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Abstract. In this paper, we present some results concerning the existence and multiplicity of solutions
for a class of p(x)-Laplacian-like problems with Robin boundary conditions. Specifically, we establish the
existence of three solutions in the generalized Sobolev space.

1. Introduction

The purpose of this paper is to establish the existence of at least three weak solutions to the following
quasilinear elliptic problem with Robin boundary condition

−div
(
|∇φ|p(x)−2

∇φ +
|∇φ|2p(x)−2

∇φ√
1 + |∇φ|2p(x)

)
= θ(x)|φ|p(x)−2φ inQ,

|∇φ|p(x)−2 +
|∇φ|2p(x)−2√
1 + |∇φ|2p(x)

 ν(x) − λh(x, φ) = µ f (x, φ) in ∂Q,

(1.1)

where Q is a bounded smooth domain in RN(N ≥ 2), ν(x) is the outer unit normal derivative on ∂Q, λ, µ >
0, p ∈ C+(Q) satisfy log-Hölder continuity condition, and θ is a potential function in L∞(Q) with θ− =
infx∈Q θ(x) > 0. On the boundary of the problem (1.1), we have the competing effects of two parametric
terms λh(x, φ) and µ f (x, φ), with h(·, ·) and f (·, ·) being Carathéodory functions.

This research was motivated by the application of analogous problems in the field of physics, such as
the modeling of continuum mechanics, elastic mechanics [37], image restoration [10] and electrorheological
fluids [34, 5] and polycrystal plasticity[6]. These challenges are also of great interest from a purely mathe-
matical point of view. For in-depth knowledge and the latest findings, we recommend that readers refer to
[3, 4, 1, 31, 8, 11, 23, 6].
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However, in comprehending the significance of the variable exponent, although most materials can be
precisely represented using classical Lebesgue and Sobolev spaces where p is a constant, there are certain
nonhomogeneous materials, e.g. the electrorheological fluids mentioned before, where this approach
proves insufficient. These materials are distinguished by their capacity to undergo significant alterations
in mechanical properties when influenced by an external electromagnetic field. Thereby necessitating the
utilization of spaces with variable exponents, see [34, 22, 21, 25, 26, 27].

In the realm of investigating nonlinear elliptic problems, Ricceri [32] introduced a novel variational
principle that has found widespread application in addressing various nonlinear eigenvalue problems
[33, 19, 12].

The investigation of Problem (1.1) has been a subject of research for numerous authors over the past
few decades.[14, 24, 30, 20, 9, 35]. For example, Omari and Obersnel in [30], we explore the multiplicity of
positive solutions of the parametric equations

−div
( ∇φ√

1 + |∇φ|2p(x)

)
= λ f (x, φ) inQ,

φ = 0 in ∂Q,

(1.2)

where λ > 0 and f : Q × R −→ R is a Carathéodory function with a potential exhibiting an appropriate
oscillatory behavior at zero. Moreover, Shao-Gao Deng in [13] studied the p(x)-Laplacian Robin problem
related to (1.1) when θ(x) = 1 , µ = 0 and h(x, φ) = |φ|p(x)−2φ, obtained the existence of an infinite number of
sequences of eigenvalues.

This paper aims to build upon prior studies by demonstrating the existence of a minimum of three weak
solutions for the problem (1.1), by employing the three critical points theorem from B. Ricceri [32, Theorem
A] and the theory of Sobolev spaces with variable exponent.

The structure of the rest of the article is as follows. In the section (2), we review some fundamental
preliminaries on variable exponent Sobolev spaces W1,p(x)(Q). Next, in the section (3), we give our basic
assumptions and prove the main result of this work.

2. Preliminaries

In this section, we explore essential characteristics of Sobolev spaces with variable exponents. For
further foundational notations on this topic, readers are directed to [18, 22, 17, 15, 16, 28, 29].
In the sequel, let Q be a bounded open subset of RN with a smooth boundary ∂Q and p ∈ C+(Q) where

C+(Q) =
{
p : p ∈ C(Q) , p(x) > 1 for every x ∈ Q

}
.

We establish by p− = inf
x∈Q

p(x) and p+ = sup
x∈Q

p(x).

