}a^2a^d + x)_{b^{\pi}aa^d}^{-1} \big]^{i+2} x^i. \end{array}$$

Proof. Let M = P + Q, where

$$P = \begin{pmatrix} b^{\pi}a & b^{\pi}b \\ b^{\pi} & 0 \end{pmatrix}, Q = \begin{pmatrix} bb^{d}a & b^{2}b^{d} \\ bb^{d} & 0 \end{pmatrix}.$$

Step 1. *P* has g-Drazin inverse. By hypothesis, we verify that

$$(b^{\pi}a)(b^{\pi}b) = b^{\pi}(ab) = b^{\pi}(ba) = (b^{\pi}b)(b^{\pi}a).$$

In light of Theorem 3.1, we have

$$P^d = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right)$$

with α , β , γ , δ are formulated by

$$\alpha = (b^{\pi}a^{2}a^{d} + x)_{b^{\pi}aa^{d}}^{-1} - xy,
\beta = (b^{\pi}a^{2}a^{d} + x)_{b^{\pi}aa^{d}}^{-1}x - xyx,
\gamma = y,
\delta = yx.$$

where

$$x = \sum_{i=0}^{\infty} (-1)^{i} \frac{(2i)!}{i!(i+1)!} (b^{\pi}a^{d})^{2i+1}b^{i+1}b^{\pi},$$

$$y = \sum_{i=0}^{\infty} (-1)^{i} [(b^{\pi}a^{2}a^{d} + x)_{b^{\pi}aa^{d}}^{-1}]^{i+2}x^{i}.$$

Step 2. Q has g-Drazin inverse. By virtue of Lemma 2.6,

$$Q^d = \left(\begin{array}{cc} 0 & bb^d \\ b^d & -b^d a \end{array} \right).$$

Step 3. Since PQ = 0, it follows by Lemma 2.1 that

$$M^{d} = (P + Q)^{d}$$

$$= \sum_{i=0}^{\infty} (P^{d})^{i+1} Q^{i} Q^{\pi} + \sum_{i=0}^{\infty} P^{i} P^{\pi} (Q^{d})^{i+1}$$

$$= \sum_{i=0}^{\infty} P^{i} P^{\pi} (Q^{d})^{i+1}.$$

This completes the proof. \Box

Corollary 3.5. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$ with $a, b, b^{\pi}a \in \mathcal{A}^D$. If $b^{\pi}ab^D = 0$ and $b^{\pi}(ab) = b^{\pi}(ba)$, then $M \in M_2(\mathcal{A})^D$ and

$$M^{D} = \sum_{i=0}^{ind(P)} P^{i}[I - PP^{D}](Q^{D})^{i+1},$$

where

$$P = \begin{pmatrix} b^{\pi}a & b^{\pi}b \\ b^{\pi} & 0 \end{pmatrix}, P^{D} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix},$$

$$Q = \begin{pmatrix} bb^{D}a & b^{2}b^{D} \\ bb^{D} & 0 \end{pmatrix}, Q^{D} = \begin{pmatrix} 0 & bb^{D} \\ b^{D} & -b^{D}a \end{pmatrix}$$

with α , β , γ , δ formulated by

$$\begin{array}{rcl} \alpha & = & (b^{\pi}a^{2}a^{D} + x)_{b^{\pi}aa^{D}}^{-1} - xy, \\ \beta & = & (b^{\pi}a^{2}a^{D} + x)_{b^{\pi}aa^{D}}^{-1}x - xyx, \\ \gamma & = & y, \\ \delta & = & yx. \end{array}$$

where

$$\begin{array}{rcl} x & = & \sum\limits_{i=0}^{\infty} (-1)^i \frac{(2i)!}{i!(i+1)!} (b^{\pi}a^D)^{2i+1} b^{i+1} b^{\pi}, \\ y & = & \sum\limits_{i=0}^{\infty} (-1)^i [(b^{\pi}a^2a^D + x)_{b^{\pi}aa^D}^{-1}]^{i+2} x^i. \end{array}$$

Proof. This is the specific information obtained from Theorem 3.4.

It is convenient at this stage to derive the following:

Theorem 3.6. Let \mathcal{A} be a Banach algebra and $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, d, bc \in \mathcal{A}^d$. If abc = bca, bdc = 0 and $bd^2 = 0$, then $M \in M_2(\mathcal{A})^d$ and

$$\begin{split} M^d &= \sum_{i=0}^{\infty} (Q^d)^{i+1} P^i (I-PP^d) + \sum_{i=0}^{\infty} Q^i Q^{\pi} (P^d)^{i+1} + \sum_{i=0}^{\infty} Q^i (I-QQ^d) (P^d)^{i+2} Q \\ &+ \sum_{i=0}^{\infty} (Q^d)^{i+3} P^{i+1} (I-PP^d) Q - Q^d P^d Q - (Q^d)^2 PP^d Q, \end{split}$$

