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Abstract. In this paper, we present some results concerning the existence and multiplicity of solutions

for a class of p(x)-Laplacian-like problems with Robin boundary conditions. Specifically, we establish the
existence of three solutions in the generalized Sobolev space.

1. Introduction

The purpose of this paper is to establish the existence of at least three weak solutions to the following
quasilinear elliptic problem with Robin boundary condition

\V/ 2p(x)—2v
—div(lV(plp(x)‘ZV(p + |<P|—(P) = Q(x)|(p|p(x)—2(p inQ,
V1 + Vo

(1.1)
wa, VO _ .
[VolP™2 + ———|v(x) — Ah(x, @) = uf(x,¢) indQ,

1+ [Vt

where Q is a bounded smooth domain in RN(N > 2), v(x) is the outer unit normal derivative on 9Q, A, p >
0, p € C(Q) satisfy log-Holder continuity condition, and 6 is a potential function in L*(Q) with 6~ =
infreq O(x) > 0. On the boundary of the problem (1.1), we have the competing effects of two parametric
terms Ah(x, ) and pf(x, ), with h(-,-) and f(-, -) being Carathéodory functions.

This research was motivated by the application of analogous problems in the field of physics, such as
the modeling of continuum mechanics, elastic mechanics [37], image restoration [10] and electrorheological
fluids [34, 5] and polycrystal plasticity[6]. These challenges are also of great interest from a purely mathe-

matical point of view. For in-depth knowledge and the latest findings, we recommend that readers refer to
[3,4,1,31,8,11, 23, 6].
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However, in comprehending the significance of the variable exponent, although most materials can be
precisely represented using classical Lebesgue and Sobolev spaces where p is a constant, there are certain
nonhomogeneous materials, e.g. the electrorheological fluids mentioned before, where this approach
proves insufficient. These materials are distinguished by their capacity to undergo significant alterations
in mechanical properties when influenced by an external electromagnetic field. Thereby necessitating the
utilization of spaces with variable exponents, see [34, 22, 21, 25, 26, 27].

In the realm of investigating nonlinear elliptic problems, Ricceri [32] introduced a novel variational
principle that has found widespread application in addressing various nonlinear eigenvalue problems
[33,19, 12].

The investigation of Problem (1.1) has been a subject of research for numerous authors over the past
few decades.[14, 24, 30, 20, 9, 35]. For example, Omari and Obersnel in [30], we explore the multiplicity of
positive solutions of the parametric equations

Ve )= Af(xp) in@

VI + Ve 12)

=0 in dQ,

—div(

where A > 0 and f: QX R — R is a Carathéodory function with a potential exhibiting an appropriate
oscillatory behavior at zero. Moreover, Shao-Gao Deng in [13] studied the p(x)-Laplacian Robin problem
related to (1.1) when O(x) = 1, u = 0 and h(x, ¢) = [P ~2¢, obtained the existence of an infinite number of
sequences of eigenvalues.

This paper aims to build upon prior studies by demonstrating the existence of a minimum of three weak
solutions for the problem (1.1), by employing the three critical points theorem from B. Ricceri [32, Theorem
A] and the theory of Sobolev spaces with variable exponent.

The structure of the rest of the article is as follows. In the section (2), we review some fundamental
preliminaries on variable exponent Sobolev spaces WPH(Q). Next, in the section (3), we give our basic
assumptions and prove the main result of this work.

2. Preliminaries

In this section, we explore essential characteristics of Sobolev spaces with variable exponents. For
further foundational notations on this topic, readers are directed to [18, 22, 17, 15, 16, 28, 29].