The variable exponent Lebesgue space Lp(x)(Q) is defined by

Lp(x)(Q) =
{
φ
∣∣∣∣φ : Q → R is measurable and

∫
Q

|φ(x)|p(x)dx < ∞
}
.

Endowed with the Luxemburg norm

∥φ∥p(x) = inf
{
κ > 0 : ρp(x)

(φ
κ

)
≤ 1

}
,

where

ρp(x)(φ) =
∫
Q

|φ(x)|p(x)dx.
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Proposition 2.1. [22, 2] The space (Lp(x)(Q), ∥ · ∥p(x)) is a separable and reflexive Banach space.

Additionally, the space Lp(x)(∂Q) can be defined by

Lp(x)(∂Q) =
{
φ
∣∣∣∣φ : ∂Q → Rmeasurable and

∫
∂Q
|φ(x)|p(x)dσ < +∞

}
,

equipped with

∥φ∥p(x),∂Q = inf
{
κ > 0 :

∫
∂Q

∣∣∣∣φ(x)
κ

∣∣∣∣p(x)
dσ ≤ 1

}
,

then (Lp(x)(∂Q) , ∥.∥p(x),∂Q) is a Banach space.

Proposition 2.2. [22, Theorem 2.1] The conjugate space of Lp(x)(Q) is Lp′(x)(Q) where 1
p(x) +

1
p′(x) = 1 for all x ∈ Q.

For every φ0 ∈ Lp(x)(Q) and φ1 ∈ Lp′(x)(Q), we present the following Hölder-type inequality∣∣∣∣ ∫
Q

φ0φ1 dx
∣∣∣∣ ≤ ( 1

p−
+

1
p′−

)
∥φ0∥p(x)∥φ1∥p′(x) ≤ 2∥φ0∥p(x)∥φ1∥p′(x). (2.1)

Now, the generalized Sobolev space W1,p(x)(Q) is defined by

W1,p(x)(Q) =
{
φ ∈ Lp(x)(Q) such that |∇φ| ∈ Lp(x)(Q)

}
.

Endowed with the norm

∥φ∥1,p(x) = ∥φ∥p(x) + ∥∇φ∥p(x).

The topological dual space of W1,p(x)(Q) denoted W−1,p′(x)(Q).

Proposition 2.3. [22] The space
(
W1,p(x)(Q), ∥ · ∥1,p(x)

)
is a separable and reflexive Banach space .

Proposition 2.4. for p, α ∈ C+(Q) such that α(x) ≤ p∗(x) for every x ∈ Q, there is a continuous and compact
embedding W1,p(x)(Q) into Lα(x)(Q) where

p∗(x) =
{ Np(x)

N−p(x) , i f p(x) < N,
+∞, i f p(x) ≥ N.

Obviously, p(x) ≤ p∗(x) for all x ∈ Q .

Let θ ∈ L∞(Q) with θ− = inf
x∈Q
θ(x) > 0. Therefore, the norm ∥φ∥θ established by

∥φ∥θ = inf
{
κ > 0 :

∫
Q

(∣∣∣∣∇φ(x)
κ

∣∣∣∣p(x)
+ θ(x)

∣∣∣∣φ(x)
κ

∣∣∣∣p(x)
)

dx ≤ 1
}
,

for every φ ∈W1,p(x)(Q). Moreover, it is readily apparent that ∥.∥θ and ∥.∥1,p(x) are equivalent on W1,p(x)(Q) .

Remark 2.5. As indicated in the document [18], W1,p(x)(Q) is continuously embedded in W1,p− (Q) and, since
p− > N,W1,p− (Q) is compactly embedded in C(Q̄). Consequently, W1,p(x)(Q) is compactly embedded in C(Q̄). Then,
there exists a positive constant ϱ > 0 such that

∥φ∥∞ ≤ ϱ∥φ∥θ,

for every φ ∈W1,p(x)(Q).
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Proposition 2.6. [7] Let

Iθ(φ) =
∫
Q

(
|∇φ(x)|p(x) + θ(x)|φ(x)|p(x)

)
dx.