where

$$\begin{array}{lll} P & = & \left(\begin{array}{cc} a & b \\ c & 0 \end{array} \right), P^d = \left(\begin{array}{cc} \alpha^2 a + \alpha \beta + \beta \gamma a + \beta \delta & \alpha^2 b + \beta \gamma b \\ c \gamma \alpha a + c \gamma \beta + c \delta \gamma a + c \delta^2 & c \gamma \alpha b + c \delta \gamma b \end{array} \right); \\ Q & = & \left(\begin{array}{cc} 0 & 0 \\ 0 & d \end{array} \right), Q^d = \left(\begin{array}{cc} 0 & 0 \\ 0 & d^d \end{array} \right). \end{array}$$

with α , β , γ , δ formulated by

$$\begin{array}{rcl} \alpha & = & (a^2a^d(bc)^{\pi} + x)_{aa^d}^{-1} - xy, \\ \beta & = & aa^d(bc)(bc)^d + (a^2a^d(bc)^{\pi} + x)_{aa^d}^{-1}x - xyx + a^{\pi}(bc)(bc)^d, \\ \gamma & = & aa^d(bc)^d + y + a^{\pi}(bc)^d, \\ \delta & = & -a^2a^d(bc)^d + yx - aa^{\pi}(bc)^d. \end{array}$$

where

$$x = \sum_{i=0}^{\infty} (-1)^{i} \frac{(2i)!}{i!(i+1)!} (a^{d})^{2i+1} (bc)^{i+1} (bc)^{\pi},$$

$$y = \sum_{i=0}^{\infty} (-1)^{i} [(a^{2}a^{d}(bc)^{\pi} + x)_{aa^{d}}^{-1}]^{i+2} x^{i}.$$

Proof. Let $P = \begin{pmatrix} a & b \\ c & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$. In view of Theorem 3.1, we have

$$\left(\begin{array}{cc} a & bc \\ 1 & 0 \end{array}\right)^d = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right).$$

Here, α , β , γ , δ are formulated by

$$\begin{array}{rcl} \alpha & = & (a^2a^d(bc)^\pi + x)_{aa^d}^{-1} - xy, \\ \beta & = & aa^d(bc)(bc)^d + (a^2a^d(bc)^\pi + x)_{aa^d}^{-1}x - xyx + a^\pi(bc)(bc)^d, \\ \gamma & = & aa^d(bc)^d + y + a^\pi(bc)^d, \\ \delta & = & -a^2a^d(bc)^d + yx - aa^\pi(bc)^d. \end{array}$$

where

$$x = \sum_{i=0}^{\infty} (-1)^{i} \frac{(2i)!}{i!(i+1)!} (a^{d})^{2i+1} (bc)^{i+1} (bc)^{\pi},$$

$$y = \sum_{i=0}^{\infty} (-1)^{i} [(a^{2}a^{d}(bc)^{\pi} + x)_{aa^{d}}^{-1}]^{i+2} x^{i}.$$

One easily verifies that

$$\begin{pmatrix} a & bc \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix},$$
$$\begin{pmatrix} a & b \\ c & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}.$$

By using Cline's formula (see [16, Theorem 2.2]), P has g-Drazin inverse and

$$P^{d} = \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix} \begin{bmatrix} \begin{pmatrix} a & bc \\ 1 & 0 \end{pmatrix}^{d} \end{bmatrix}^{2} \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}^{2} \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha & \beta \\ c\gamma & c\delta \end{pmatrix} \begin{pmatrix} \alpha a + \beta & \alpha b \\ \gamma a + \delta & \gamma b \end{pmatrix}$$

$$= \begin{pmatrix} \alpha^{2}a + \alpha\beta + \beta\gamma a + \beta\delta & \alpha^{2}b + \beta\gamma b \\ c\gamma\alpha a + c\gamma\beta + c\delta\gamma a + c\delta^{2} & c\gamma\alpha b + c\delta\gamma b \end{pmatrix}.$$

Obviously, we have

$$Q^d = \begin{pmatrix} 0 & 0 \\ 0 & d^d \end{pmatrix}, Q^{\pi} = \begin{pmatrix} 1 & 0 \\ 0 & d^{\pi} \end{pmatrix}.$$

One easily checks that

$$PQ^{2} = \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & d^{2} \end{pmatrix} = \begin{pmatrix} 0 & bd^{2} \\ 0 & 0 \end{pmatrix} = 0,$$

$$PQP = \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} a & b \\ c & 0 \end{pmatrix}$$

$$= \begin{pmatrix} bdc & 0 \\ 0 & 0 \end{pmatrix} = 0.$$

According to Lemma 2.2, we derive that

$$\begin{split} M^{d} &= (P+Q)^{d} \\ &= \sum_{i=0}^{\infty} (Q^{d})^{i+1} P^{i} P^{\pi} + \sum_{i=0}^{\infty} Q^{i} Q^{\pi} (P^{d})^{i+1} + \sum_{i=0}^{\infty} Q^{i} Q^{\pi} (P^{d})^{i+2} Q \\ &+ \sum_{i=0}^{\infty} (Q^{d})^{i+3} P^{i+1} P^{\pi} Q - Q^{d} P^{d} Q - (Q^{d})^{2} P P^{d} Q, \end{split}$$

as asserted. \square

Acknowledgement

The author thanks the referees for their careful reading and insightful comments, which helped improve this paper.