In the sequel, let Q be a bounded open subset of RN with a smooth boundary dQ and p € C, (Q) where
C+(G_2) = {p pe C(Z?), p(x) > 1 for every x € 6_2}

We establish by p~ = in(g p(x) and p* = sup p(x).
xe xeQ
The variable exponent Lebesgue space LP™(Q) is defined by

r(Q) = {(p’(p : @ — R is measurable and f lp(x)PPdx < oo}.
Q
Endowed with the Luxemburg norm

“(P”p(x) = inf {K >0: Pp(x) (%) < 1},

where

P (@) = fa lp(x)lPVdx.
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Proposition 2.1. [22, 2] The space (L"™(Q), || - ll,x)) is a separable and reflexive Banach space.
Additionally, the space L™ (9dQ) can be defined by

’90Q) = {(p‘(p : dQ — Rmeasurable andf lp()PPdo < +oo},
Q
equipped with
) (x) jpx)
lpllp),0q = inf {K >0: f I(P— do < 1},
K

then (LP®(0Q), [Ill,x,0@) is @ Banach space.

Proposition 2.2. [22, Theorem 2.1] The conjugate space of L'™(Q) is LV ™(Q) where 55 + i = 1 forall x € Q.

For every @y € LF'™(Q) and ¢ € LV'™(Q), we present the following Holder-type inequality

| fa popr d| < (% ¥ ;%)||(po||p<x)||(p1||pf<x) < 2@ollyeo 1l - (2.1)
Now, the generalized Sobolev space W?™(Q) is defined by

W(Q) = {p € (@) such that [Vp| € LF(Q)}.
Endowed with the norm

”(Plll,p(x) = ”(PHp(x) + ”V(P”p(x)-
The topological dual space of W'*®(Q) denoted W17 ®)(Q).

Proposition 2.3. [22] The space (Wl"’(")(Q), Il ||1,p(x)) is a separable and reflexive Banach space .

Proposition 2.4. for p,a € C.(Q) such that a(x) < p'(x) for every x € Q, there is a continuous and compact
embedding W'#®(Q) into L*Y(Q) where

pi(x) = I\II\]—p,gX)f if p(x) <N,
+00, if p(x) > N.

Obviously, p(x) < px(x) forallx € Q.
Let 6 € L®(Q) with 6~ = in(g O(x) > 0. Therefore, the norm ||¢||¢ established by
XE

\% (x)
||<p||e=inf{x>o:f(] ) P )dxsl},
Q K

for every ¢ € WLP@(Q). Moreover, it is readily apparent that ||.||p and ||.||; ;(x) are equivalent on WrO(Q) .

Remark 2.5. As indicated in the document [18], WIP(Q) is continuously embedded in W'¥ (Q) and, since
p~ > N, W' (Q) is compactly embedded in C(Q). Consequently, W™ (Q) is compactly embedded in C(Q). Then,
there exists a positive constant g > 0 such that

gl < dllglle,
for every p € WPI(Q).
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Proposition 2.6. [7] Let
To(e) = [ (990 + 00lpop ) i,

For every ¢ € W*0(Q), with 0~ > 0, we get

o lpllo<1(=1,>1) = Ig(p)<1(=1,>1)

o lipllo > 1= gl < Zo(@) <llpll) ;

o lipllo < 1= ligll; < Zo(@) <llpll) ;

o min{ligll), lgll) } < Zo(p) < max{lill; , llpll, }.

The proposition that follows can be demonstrated using [20, Proposition 2.2].

Lemma 2.7. [35] Let us consider the following mapping Yo : W®(Q) — R defined by
1
Yo(p) = —(V PO 4+ 1+ [Vo?® + 0(x)|p(x ”(x))dx,
o(¢) fgp(X) Vol 1+ Vel ()l
for every p € WP(Q).

Then, we obtain Yo € CY(W"P(Q), R) and Y}, : WHN(Q) - W7 N(Q) defined by

|V(P|2p(x)—2v(p
1+ [Vl
+ f 0)lp)P I 2pCdx,

Q

(Yy(p), O) = fa (VeI 2ve +

for ezzesry) C € WNQ). In additionis, Y}, (¢) is bounded, continuous, homeomorphism, strictly monotone and is of
type (S4) .