For every φ ∈W1,p(x)(Q), with θ− > 0, we get

• ∥φ∥θ < 1 (= 1, > 1)⇐⇒ Iθ(φ) < 1 (= 1, > 1);

• ∥φ∥θ ≥ 1⇒ ∥φ∥p
−

θ ≤ Iθ(φ) ≤ ∥φ∥p
+

θ ;

• ∥φ∥θ ≤ 1⇒ ∥φ∥p
+

θ ≤ Iθ(φ) ≤ ∥φ∥p
−

θ ;

• min
{
∥φ∥p

−

θ , ∥φ∥
p+

θ

}
≤ Iθ(φ) ≤ max

{
∥φ∥p

−

θ , ∥φ∥
p+

θ

}
.

The proposition that follows can be demonstrated using [20, Proposition 2.2].

Lemma 2.7. [35] Let us consider the following mapping Υθ : W1,p(x)(Q)→ R defined by

Υθ(φ) =
∫
Q

1
p(x)

(
|∇φ|p(x) +

√
1 + |∇φ|2p(x) + θ(x)|φ(x)|p(x)

)
dx,

for every φ ∈W1,p(x)(Q).
Then, we obtain Υθ ∈ C1(W1,p(x)(Q),R) and Υ′θ : W1,p(x)(Q)→W−1,p′(x)(Q) defined by

⟨Υ′θ(φ), ζ⟩ =
∫
Q

(
|∇φ|p(x)−2

∇φ +
|∇φ|2p(x)−2

∇φ√
1 + |∇φ|2p(x)

)
∇ζdx

+

∫
Q

θ(x)|φ(x)|p(x)−2φζdx,

for every ζ ∈ W1,p(x)(Q). In additionis, Υ′θ(φ) is bounded, continuous, homeomorphism, strictly monotone and is of
type (S+) .

Theorem 2.8. (see [32]) Let A be a separable and reflexive real Banach space; Υ : A → R a continuously Gâteaux
differentiable and sequentially weakly lower semicontinuous Functional with a Gâteaux derivative having a continu-
ous inverse on A∗;H : A→ R a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact.
Additionally, consider the assumption:

(i) lim
∥φ∥→∞

(Υ(φ) + λH(φ)) = ∞ for all λ > 0,

(ii) there are r ∈ R and φ0, φ1 ∈ A such that Υ(φ0) < r < Υ(φ1) ,
(iii)

inf
φ ∈ Υ−1((−∞, r])

H(φ) >
(Υ(φ1) − r)H(φ0) + (r − Υ(φ0))H(φ1)

Υ(φ1) − Υ(φ0)
.

Then there exist an open interval Λ ⊂ (0, ∞) and a positive constant ρ > 0 with the following property: for every
λ ∈ Λ and everyC1 functionalF with compact derivative, there exists δ > 0 such that, for each µ ∈ [0, δ] the equation

Υ′(φ) + λH ′(φ) + µF ′(φ) = 0,

has at least three solutions in A whose norms are less than ρ.
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3. Hypotheses and Main results

In this paper, we assume that h : ∂Q × R → R and f : ∂Q × R → R are two Carathéodory functions
such that:

(A1) |h(x, z)| ≤ µ1(x) + c1|z|s1(x)−1 for any (x, z) ∈ ∂Q × R, c1 > 0 where µ1(x) ∈ L
s1(x)

s1(x)−1 (∂Q) , µ1(x) ≥ 0 and
s1(x) ∈ C+(∂Q), with s+2 < p− for every x ∈ ∂Q.

(A2) h(x, z) < 0 for all (x, z) ∈ ∂Q ×R, and |z| ∈ (0, 1).
h(x, z) ≥ R1 > 0,when |z| ∈ (z0, ∞) , z0 > 1.

(A3) | f (x, z)| ≤ µ2(x) + c2|z|s2(x)−1 for any (x, z) ∈ ∂Q × R, c2 > 0 where µ2(x) ∈ L
s2(x)

s2(x)−1 (∂Q) , µ2(x) ≥ 0 and
s2(x) ∈ C+(∂Q) with s+2 < p− for every x ∈ ∂Q.

Subsequently, we will employ the definition of a weak solution for problem (1.1) in the following way:

Definition 3.1. We say that φ ∈W1,p(x)(Q) is a weak solution of problem (1.1) if∫
Q

(
|∇φ|p(x)−2

∇φ +
|∇φ|2p(x)−2

∇φ√
1 + |∇φ|2p(x)

)
∇ζdx +

∫
Q

θ(x)|φ|p(x)−2φζdx

= µ

∫
∂Q

f (x, φ)ζdσ + λ
∫
∂Q

h(x, φ)ζdσ,

for all ζ ∈W1,p(x)(Q).