References

- [1] A. Bezai and F. Lombarkia, On the operator equation AX XB + XDX = C, Rend. Circ. Mat. Palermo, II, 72(2023), 4179–4187. https://doi.org/10.1007/s12215-023-00887-3.
- [2] C. Bu; C. Feng and S. Bai, Representations for the Drazin inverses of the sum of two matrices and some block matrices, *Applied Math. Comput.*, **218**(2012), 20226–20237.
- [3] C. Bu; K. Zhang and J. Zhao, Representation of the Drazin inverse on solution of a class singular differential equations, *Linear Multilinear Algebra*, **59**(2011), 863–877.
- [4] S.L. Campbell, The Drazin inverse and systems of second order linear differential equations, *Linear Multilinear Algebra*, **14**(1983), 195–198.
- [5] H. Chen and M. Sheibani, The g-Drazin inverses of special operator matrices, Oper. Matrices, 15(2021), 151-162.
- [6] H. Chen and M. Sheibani, Theory of Clean Rings and Matrices, Singapore: World Scientific, 2023.
- [7] H. Chen and M. Sheibani, The generalized Drazin inverse of an operator matrix with commuting entries, *Georgian Math. J.*, 31(2024), 195–204.
- [8] H. Chen and M. Sheibani, The g-Drazin inverses of anti-triangular block operator matrices, *Applied Math. Comput.*, **463**(2024) 128368.
- [9] H. Chen and M. Sheibani, The Drazin inverse for perturbed block-operator matrices, Filomat, 38(2024), 2311–2321.
- [10] N. Castro-González and E. Dopazo, Representations of the Drazin inverse for a class of block matrices, Linear Algebra Appl., 400(2005), 253-269.
- [11] D.S. Cvetković-Ilić, Some results on the (2, 2, 0) Drazin inverse problem, Linear Algebra Appl., 438(2013), 4726-4741.
- [12] C. Deng and Y. Wei, A note on the Drazin inverse of an anti-triangular matrix, Linear Algebra Appl., 431(2009), 1910-1922.
- [13] E. Dopazo and M.F. Martinez-Serrano, Further results on the representation of the Drazin inverse of a 2 × 2 block matrix, *Linear Algebra Appl.*, **432**(2010), 1896–1904.
- [14] J. Li and H. Wang, Generalized Drazin invertibility of the product and sum of bounded linear operators, *Acta Anal. Funct. Appl.*, **22**(2020), 33–43.
- [15] Y. Li; L. Sun and C. Bu, The resistance distance of a dual number weighted graph, Discrete Applied Math., 375(2025), 154–165.
- [16] Y. Liao; J. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37(2014), 37–42.
- [17] X. Liu; X. Qin and J. Benitez, New additive results for the generalized Drazin inverse in a Banach algebra, Filomat, 30(2016), 2289–2294.
- [18] Q. Xu; C. Song and L. Zhang, Solvability of certain quadratic operator equations and reprefenttions of Drazin inverses, Linear Algebra Appl., 439(2013), 291–309.
- [19] H. Yang and X. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Applied Math., 235(2011), 1412–1417.
- [20] A. Yu; X. Wang and C. Deng, On the Drazin inverse of anti-triangular block matrix, Linear Algebra Appl., 489(2016), 274–287.
- [21] D. Zhang; D. Mosić and L. Chen, On the Drazin inverse of anti-triangular block matrices, Electron. Res. Arch., 30(2022), 2428–2445.
- [22] D. Zhang; Y. Jin and D. Mosić, Generalizations of certain conditions for Drazin inverse expressions of anti-triangular partitioned matrices, Aequationes Math., 98(2024), 1081–1098.
- [23] D. Zhang; D. Mosić and L. Guo, The Drazin inverse of the sum of four matrices and its applications, *Linear Multilinear Algebra*, **68**(2020), 133–151.
- [24] D. Zhang; Y. Zhao; D. Mosić and V.N. Katsikis, Exact expressions for the Drazin inverse of anti-triangular matrices, *J. Comput. Appl. Math.*, **428**(2023), Article ID 115187, 16 p.
- [25] D. Zhang; Y. Zhao; D. Mosić, The generalized Drazin inverse of the sum of two elements in a Banach algebra, J. Comput. Appl. Math., 470(2025), 116701.
- [26] H. Zou; D. Mosić and J. Chen, Generalized Drazin invertibility of the product and sum of two elements in a Banach algebra and its applications, *Turk. J. Math.*, **41**(2017), 548–563.
- [27] H. Zou; J. Chen and D. Mosić, The Drazin invertibility of an anti-triangular matrix over a ring, Stud. Sci. Math. Hung., 54(2017), 489–508.