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Existence and uniqueness of mild solutions for conformable fractional
differential equations using new generalized conformable fractional
derivative and semigroup

El Hassan El Jaoui®

®Higher School of Education and Training (ESEF), Sultan Moulay Slimane University, Beni Mellal, P.O. Box 568, Morocco

Abstract. In this work, we generalize the notion of the conformable derivative. Then, we present the
new definition of conformable strongly continuous semigroup and its infinitesimal generator. Further, we
study the existence and uniqueness of the mild solution for a conformable differential equation with our

generalized conformable C’-semigroup. Finally, we investigate the continuous dependence between initial
data and mild solutions.

1. Introduction

One of the natural ways for modeling dynamical systems is to apply fractional calculus, which is in
fact a generalization of the classic differentiation and integration to non integer order (see e.g. [1} 4} 6] and
references therein). It has several applications in various fields and is considered as a powerful tool to model
physical phenomena such as processes with memory. The majority of attempts to define fractional derivative
used an integral form. So, they all have several failures, namely the Riemann-Liouville derivative does not
vanish for constants. All fractional derivatives do not satisfy the known formulas giving the derivative of
the product, the quotient and the composition of two functions. Further, the Caputo definition requires that
the function f be differentiable [7]. To overcome all these setbacks, Khalil et al. in [7] and then Abdeljawad
in [2] presented the conformable derivative and integral. Moreover, AL Horani et al. introduced in [3]
the conformable semigroup and its generator to solve a conformable abstract Cauchy problem under their
novel derivative.

In this paper, we extend the definition in [7] of the conformable derivative by using a parametric function.
Then, we present an extension of the definition of the conformable semigroup and its infinitesimal generator
studied in [3]], in which there are still some classic results that have not been treated and that we will try to
investigate. First of all, the definition due to Alhorani et al. of the a-infinitesimal generator of a conformable
semigroup remains implicit. We will propose here an explicit expression of this generator, which will help
us to prove its closure and the density of its domain.

In addition, for one of the main results concerning the a-conformable derivative of the mapping g : t = T(t)x,
the authors of [3] assumed that the a-conformable semigroup {T(t)|t > 0} is continuously a-differentiable
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to prove that g@(t) = AT(t)x = T(t)xA. But, as we will show later, this condition is useless even in the
conformable case.

Finally, we study the existence and uniqueness of the mild solution for the following conformable differential
equation on a Banach space X:

d*x(t)
dte

= Ax(t) + f(t,x(t)), t € [0,a] and x(0) = xo,

where A is the generator of a conformable €%-semigroup, xp € X, and f : [0,4] X X — X. The remainder of
this work is organized as follows:

Section[2is reserved for preliminaries. In section[3] we present our new definition of conformable derivative
and integral. Section@]is devoted to the study of the new conformable C°-semigroup and its generator. Then,
section [p|deals with the existence, uniqueness of the mild solution and the continuous dependence between
mild solutions and initial data, for a conformable differential equation with conformable semigroup.

2. Preliminaries

Definition 2.1. The conformable derivative of f : [0,c0[— R of order a € (0,1] at t > 0 is defined by T,(f)(t) =
T-ay_
lim fw If this limit exists, f is said a-differentiable.

e—0

Definition 2.2. ([7l]). Let f : [0, co[— R n-differentiable. The conformable derivative of f of order a € (n,n + 1] at
t> 0is defined by To(f)(t) = (1) = lim fm_l)(t+€t(ml~_a))_f(m_l)(t), where [a] is the smallest integer greater than or equal
to a. If this limit exists, we say that f is a-differentiable, and if tlirg} Ta(f)(t) exists, we define T,(f)(0) = tlirg} Ta(f)(®).

Definition 2.3. ([7]). Define I(f)(t) = Li(1*7 ) = fu ' j: ) dx, where the integral is the usual Riemann improper
integral, and a € (0,1).

Theorem 2.4. ([2] and [7]). If f is a continuously a-differentiable function in the domain of I, then, for t > a:
Talo(f)(E) = f() and LTa(f)(E) = f(8) = f(@).