Let φ ∈W1,p(x)(Q). The energy functional related to the problem (1.1) is defined by

Jλ,µ(φ) = Υθ(φ) + λH(φ) + µF (φ),

where

Υθ(φ) =
∫
Q

1
p(x)

(
|∇φ|p(x) +

√
1 + |∇φ|2p(x) + θ(x)|φ(x)|p(x)

)
dx,

and

F (φ) = −
∫
∂Q

F(x, φ)dσ,

H(φ) = −
∫
∂Q

H(x, φ)dσ,

F(x, φ) =
∫ φ

0
f (x, z)dz, H(x, φ) =

∫ φ

0
h(x, z)dz.

It is clear that (Υ′θ)
−1 : W−1,p′(x)(Q) → W1,p(x)(Q) exists and continuous, we apply a classical result due to

Minty-Browder ( see [36, Theorem 26 A] ), because Υ′θ : W1,p(x)(Q) → W−1,p′(x)(Q) is a homeomorphism by
Lemma (2.7). Furthermore, in view of (A1) and (A3), it is established knowledge thatH ,F ∈ C1(W1,p(x)(Q),R)
with the derivative given by

⟨H
′(φ) , ζ⟩ = −

∫
∂Q

h(x, φ)ζdσ,

for any φ, ζ ∈ W1,p(x)(∂Q) , and H ′ : W1,p(x)(Q) → W−1,p′(x)(Q) are completely continuous by [4, Theorem
2.9]. Therefore,H ′ : W1,p(x)(Q)→W−1,p′(x)(Q) is compact.
We acknowledge that the operator Jλ,µ is a C1(W1,p(x)(Q),R) functional, and the critical points of Jλ,µ are
identified as weak solutions to the problem 1.1.

Presently, we articulate our primary outcome as follows.
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Theorem 3.2. Assume the provided assumptions (A1) − (A3), then There exist an open interval Λ ⊂ (0, ∞) and a
positive constant ρ > 0 such that for any λ ∈ Λ, there exists δ > 0 such that, for every µ ∈ [0, δ] problem (1.1) has at
least three solutions in W1,p(x)(Q) whose norms are less than ρ.

Proof. In substantiating our result, we use Theorem (2.8), the precondition of this theorem is fulfilled. In
what follows, we need to check that conditions (i), (ii) and (iii) are satisfied. Using Proposition (2.7), we find

Υθ(φ) =
∫
Q

1
p(x)

(
|∇φ|p(x) + θ(x)|φ(x)|p(x)

)
dx +

∫
Q

√
1 + |∇φ|2p(x)

p(x)
dx

≥
1

p+
Iθ(φ) +

∫
Q

√
1 + |∇φ|2p(x)

p(x)
dx

≥
1

p+
∥φ∥p

−

θ ,

(3.1)

for every φ ∈W1,p(x)(Q) with ∥φ∥θ > 1.
What’s more, from A1, A3 and Hölder inequality, we get

−H(φ) =
∫
∂Q

H(x, φ)dσ

=

∫
∂Q

(∫ φ(x)

0
h(x, z)dz

)
dσ

≤

∫
∂Q

(
µ2(x)|φ(x)| +

c2

s1(x)
|φ(x)|s1(x)

)
dσ

≤ 2∥µ2∥ s1(x)
s1(x)−1 ,∂Q

∥φ∥s1(x),∂Q +
c2

s−1

∫
∂Q
|φ(x)|s1(x)dσ.

(3.2)

Since W1,p(x)(Q) is continuously embedded in Ls1(x)(∂Q) and the inequality∫
∂Q
|φ(x)|s1(x)dx ≤ max

{
∥φ∥

s−1
s1(x),∂Q, ∥φ∥

s+1
s1(x),∂Q

}
≤ C

(
∥φ∥

s+1
θ + ∥φ∥

s+1
θ

)
.