Theorem 2.8. (see [32]) Let A be a separable and reflexive real Banach space; Y : A — R a continuously Gateaux
differentiable and sequentially weakly lower semicontinuous Functional with a Gateaux derivative having a continu-
ous inverseon A*; H : A — Ra continuously Gateaux differentiable functional whose Giteaux derivative is compact.
Additionally, consider the assumption:

(i) | lﬁm (Y(p) + AH(p)) = oo forall A > 0,
pl|—00
(ii) there are r € R and @g, @1 € A such that Y(po) <1 < Y(¢1),
(iii)
nt ) > O TIH ) 0= T H(p)
0 € Y ((~00,7]) Y(p1) — Y(¢po)

Then there exist an open interval A C (0, o) and a positive constant p > 0 with the following property: for every
A € Aand every C* functional F with compact derivative, there exists 6 > 0 such that, for each u € [0, 6] the equation

Y (@) + AH (@) + uF ' (¢) = 0,

has at least three solutions in A whose norms are less than p.
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3. Hypotheses and Main results

In this paper, we assume that 7 : JQ X R — R and f: dQ X R — R are two Carathéodory functions
such that:

51(x)
(A1) h(x,2)| < p1(x) + c1lzl*@1 for any (x,z) € IQ X R,c; > 0 where yy(x) € Lﬂ%ﬁ(c?@) , pa(x) = 0 and
51(x) € C+(dQ), with s3 < p~ for every x € JQ.

(A2) h(x,z) < 0forall (x,z) € IQ X R, and |z| € (0, 1).
h(x,z) = Ry > 0,when|z| € (zp, ) ,z¢ > 1.

sp (X

(A3) 1f(x,2)] < pa(x) + colzI2®! for any (x,z) € IQ X R, c; > 0 where px(x) € L»*‘ZT*)T((?Q) , t2(x) = 0 and
s2(x) € C+(dQ) with s < p~ for every x € 0Q.

Subsequently, we will employ the definition of a weak solution for problem (1.1) in the following way:
Definition 3.1. We say that ¢ € W'*™(Q) is a weak solution of problem (1.1) if
Vol?PH)-2y
f (IVoP®2vg + Vel Vo
Q V1 + [Vt

= f fx,@)Cdo+ A | h(x,¢)ldo,
Q Q

)Vidx + f O(x)lplP ™2 pldx
Q

for all T € WW(Q).
Let ¢ € W#0(Q). The energy functional related to the problem (1.1) is defined by

Iru(@) = Yo(p) + AH(p) + uF (p),

1
Yo(p) = fo@ (IV(pI’“") + /1 + |Volr® + 9(x)|(p(x)|P(x))dx’

Fp) = - fa F(x, ¢)do,

where

and

Q
H(p) = - fa o

F(x, @) = fO(P f(x,z)dz, H(x, @) = fow h(x, z)dz.

It is clear that (]f’e)‘1 : WIPO(Q) —» WPW(Q) exists and continuous, we apply a classical result due to
Minty-Browder ( see [36, Theorem 26 A]), because Y7, : W'*®(Q) - W ®(Q) is a homeomorphism by
Lemma (2.7). Furthermore, in view of (A1) and (A3), itis established knowledge that H, ¥ € CY(W*™)(Q), R)
with the derivative given by

H@), ) = - f e, )Cdo,
IR

for any ¢, C € WPM(0Q) , and H' : WHN(Q) - W17 ®(Q) are completely continuous by [4, Theorem
2.9]. Therefore, H’ : WP®M(Q) » W17 ®)(Q) is compact.
We acknowledge that the operator 73, is a C'(WP(Q), R) functional, and the critical points of J , are
identified as weak solutions to the problem 1.1.

Presently, we articulate our primary outcome as follows.
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Theorem 3.2. Assume the provided assumptions (A1) — (As), then There exist an open interval A C (0, o0) and a
positive constant p > 0 such that for any A € A, there exists 6 > 0 such that, for every u € [0, 6] problem (1.1) has at
least three solutions in W'*™)(Q) whose norms are less than p.

Proof. In substantiating our result, we use Theorem (2.8), the precondition of this theorem is fulfilled. In
what follows, we need to check that conditions (i), (ii) and (iii) are satisfied. Using Proposition (2.7), we find

- @ @) N+ VP

Yolp) f &5 (VP + oiper®) f o

f VLHIVRP® (3.1)
p(x)

—Ie( )+
= }F“(P”p ’

for every ¢ € WP@(Q) with [lplle > 1.
What's more, from A;, A3 and Holder inequality, we get

“H(g) = fa R

= LQ (ﬁm h(x,z)dz) do

(3.2)
f (#2(x)|fp(x)|+ ()Iqo(X)lsl‘*))do
C2 51(x

Since W7W(Q) is continuously embedded in L™ (JQ) and the inequality

sy st
f& PP < max {||<p||s1<x),aa, ||<p||sj(x),aa}

< (gl +llplf} ).