Definition 2.5. ([3]). A conformable strongly continuous a-semigroup on a Banach space X, is a family {T(t),t > 0}
of linear bounded operators from X into itself verifying:

(i) T(O) =1, (ii) T((s + t)a) = T(sa)T(tx) forall s,t > 0,

(iii) the map g : t v T(t)x is continuous at t = 0, forall x € X, i.e., tlirg} T(t)x = x.

Definition 2.6. ([3]). The infinitesimal generator A of the fractional C° — a-semigroup {T(t),t > O} is defined
by A:x - Ax = tli%} T@(T(t)x) the conformable a-derivative of T(t) at t = 0, with domain D(A) = {x €

X tlirg} T@(T(t)x) exists).

Notations: For a > 0, we consider €, = C([0,a], X) the space of all continuous functions on [0, 4] into the
Banach space X. For x, y € C,;, we define the metric:
H,(x, y) = sup |lx(t) — y()|l. Then, (C,, H,) is a complete metric space.
te[0,a]
For real functions g1, g : [0, oo[— R and a > 0, where g,(x) is nonzero, we will use the ”Little 0” notation:
gl(x) =0(g2(x)) as x — a if and only if lim glg) =0. o
. A new definition of generalize fractidhal conformable derivative

In the sequel, let X be a real Banach space, and ¢ : [0,c0[— R be a fixed positive, increasing (or
decreasing) and differentiable function.
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Definition 3.1. The (a, ¢)-conformable fractional derivative of f : [0, co[— X of order o € (0,1] at t > 0 is defined
by

@ p _ g SEFE@E)™) - f(E)
Tap(A(®) = f,"(8) = lim - :

If this limit exists, we say that f is (a, )-differentiable. We extend this definition to t = 0 by setting: T,,(f)(0) =
tlil’(l)‘} To,p(f)(t), if this limit exists.
Notice that for ¢(t) =t : To(f) = To(f) coincides with the definition in [7]. Moreover, one can consider

@(t) = ¢! as a decreasing mapping.

Theorem 3.2. Ifa function f : [0, co[— R is (a, p)-differentiable at xy > 0, for & € (0, 1], then f is continuous at x.

Proof. Using f(xo + e(p(x0))'™) = f(xo) + E-f(xoﬂ((p(x“g))m)_f ®) and by tending i = &(p(x))!™* to 0, we get
%in& f(xo + h) = f(xo), thatis f is continuous at xp. [

Theorem 3.3. Let a € (0,1] and f, g : [0, o[ — X be (o, p)-differentiable. Then
1. Top(Af +ug) = ATap(f) + tTap(g) and Tap(c) = 0, forall ¢, A, u € R.

2. Tap(@f) = 9Tap(f) + Tap(@)f and Top(f/g) = 22008 ity g R — R,
3. If f is differentiable on [0, oo[, then T, (f)(t) = () f'(t) and

- ( f(«p(;)) )) SOF (<<p<t>> ) o

Proof. We prove the identity (I), because the other points are trivial. Using the Taylor series, we obtain for
€ > 0 very small:

f(i((P(tH((P(t))lia»a)_f (((p(;)) ) = f i(w(t)+e((P(t))]*“xp’(t)+o(s))“)‘f (((P(ai)) )
=/ WWW+wm@mﬂm@ﬂ‘4@?)
()" (1 +acp'(O(@E) ™ + o(e)))) -f (((pg)y )

I
~

1]
~~
AA/—\ —_——
Rilim R~ 2=

(@) + e’ (1) + o(e)) N f(@)

= 1 (2o0r) coor (Hpor) o - L)

= e (C5) o0

Hence,

1 1-ay\a) _ 1 a
umf(“((’)“”((”(”) ) - £ (ew)r) (t)f(

e—0 &

(p®)” )

O

From the formula (I), we get generalization of some identities in [7]:

1. Tap(e™) = b(p(x)) e, beR.
2. Tap(sinbx) = b(p(x))! ™ cosbx and Ta,q(cos bx) = —b(¢(x))'~* sin bx.

3. Tag (§0@)) = ¢’ ().

Let us extend the (a, p)-conformable derivative for & € (n,n + 1] and n € IN.
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Definition 3.4. Let f : [0,00[— X be n-differentiable at t > 0 and o € (n,n + 1]. Then the («, @)-conformable
fractional derivative of f of order a at t > 0 is defined by

(Ta1-1) (Tal-a)y — f(al-1)
o FITDGE + ep(e) ") — D)

&

Tap(HE) = £ =1

where [a] is the smallest integer greater than or equal to a.
If this limit exists, we say that f is (o, p)-differentiable at t. This definition can be extended to t = 0 by setting
Ta,p(f)(0) = tlirg} To,o(f)(t), if this limit exists.