(3.3)

If we use (3.2) and (3.3), then we get

−H(φ) ≤ C′∥µ1∥ s1(x)
s1(x)−1 ,Q

∥φ∥θ + C
1
s−1
∥φ∥

s+1
θ . (3.4)

This implies that for any λ > 0

Υθ(φ) + λH(φ) ≥
1

p+
∥φ∥p

−

θ − C′λ∥µ1∥ s1(x)
s1(x)−1 ,Q

∥φ∥θ − C
1
s−1
∥φ∥

s+1
θ .

By (3.1) and (3.4). Since 1 < s+1 < p−, then

lim
∥φ∥θ→∞

(Υθ(φ) + λH(φ)) = ∞,

then (i) of Theorem (2.8) is verified.
Now remains to show (ii) and (iii). As a result of A2 and ∂H(x,z)

∂z = h(x, z) , It is readily apparent that H(x, z)
is decreasing and increasing for (0, 1) and z ∈ (z0, ∞) uniformly for x ∈ Q. In addition, Since H(x, z) ≥ R1z
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uniformly for x, we have H(x, z)→∞ as z→∞.
By using this fact, we obtain that there exists δ > z0 where

H(x, z) ≥ 0 = H(x, 0) ≥ H(x, s), ∀x ∈ Q, z > δ and s ∈ (0, 1). (3.5)

Let η, ε be two real numbers such that 0 < η < min{1, ϱ}where ϱ is given in remark (2.5), and ε > max(δ, δ′)
satisfies εp−

∥θ∥1,Q > 1.
When employing the relation (3.5) we have∫

∂Q
sup
0≤z≤η

H(x, z)dσ ≤
∫
∂Q

H(x, 0)dσ = 0. (3.6)

Since ε > δ and (3.5), we know that∫
∂Q

H(x, ε)dσ > 0.

Moreover,

1
ϱp+
η+

εp−

( ∫
∂Q

H(x, ε)dσ
)
> 0. (3.7)

If we apply the given inequalities in (3.6) and (3.7), we get∫
∂Q

sup
0≤z≤η

H(x, z)dσ ≤ 0 <
1
ϱp+
η+

εp−

∫
∂Q

H(x, ε)dσ.

Next, Define φ0, φ1 ∈W1,p(x)(Q) with φ0(x) = 0 and φ1(x) = ε for any x ∈ Q.
It is clear that, Υθ(φ0) = H(φ0) = 0 and

Υθ(φ1) =
∫
Q

1
p(x)

dx +
∫
Q

θ(x)
p(x)
εp(x)dx ≥

εp−

p+

∫
Q

θ(x)dx +
1

p+
mes(Q)

=
1

p+
(
εp−
∥θ∥1,Q +mes(Q)

)
≥

1
p+
.

So, if we set r = 1
p+

(
η
ϱ

)p+
, we have

Υθ(φ0) < r < Υθ(φ1),

and

H(φ1) = −
∫
∂Q

H(x, φ1)dσ = −
∫
∂Q

H(x, ε)dσ < 0.

Thus, the demonstration of (ii) is achieved.
Finally, we will demonstrate the fulfillment of condition (iii).

−
(Υθ(φ1) − r)H(φ0) + (r − Υθ(φ0))H(φ1)

Υθ(φ1) − Υθ(φ0)
= −r

H(φ1)
Υθ(φ1)

= r

∫
∂Q

H(x, ε)dσ∫
Q

θ(x)
p(x) ε

p(x)dx +
∫
Q

1
p(x) dx

> 0.
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Now, let φ ∈W1,p(x)(Q) with φ ∈ Υ−1
θ

([r,∞)).
Since

1
p+
Iθ(x)(φ) ≤ Υθ(φ) ≤ r,

we obtain

Iθ(x)(φ) ≤ p+r =
(
η

ϱ

)p+

< 1.

As indicated by Proposition (2.6), it follows that ∥φ∥θ(x) < 1,
and

1
p+
∥φ∥p

+

θ(x) ≤
1

p+
Iθ(x)(φ) ≤ Υθ(φ) ≤ r.

