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Existence and uniqueness of mild solutions for conformable fractional
differential equations using new generalized conformable fractional

derivative and semigroup
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Abstract. In this work, we generalize the notion of the conformable derivative. Then, we present the
new definition of conformable strongly continuous semigroup and its infinitesimal generator. Further, we
study the existence and uniqueness of the mild solution for a conformable differential equation with our
generalized conformable C0-semigroup. Finally, we investigate the continuous dependence between initial
data and mild solutions.

1. Introduction

One of the natural ways for modeling dynamical systems is to apply fractional calculus, which is in
fact a generalization of the classic differentiation and integration to non integer order (see e.g. [1, 4, 6] and
references therein). It has several applications in various fields and is considered as a powerful tool to model
physical phenomena such as processes with memory. The majority of attempts to define fractional derivative
used an integral form. So, they all have several failures, namely the Riemann-Liouville derivative does not
vanish for constants. All fractional derivatives do not satisfy the known formulas giving the derivative of
the product, the quotient and the composition of two functions. Further, the Caputo definition requires that
the function f be differentiable [7]. To overcome all these setbacks, Khalil et al. in [7] and then Abdeljawad
in [2] presented the conformable derivative and integral. Moreover, AL Horani et al. introduced in [3]
the conformable semigroup and its generator to solve a conformable abstract Cauchy problem under their
novel derivative.
In this paper, we extend the definition in [7] of the conformable derivative by using a parametric function.
Then, we present an extension of the definition of the conformable semigroup and its infinitesimal generator
studied in [3], in which there are still some classic results that have not been treated and that we will try to
investigate. First of all, the definition due to Alhorani et al. of the α-infinitesimal generator of a conformable
semigroup remains implicit. We will propose here an explicit expression of this generator, which will help
us to prove its closure and the density of its domain.
In addition, for one of the main results concerning theα-conformable derivative of the mapping 1 : t 7→ T(t)x,
the authors of [3] assumed that the α-conformable semigroup {T(t)|t ≥ 0} is continuously α-differentiable
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to prove that 1(α)(t) = AT(t)x = T(t)xA. But, as we will show later, this condition is useless even in the
conformable case.
Finally, we study the existence and uniqueness of the mild solution for the following conformable differential
equation on a Banach space X:

dαx(t)
dtα

= Ax(t) + f (t, x(t)), t ∈ [0, a] and x(0) = x0,

where A is the generator of a conformable C0-semigroup, x0 ∈ X, and f : [0, a] × X → X. The remainder of
this work is organized as follows:
Section 2 is reserved for preliminaries. In section 3, we present our new definition of conformable derivative
and integral. Section 4 is devoted to the study of the new conformableC0-semigroup and its generator. Then,
section 5 deals with the existence, uniqueness of the mild solution and the continuous dependence between
mild solutions and initial data, for a conformable differential equation with conformable semigroup.

2. Preliminaries

Definition 2.1. The conformable derivative of f : [0,∞[→ R of order α ∈ (0, 1] at t > 0 is defined by Tα( f )(t) =
lim
ε→0

f (t+εt1−α)− f (t)
ε . If this limit exists, f is said α-differentiable.

Definition 2.2. ([7]). Let f : [0,∞[→ R n-differentiable. The conformable derivative of f of order α ∈ (n,n + 1] at
t > 0 is defined by Tα( f )(t) = f (α)(t) = lim

ε→0

f (⌈α⌉−1)(t+εt(⌈α⌉−α))− f (⌈α⌉−1)(t)
ε , where ⌈α⌉ is the smallest integer greater than or equal

to α. If this limit exists, we say that f is α-differentiable, and if lim
t→0+

Tα( f )(t) exists, we define Tα( f )(0) = lim
t→0+

Tα( f )(t).

Definition 2.3. ([7]). Define Ia
α( f )(t) = Ia

1(tα−1 f ) =
∫ t

a
f (x)
x1−α dx, where the integral is the usual Riemann improper

integral, and α ∈ (0, 1).

Theorem 2.4. ([2] and [7]). If f is a continuously α-differentiable function in the domain of Iα then, for t ≥ a:
TαIa

α( f )(t) = f (t) and Ia
αTα( f )(t) = f (t) − f (a).