Remark 3.5. If f is (n + 1)-differentiable at t > 0, then we have:

Tap(N)®) = @EN T T o () = (@) f1D ().
Theorem 3.6. ((«, )-Conformable Rolle’s Theorem). Let b > a > 0 and consider f : [a,b] — R a continuous
function on [a, b], which is (oz (p)—dzjj‘erentiable on (a,b), for a € (0,1), verifying f(a) = f(b). Then, there exists
c € (a,b), such that f(“)

Proof. If f is constant, then each ¢ € (g, ) fits. Assume that f is not constant, then f admits at least one of its
extremums at some c € (g, b), since f is continuous hence, it is bounded on the compact interval [4, b], and
f(a) = f(b). Without loss of generality, assume c is a point of global maximum. Thus

fl+elp®) ™) = f() _ | flt+ e@d)'™) = f0)

& e—0~ &

Ta,(p(f )t) = }E}J}

The first limit is non-positive, and the second is non-negative. So, f, '( @Wey=0. O

Theorem 3.7. ((a, @)-Conformable Mean Value Theorem). Let b > a > 0 and consider f : [a,b] — R a continuous
function on [a, b], which is (o, p)-differentiable for e € (0,1). Then, there exists ¢ € (a, b), such that

f©) - f@)
Lp®) - L@y

Proof. Consider the following auxiliary function

f() - f(a)
= flx) - f()_(qoaz»a M(

£ =

@' (c).

(p(x))* ((P(a))“)

a 2

h is continuous on [a, b], (a, p)-differentiable such that i(a) = h(b) = 0. Then by Rolle’s theorem, there exists
¢ € (a,b), such that hé‘f)(c) = 0. A simple calculation, taking into account T, 4, (%(@(x))“) = ¢’(x), leads to the
desired result. [

Definition 3.8. For « € (0, 1), define I (P(f)(t) = I” (t*1f) = fat ((P(fx(%dx, where we adopt the Bochner integral.

Theorem 3.9. If f is a continuous function in the domain of I, , then:

1. T, (,,Ig,q,(f)(t) = f(t) ,forallt > a.
2. Iy Too(f)(t) = f(t) — f(a), provided that f is differentiable.

Proof. 1. Since f is continuous, then I, (p( f)(t) is obviously differentiable. Thus,

4 [ (S
()’ [dﬂﬂ @@1mLf@mv”4

f(#)
(p(t)l-« =f0.

Tagp (I2,,(9) ()

(@)
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2. Since f is differentiable, then

e e

1 (Tap(H) O = (0®) £/ (1)) = R

t
= f ' (x)dx = f(t) — f(a).

S0, I, Tap(A(H) = f(B) =~ f@). O

In the next result, we show that point 2 of Theorem 3.9 hold true if we assume only that f is an («a, ¢)-
differentiable function and X = R.

Theorem 3.10. If f : [0, oo[— R is («, )-differentiable then, for all t > 0: I?,,,q,Ta,@(f)(t) = f(t) - f(a).

Proof. e Step 1: If f(x) = Z Ak fx is a polynomial mapping, where fi(x) = x*,0 < k < p. Then by the

linearity of conformable derlvatlve and integral, we get

" Ta,p(fi)(t)
ZAk 2 Tap(f)0) = Z/\ de

Jock-1 - )
Z‘Akfax«p((% Z/‘ kak_ldx:;;“(tk‘”k)

k=0

Lo Tan(H)(®)

where we have used point 5 of Theorem [3.3] Thus
a(p aw(f)(t) f(t) - f(a)-

e Step 2: General case. Lett > 0 and [b,c] C [0, oo[ such that ¢ € [b,c]. Since f is (a, p)-differentiable,
then f is continuous. By using Weierstrass approximation Theorem, there exists a sequence (Py) of
polynomial functions, which is uniformly convergent to f on the compact interval [b, c]. Thus using
the first case, we have

2, T (O = fO+ f@] = |12, Tap(AE) — I, TapPR)(E) + Pelt) = f(t) + f(a) — Pi(a)|
|2, Tap(f = PO()| + [Pc(t) = f(B)] +1£(@) = Pi(@)].