(3.3)

If we use (3.2) and (3.3), then we get
, Lot
~H(p) < Clinll s gligllo + C=lelly - (3.4)
s1(x)-17 1
This implies that for any A > 0

1 P~ , 1 7

Yolg) + AH(@) 2 lplly = C Al g glollo = C =l
s1(x)-17 1

By (3.1) and (3.4). Since 1 < s < p~, then

om (Yo(p) + AH(p)) =
then (i) of Theorem (2.8) is verified.

Now remains to show (ii) and (iii). As a result of A; and = h(x,z) , It is readily apparent that H(x, z)
is decreasing and increasing for (0, 1) and z € (zp, o) umformly for x € Q. In addition, Since H(x,z) > Ryz

JH (x z) _
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uniformly for x, we have H(x,z) — coasz — oo.
By using this fact, we obtain that there exists 6 > zp where

H(x,z) > 0= H(x,0) > H(x,s), Yx€Q, z> dands € (0,1).

9119

(3.5)

Let 1, € be two real numbers such that 0 < n < min{1, o} where g is given in remark (2.5), and & > max(6, 0’)

satisfies ¢” [|0l;q > 1.
When employing the relation (3.5) we have

f sup H(x,z)do < LQ H(x,0)do = 0.

0Q 0<z<n

Since ¢ > 6 and (3.5), we know that

H(x, €)do > 0.
aQ

Moreover,
1 +
— (| Heexdo) >0
o & Jaa
If we apply the given inequalities in (3.6) and (3.7), we get
n+

1
f sup H(x,z)do < H(x, e)do
9Q 0<z<n o = Jag

Next, Define o, ¢1 € W®)(Q) with ¢g(x) = 0 and @;(x) = ¢ forany x € Q.
It is clear that, Yy(po) = H(po) = 0 and

YG((Pl):L;%dX-FLi((x;gp(X)d >—f6(x)dx+plmes(Q)

— (&7 1161l + mes(@Q))
1
Pt

S

=

. p+
So, if we setr = r% (g) , we have

Yo(po) <7 < Yo(p1),

and

H(pr) =~ LQH(X,¢1)dG =- LQH(x, e)do < 0.

Thus, the demonstration of (i) is achieved.
Finally, we will demonstrate the fulfillment of condition (ii).

_Folp)) — NH(po) + = Yo(po)Hipr) __ Hipy)

Yo(p1) — Yo(po) ~ Yoler)
fa@ H(x, €)do

el’xdx+fap

0(x)
Q p(x)

(3.6)

(3.7)
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Now, let ¢ € W*®(Q) with ¢ € 1! ([1, 00)).
Since

1
FIG(X)(@) <Yo(p)=<r,

we obtain

n\
Tow(p) <p'r= (5) <1.

As indicated by Proposition (2.6), it follows that ||@|lew) < 1,
and

1 + 1
F”(P”Z(x) < Ffe(x)(@ <To(p) <.

Then using remark (2.5), we get

@)l < dlillacy < op*r)= =1,

for all p € W®(Q) and x € Q with Yg(¢) < r. The last inequality implies that

- _inf H(p)= sup -H(p)

9T, (~eor]) peT 1 (oo
< f sup H(x,z)do
JQ 0<z<n
<0.
Therefore, we get
[, Hx, €)do
- _inf H(p)<r—; oq ,
“1((—oo,r ﬁ 1
PeYg (=eor]) fa e Sp(x)dx+fczp(1x)dx
Y —1rH +(r-7 H
and inf H(p)> (Folgn) = NH(@o) + (7 = Yolpo)) ((Pl). This completes the proof. [
PET;(—eo]) Yo(p1) — Yo(po)
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