Definition 2.5. ([3]). A conformable strongly continuous α-semigroup on a Banach space X, is a family {T(t), t ≥ 0}
of linear bounded operators from X into itself verifying:

(i) T(0) = I, (ii) T((s + t)
1
α ) = T(s

1
α )T(t

1
α ) for all s, t ≥ 0,

(iii) the map 1 : t 7→ T(t)x is continuous at t = 0, for all x ∈ X, i.e., lim
t→0+

T(t)x = x.

Definition 2.6. ([3]). The infinitesimal generator A of the fractional C0
− α-semigroup {T(t), t ≥ 0} is defined

by A : x 7→ Ax = lim
t→0+

T(α)(T(t)x) the conformable α-derivative of T(t) at t = 0, with domain D(A) = {x ∈

X| lim
t→0+

T(α)(T(t)x) exists}.

Notations: For a > 0, we consider Ca = C([0, a],X) the space of all continuous functions on [0, a] into the
Banach space X. For x, y ∈ Ca, we define the metric:
Ha(x, y) = sup

t∈[0,a]
∥x(t) − y(t)∥. Then, (Ca,Ha) is a complete metric space.

For real functions 11, 12 : [0,∞[→ R and α ≥ 0, where 12(x) is nonzero, we will use the ”Little o” notation:
11(x) = o

(
12(x)

)
as x→ α if and only if lim

x→α

11(x)
12(x) = 0.

3. A new definition of generalized fractional conformable derivative

In the sequel, let X be a real Banach space, and φ : [0,∞[→ R be a fixed positive, increasing (or
decreasing) and differentiable function.
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Definition 3.1. The (α, φ)-conformable fractional derivative of f : [0,∞[→ X of order α ∈ (0, 1] at t > 0 is defined
by

Tα,φ( f )(t) = f (α)
φ (t) = lim

ε→0

f (t + ε(φ(t))1−α) − f (t)
ε

.

If this limit exists, we say that f is (α, φ)-differentiable. We extend this definition to t = 0 by setting: Tα,φ( f )(0) =
lim
t→0+

Tα,φ( f )(t), if this limit exists.

Notice that for φ(t) = t : Tα,t( f ) = Tα( f ) coincides with the definition in [7]. Moreover, one can consider
φ(t) = e−t as a decreasing mapping.

Theorem 3.2. If a function f : [0,∞[→ R is (α, φ)-differentiable at x0 > 0, for α ∈ (0, 1], then f is continuous at x0.

Proof. Using f (x0 + ε(φ(x0))1−α) = f (x0) + ε. f (x0+ε(φ(x0))1−α)− f (x0)
ε and by tending h = ε(φ(x0))1−α to 0, we get

lim
h→0

f (x0 + h) = f (x0), that is f is continuous at x0.

Theorem 3.3. Let α ∈ (0, 1] and f , 1 : [0,∞[→ X be (α, φ)-differentiable. Then

1. Tα,φ(λ f + µ1) = λTα,φ( f ) + µTα,φ(1) and Tα,φ(c) = 0, for all c, λ, µ ∈ R.

2. Tα,φ(1 f ) = 1Tα,φ( f ) + Tα,φ(1) f and Tα,φ( f/1) = 1Tα,φ( f )−Tα,φ(1) f
12 , with 1 : R→ R.

3. If f is differentiable on [0,∞[, then Tα,φ( f )(t) = (φ(t))1−α f ′(t) and

Tα,φ

(
f
(

(φ(t))α

α

))
= φ′(t) f ′

(
(φ(t))α

α

)
. (1)

Proof. We prove the identity (1), because the other points are trivial. Using the Taylor series, we obtain for
ε > 0 very small:

f
( 1
α

(φ(t + ε(φ(t))1−α))α
)
− f

(
(φ(t))α

α

)
= f

( 1
α

(φ(t) + ε(φ(t))1−α.φ′(t) + o(ε))α
)
− f

(
(φ(t))α

α

)
= f

( 1
α

(φ(t))α
(
1 + εφ′(t)(φ(t))−α + o(ε

)
)α
)
− f

(
(φ(t))α

α

)
= f

( 1
α

(φ(t))α
(
1 + αεφ′(t)(φ(t))−α + o(ε))

))
− f

(
(φ(t))α

α

)
= f

( 1
α

(φ(t))α + εφ′(t) + o(ε)
)
− f

(
(φ(t))α

α

)
= f

( 1
α

(φ(t))α
)
+ εφ′(t) f ′

( 1
α

(φ(t))α
)
+ o(ε) − f

(
(φ(t))α

α

)
= εφ′(t) f ′

(
(φ(t))α

α

)
+ o(ε)

Hence,

lim
ε→0

f
(

1
α (φ(t + ε(φ(t))1−α))α

)
− f

(
1
α (φ(t))α

)
ε

= φ′(t) f ′
(

(φ(t))α

α

)
.