IA

Clearly, [Pi(t) — f(f)| and |f(a) — Px(a)| converge to 0 as k — oo. Moreover, using the double limit theorem,
one obtains

f(t+e(@(t)' ™) — Pelt + e(@(t)' ™) + Pe(t) — f(1)

lim Top(f = PO = limlim :
! T-ay _ - 1-a _
_ PE&,}E?O ft+e(p®) ™) Pk(t+:((p(t)) ) + Pe(t) f(t)zo.

We deduce by the dominated convergence Theorem that

lim I3, T (f = P(E) =

Hence, I§, , To o (f)(t) = f(t) — f(a).
So, the condition ”f is differentiable” , added by the author of [2] to prove this result in Lemma 2.8, is
superfluous and it is sufficient to assume that f is (@, @)-differentiable. [
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4. New fractional conformable strongly continuous semigroups

Remark 4.1. To generalize the notion of a conformable Co— a-semigroup on X, we assume from now on
that ¢ : [0, co[— [0, e[ is an increasing diffeomorphism of class €, verifying ¢(0) = 0 and tlirg} @ =C>0.

Definition 4.2.
By a conformable fractional strongly continuous (a, @)-semigroup on X, we mean a family {T(t),t > 0} of linear
bounded operators from X into itself verifying points (i), (iii) of Definition[2.5and the following alternative condition:

(ii) T((p(s +D)7) = T(p(s)) ) T(p(£))7) for all s, ¢ > 0.

Definition 4.3.
The (o, @)-infinitesimal generator A of the conformable C° — (, @)-semigroup {T(t), t > 0} is defined by A : x > Ax =
tlirg} Tgy)(T(t)x) the conformable («, )-derivative of T(t) at t = 0, with domain D(A) = {x € X| tlirg} TE; )(T(t)x) exists}.

For a family {T(t),t > 0} of linear bounded operators from X into itself, define S(t) = T(((p(t))%) that
is T(t) = S(p~(t*)), for all t+ > 0. The following results describe the relationship between conformable
fractional and classical semigroups and give the link between their generators. Some proofs will be omitted
since they are obvious.

Proposition 4.4. {T(t),t > 0} is a €° — (a, @)-semigroup on X if and only if {S(t),t > 0} is a C*-semigroup on X.

Theorem 4.5. Let {T(t),t > 0} be a €° — (a, ¢)-semigroup on X. Then, there exist two constants M > 1 and w > 0
such that

IT(H)] < M), forallt > 0. )

Proof. Ttis well known that: AM > 1,w > 0,Vt > 0, [|S(®)|| < Me™.
Therefore, [T = |IS(@~L(t)|| < Me©e™ ) forallt > 0. [

Proposition 4.6. If {T(t),t > 0} is a C° — (o, )-semigroup on X then for all x € X, the function g : t v T(t)x is
continuous all over [0, oo[.

Proof. Consider the continuous function ¢ : t > @~!(t%) and the map & : t — S(t)x, then g(t) = T(t)x =
S(p71(t*)) = h o Y(t), for all t > 0. Since {S(t),t > 0} is a classical C’-semigroup on X, then & is continuous
over [0, o[ (see [10]). Thus, g = h o ¢ is also continuous over [0, c0[. [

The major defect of Definition due to Alhorani et al,, is that it defines implicitly the generator of a
conformable C° — a-semigroup. Hence, the interest and the importance of our following Theorem in
which we will give an explicit expression for the a-infinitesimal generator A of a conformable fractional
€% — a-semigroup {T(t), t > 0}.