Then using remark (2.5), we get
|φ(x)| ≤ ϱ∥φ∥θ(x) ≤ ϱ(p+r)

1
p+ = η,

for all φ ∈W1,p(x)(Q) and x ∈ Qwith Υθ(φ) ≤ r. The last inequality implies that

− inf
φ∈Υ−1

θ ((−∞,r])
H(φ) = sup

φ∈Υ−1
θ ((−∞,r])

−H(φ)

≤

∫
∂Q

sup
0≤z≤η

H(x, z)dσ

≤ 0.

Therefore, we get

− inf
φ∈Υ−1

θ ((−∞,r])
H(φ) < r

∫
∂Q

H(x, ε)dσ∫
Q

θ(x)
p(x) ε

p(x)dx +
∫
Q

1
p(x) dx

,

and inf
φ∈Υ−1

θ ((−∞,r])
H(φ) >

(Υθ(φ1) − r)H(φ0) + (r − Υθ(φ0))H(φ1)
Υθ(φ1) − Υθ(φ0)

. This completes the proof.
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[6] Bocea M., Mihǎilescu M.: Γ-convergence of power-law functionals with variable exponents. Nonlinear Anal.: Theory, Methods,
Appl. 73(1), 110–121 (2010).

[7] Bouaam, H., El Ouaarabi, M., Melliani, S.: Kirchhoff-type double-phase problems with variable exponents and logarithmic
nonlinearity in Musielak-Orlicz Sobolev spaces. Rend. Circ. Mat. Palermo, II. Ser 74, 164 (2025).

[8] Butakin, G., Piskin, E., Celik, E.: Blowup and global solutions of a fourth-order parabolic equation with variable exponent
logarithmic nonlinearity. Journal of Function Spaces. 2024(1), (2024).

[9] Cammaroto, F., Chinnı̀, A., and Di Bella, B.: Multiple solutions for a Neumann problem involving the p(x)-Laplacian. Nonlinear
Analysis. Theory, Methods and Applications. 71(10), 4486–4492 (2009).



N. Moujane et al. / Filomat 39:26 (2025), 9113–9121 9121

[10] Chen, Y., Levine, S., Rao, R.: Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66, 1383–1406
(2006).

[11] Chems Eddine, N., Ragusa, M.A., Repovs, D.D.: On the concentration-compactness principle for anisotropic variable exponent
Sobolev spaces and its applications. Fractional Calculus and Applied Analysis. 27(2), 725–756, (2024).

[12] Deng, S. G.: Eigenvalues of the p(x)-Laplacian Steklov problem. J. Math. Anal. Appl. 339, 925—937 (2008).
[13] Deng, S. G.: Positive solutions for Robin problem involving the p(x)-Laplacian. Journal of mathematical analysis and applications.

360(2), 548–560 (2009).
[14] Deng, S. G.: A local mountain pass theorem and applications to a double perturbed p(x)-Laplacian equations. Applied Mathe-

matics and Computation. 211(1), 234–241 (2009).
[15] El Ouaarabi, M., Moujane, N., Allalou, C., Melliani, S.: On a Neumann problem driven by p(x)-Laplacian-like operators in

variable-exponent Sobolev spaces. Palestine Journal of Mathematics, 13(1) (2024).
[16] El Ouaarabi, M., Moujane, N., Melliani, S.: Existence of three solutions to a p(z)-Laplacian-Like Robin problem. ANNALI

DELL’UNIVERSITA’DI FERRARA, 70(4), 1375–1388 (2024).
[17] Fan, X.L.: On nonlocal p(x)-Laplacian Dirichlet problems. Nonlinear Anal. 72, 3314–3323 (2010).
[18] Fan, X.L., Zhao, D.: On the Spaces Lp(x)(Ω) and Wm,p(x)(Ω). J Math Anal Appl. 263, 424–446 (2001). Theory Methods Appl. 52(8),

1843–1852 (2003).
[19] Faraci, F.: Multiple solutions for two nonlinear problems involving the p-Laplacian. Nonlinear Anal. 63, 1017–1029 (2005).
[20] Ge, B., Zhou, Q. M.: Multiple solutions for a Robin-type differential inclusion problem involving the p(x)-Laplacian. Mathematical

Methods in the Applied Sciences, 40(18), 6229–6238 (2017).
[21] Ji, C.: Remarks on the existence of three solutions for the p(x)-Laplacian equations. Nonlinear Analysis: Theory; Methods and

Applications. 74(9), 2908–2915 (2011).
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