Theorem 4.7. Let A be the infinitesimal generator of the conformable C° — (a, g)-semigroup {T(t),t > 0} on X. Then,
forall x € D(A):

aCl=e  T((@(t))x ~x
= lim .
@’(0) t-0*
Proof. Let x € D(A), we have

Ax 3)

T(t + ep(H)'=%)x — T(t
lim T(T(t)x) = lim lim (E+ eplt) Tx ~ T(H)x
t—0* t—=0+ e—>0* &

-1 l-a\a)y _ -1
lim Lim Sop  ((t+ep(t) ) )x=Sop (¢t )x,

e—0* t—0* &

Ax
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T(t+ep(t) =) x=T(t)x

where the exchange of the limits follows from the uniform continuity of the mapping (¢, £) — :

on the compact [0, 1] X [0, 1], since it is continuous therein. Therefore

So @ (t*(1 + ep(t) ™ /)™)x — S 0 @71 (t¥)x

Ax = lim lim
-0t t—0* &
-1 1-a _ -1/
~ lim lim Sop (t*(1 + aecp(t) ¥/t +o(e))x —So @™ (t%)x
e—0* t—0* &
-1 1-a _ 11
_ lim lim Sop™ (t* + ae(p(t)/t)* +o(e))x = So @™ (t%)x
e—0* t—0* &
—1/s 1-af =1\ (a0 _ =1(pa
_ 111(1)1 tlir(? S~ (t%) + ae(p®)/t) (¢ 5) (%) +o(e))x — S o ™ (t")x
>0+ -0+

1-a( =1y (4@ _
:1%ﬁ$5wﬂm4ﬂ%@wm W>Hm+quX]

&

S(aeC (@71 (0) + o(e))x — x]

- ; -1
= psey o) :

;S(0) =1

e—0* e—0* &

S(aeC ™ (e™!) (0)x — x] _ S(aeC (@) (0))x — x
B = Imm

= hmsmﬁ

o . S(aeCr (@7 Y(0)x—x  aC™™ . S(Hx-—x
_ 1-a 1y/ =
= aC ™ (p7)(0) Elggk aeCl-a(p1y(0) Z0) Ptk t

aci= 1: T((@E)#)r—x
po pm = D

By consequence, Ax =
Remark 4.8. In the particular case ¢(t) = t, the expression (3) becomes

Ax = o lim LEDX=X @)
t—0* t

Theorem 4.9. Let A be the infinitesimal generator of the conformable €° — (a, ¢)-semigroup {T(t),t > 0} and B be

the infinitesimal generator of the C*-semigroup {S(t),t > Oyon X. Then

1. D(A) = D(B) and for all x € D(A), we have Ax = "(‘{S—;&;Bx.

2. The domain D(A) is dense in X and A is a closed linear operator.

(P/(O) t—0+ t

and Ax = "(‘pc,—z(;;Bx. Now, let x € D(B) then by a similar way we show that tli%l T((p“ )(T(t)x = ngcz(_))l Bx

exists. Hence, x € D(A). Therefore, D(A) = D(B) and Ax = ‘;CZ&; Bx.
2. Tt is well known that the domain D(B) of the C%-semigroup {S(f),t > 0} is dense in X and B is a closed
linear operator (see [10]). Hence, the domain D(A) is also dense in X and A is a closed linear operator,

Proof. 1. let x € D(A), we have seen in the proof of Theorem@that Ax = A€ i SO (e (B)

aC' B

since A = 0

O

Remark 4.10. By taking ¢(t) = f, which leads to ¢’(t) = ¢’(0) = C =1,
e the identity (2) in Theorem {4.5/is reduced to ||T()|| < Me™"", for allt > 0.

e The link between the two generators A and B turns into A = aB.
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Theorem 4.11. Let A be the infinitesimal generator of the conformable €° — (a, ¢)-semigroup {T(t),t > 0}. Then, for
all x € D(A), we have T(t)x € D(A), the function
g : t = T(t)x is (a, p)-differentiable and

d° 0 (e®))T @0 (e
ar T = oty (3) ATR = o) (E

Proof. In one hand, we have

1-a
) T(t)Ax. (5)

ae ” o Sop Mt (1 + ep(H) T /H)Y)x — S0 7L (tY)x
STy = TPt = lim -
= lim Sog7(1) [S(ae(w(t)/t)l-”«p-;>'<t“> +o(e))x - x]

e—0*

= T(t) lim [S(ag((f)(t)/t)l_ag((P—l)/(ta))x _ x]

- (X((P(t)/t)l_a(([)_l)/(ta)T(t) hlg’g1+ [S(h); - X] _ a((P(t)/t)l—a T(t)Bx

)
¢’(0) (@
@ (p1(t) \ Ct

In the other hand, one can write

1-a
) T(t)Ax.

Tg’)(T(t)x) _ lirg [S(ae(go(t)/t)l"‘((pl)’(t“) + o(:))s o (p*l(t“)x —-So (pl(t“)x]

. [S(ae(@(t)/f)l“((Pl)’(t“) + 0(e)) T(t)x — T(t)x} _ a(@(fz/f)l’“ -

e—0* & (P'(§0 1(tzx))
o0  (p®H) ™
7o) (U) AT
Finally, we have T(t)x € D(A) and
@ 9O (em)™ OGN
1o = (G 04 iy (B) ATOx

O

Remark 4.12. The foregoing Theorem[.11|was studied by Al Horani etal. [3], in the particular case () = t,
but it was proved under the strong condition: ”T(t) is continuously a-differentiable”. As it was shown
above, this condition is superfluous, since it is sufficient to assume that {T(),t > 0} is a 0 — a-semigroup
on X as in the classical case. Hence, for the generator of the conformable Co— a-semigroup {T(t),t > 0}, the
equality (5) is similar to usual formula and it becomes

;%(T(t)x) = AT(H)x = T(t)Ax. 6)

Theorem 4.13. Let A be the infinitesimal generator of the conformable €° — (a, ¢)-semigroup {T(t),t > 0} and for
fixed x € X let g : s — T(s)x. Then

L 1im (I8, (9)(¢ + ) = I3, (9)(8)) = (9(O)* ' T(Dx.

2. Forx € Xletk:s > % (%)1_0‘ T(s)x, then I, , (k)(t) € D(A) and one has A (12/@(k)(t)) = T(t)x — x.
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’ 1-
3. For fixed x € D(A), we consider hy : T+ - (i*(l(?r“)) (%) * T(1)Ax and

, 1-
hy Tt @’(g‘(l(z)ﬂ*)) (@) ¢ AT(7)x, then for t > s > 0, we have

T(Hx = TE)x = 9, () (t) — 19, (1) () = I3, (12) (1) = S, (o) ).
The proof of Theorem (4.13) is based on the application of the equality [5| and the well-known result
%in(’)l % ftHh P(s)ds = ¢(t), for continuous function ¢ : [0, co[— X.
5. Conformable differential equation with conformable semigroup

In this section, we study the following conformable fractional differential equation with initial condition

T = Ax(t) + £, (), t € [0,a]; o
x(0) = xg; x0 € X.
where A : D(A) = X and f : [0,a] X €, — X satisfying the following assumptions:

(Ho) A is the infinitesimal generator of the conformable €° — (@, p)-semigroup {T(¢),t > 0} on X such that
D(A) = X and there exists M > 1:

IT(H)x = Tyl < Milx —yll, forallt € [0,a],x,y € X.

(H1) f :[0,a] x €, = X is a continuous function such that there exist K > 0, for all t € [0,a],x,y € X :
If (¢t x) = f(t, I < Kllx = yll.

(Hz) Suppose that the integral 6(t) = ‘fp(,:z(;; fot((p(s))"“lds is convergent, for all t € [0, 4].

Definition 5.1. We say that x is a mild solution of equation (7)) if
(i) x € Cy,x(t) € D(A) for all t € [0,a], such that x(0) = xo;

(ii) and for all t € [0, a]:
t
x() = T((@O®))7 ) x0 + fo (PE)*'T (((0(t) - O(s))*) £(5, x(5))ds.

Theorem 5.2. Suppose that assumptions (Hy) — (Hy) hold. Then equation (7) has a unique mild solution provided
that Ly = 220004y < 1.

aCl-a

Proof. We define a mapping V : €, — C,, for all x € C,, by
t
Vx(t) = T((p(0(1)« ) xo + fo (PE)* T ((@(O() - 6(s))*) £(5, x(5))ds.
For t € [0,a], we have

t
Vx(t) = S(O(t)) xp + [) ((p(s))“_ls (6(t) — 6(s)) f(s,x(s))ds.
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(a) Step 1: Let x € C,, we prove that Vx € C,. For t € (0,4] and & very small such that t + £ € (0,4]:

IVx(t + &) = Vx(B)ll < Ri(&) + Ra(&) + Ra(E),

where using the assumption (Hp), one obtains

Ri(&) = [IS(O(t + &))xo — SOB)xoll = 1IS(6(t) + £6'(£) + 0(£))x0 — S(O(1))xol
= [IS(B(1)S(EO"(#) + 0(&))x0 — S(O(E))xoll < MIIS(EO" () + 0(E))x0 — xoll,

Since, ||S(EO’(t) + 0(&))xg — xol| = 0, then R1(&) — 0 as & — 0. Furthermore, we have

& &
Ra(E) f (@S + &) — 0(s)) s, x()ds]| < f (@) SO + &) - 0(5)) £, x(3))| ds

IN

’3
M fo @)1, x(s))lds

It is clear that foé((p(s))“‘lllf(s, x(s))llds — 0 as & — 0%, thus Ry(§) — 0 as & — 0*. Finally, we have
using an affine change of variable

t+& t
R3() H fg (@E) SOt + &) — 6(5)) f(5, xX(5))ds — fo (@()*7'S(0(t) = 0(5)) f (5, x(s))ds

t
H fo [((s + £SO + &) — 6(s + (s + &, x(s + &) — (@(s)* SO — 0(6) f(s, x(5))| ds

IA

t
fo (65 + €180t + &) = 0 + ) f(s + &, x(5 + €)) = (@()* ' S(O(F) = 06))f(5, x(3))]| ds.
And by the dominated convergence theorem, we get

fo [[(@(s + ) 71O + &) = (s + ) f(s + & x(5 + &) = (@()*1SOF) — Os)) f (5, x(5))|| ds

converges to 0 as & — 0%, so R3(&) — 0as & — 0*. Hence, ||[Vx(t+ &) — Vx(t)|| = 0as & — 0*. Similarly,
we prove that ||[Vx(t — &) — Vx(t)]| = 0as & — 0*. So, Vx is continuous at each t # 0 and obviously at
t = 0. Therefore, Vx € €, i.e., V maps C, into itself.

(b) Step 2: Claim: V is a contraction on C,. For x, y € €, and ¢ € [0, a], we have

t
IVx(t) = Vy(@ll j; (@) IS (O = 06)) [f(s, x(5)) = f(s, y(s))] ds

IA

t
fo (@) ||S 0t) = 0()) [f(5,x(5)) = £(s, y(s))]|| ds

IN

t

MK f (0(6)1x(s) — (&)l
0

MK/ (0)

2Cia 0(a)H,(x,v) = LoH,(x, y).

Thus, H,(Vx, Vy) < LoH,(x, y). Since Ly < 1, then V is a contraction on the complete metric space
(G4, Hy). Hence, there exists a unique x € G, such that Vx = x. So, x is the unique mild solution of
equation (7).

O
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Theorem 5.3. (Continuous dependence on initial data). Suppose that assumptions (Ho) — (Hz) and the condition

Ly = MK(p’(O)G(a) < 1 hold true. Let x = x(t,x0) and y = y(t, yo) be mild solutions of equation (7) corresponding to

aCl-e
xo and yo respectively. Then
MKg'(0)
H,(x, y) < Mllxo — yollexp We(ﬂ) . 8)

Proof. Lett €[0,a], for all u € [0, {] we have

() = y@)ll - < 1T ((@O®)* ) x0 = T ((9(O1)*) yoll
+l:@@»%ﬂhawwww—m@»UU@x@»—ﬂaﬂﬂmvs
< M= oll+ M [ (@) 6536 = £,y s

< Millxo = yoll + MKfO (@)™ lIx(s)) = y(s)llds

Passing to the supremum on [0, {], we obtain

t
Hi(x, y) < Mllxo — yoll + MK f (@(9)* ' Hy(x, y)ds
0

Then by Gronwall’s inequality, we have for all f € [0, a]

MKg' (0)
Hi(x, y) < Mllxo — yollexp | —=——06(a)
aCl-a
By consequence
MK’ (0)
Ha(x,y) < Milxo = yollexp | — === 0(@)

O

Remark 5.4. In the particular case ¢ : t — @(t) = t, the expression of the mild solution for equation (7)
becomes, for all ¢ € [0,al: x(t) = T(E)xo + [ s \T((t* — %)) f(s, x(s))ds. The value of Lo in Theorem [5.2is
Ly = MK %‘ < 1. And inequation @ in Theoremis simplified to

aa
Hy(x, ) < Ml = yollexp (MK
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