From the formula (1), we get generalization of some identities in [7]:

1. Tα,φ(ebx) = b(φ(x))1−αebx, b ∈ R.
2. Tα,φ(sin bx) = b(φ(x))1−α cos bx and Tα,φ(cos bx) = −b(φ(x))1−α sin bx.

3. Tα,φ
(

1
α (φ(x))α

)
= φ′(x).

Let us extend the (α, φ)-conformable derivative for α ∈ (n,n + 1] and n ∈N.
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Definition 3.4. Let f : [0,∞[→ X be n-differentiable at t > 0 and α ∈ (n,n + 1]. Then the (α, φ)-conformable
fractional derivative of f of order α at t > 0 is defined by

Tα,φ( f )(t) = f (α)
φ (t) = lim

ε→0

f (⌈α⌉−1)(t + ε(φ(t))(⌈α⌉−α)) − f (⌈α⌉−1)(t)
ε

.

where ⌈α⌉ is the smallest integer greater than or equal to α.
If this limit exists, we say that f is (α, φ)-differentiable at t. This definition can be extended to t = 0 by setting
Tα,φ( f )(0) = lim

t→0+
Tα,φ( f )(t), if this limit exists.

Remark 3.5. If f is (n + 1)-differentiable at t > 0, then we have:

Tα,φ( f )(t) = (φ(t))(⌈α⌉−α)T⌈α⌉,φ( f )(t) = (φ(t))(⌈α⌉−α) f (⌈α⌉)(t).

Theorem 3.6. ((α, φ)-Conformable Rolle’s Theorem). Let b > a > 0 and consider f : [a, b] → R a continuous
function on [a, b], which is (α, φ)-differentiable on (a, b), for α ∈ (0, 1), verifying f (a) = f (b). Then, there exists
c ∈ (a, b), such that f (α)

φ (c) = 0.

Proof. If f is constant, then each c ∈ (a, b) fits. Assume that f is not constant, then f admits at least one of its
extremums at some c ∈ (a, b), since f is continuous hence, it is bounded on the compact interval [a, b], and
f (a) = f (b). Without loss of generality, assume c is a point of global maximum. Thus

Tα,φ( f )(t) = lim
ε→0+

f (t + ε(φ(t))1−α) − f (t)
ε

= lim
ε→0−

f (t + ε(φ(t))1−α) − f (t)
ε

.

The first limit is non-positive, and the second is non-negative. So, f (α)
φ (c) = 0.

Theorem 3.7. ((α, φ)-Conformable Mean Value Theorem). Let b > a > 0 and consider f : [a, b]→ R a continuous
function on [a, b], which is (α, φ)-differentiable for α ∈ (0, 1). Then, there exists c ∈ (a, b), such that

f (α)
φ (c) =

f (b) − f (a)
1
α (φ(b))α − 1

α (φ(a))α
φ′(c).

Proof. Consider the following auxiliary function

h(x) = f (x) − f (a) −
f (b) − f (a)

(φ(b))α

α −
(φ(a))α

α

(
(φ(x))α

α
−

(φ(a))α

α

)
h is continuous on [a, b], (α, φ)-differentiable such that h(a) = h(b) = 0. Then by Rolle’s theorem, there exists
c ∈ (a, b), such that h(α)

φ (c) = 0. A simple calculation, taking into account Tα,φ
(

1
α (φ(x))α

)
= φ′(x), leads to the

desired result.

Definition 3.8. For α ∈ (0, 1), define Ia
α,φ( f )(t) = Ia

1,φ(tα−1 f ) =
∫ t

a
f (x)

(φ(x))1−α dx, where we adopt the Bochner integral.

Theorem 3.9. If f is a continuous function in the domain of Iα,φ then:

1. Tα,φIa
α,φ( f )(t) = f (t) , for all t ≥ a.

2. Ia
α,φTα,φ( f )(t) = f (t) − f (a), provided that f is differentiable.

Proof. 1. Since f is continuous, then Ia
α,φ( f )(t) is obviously differentiable. Thus,

Tα,φ
(
Ia
α,φ( f )

)
(t) = (φ(t))1−α d

dt

[
Ia
α,φ( f )(t)

]
= (φ(t))1−α d

dt

[∫ t

a

f (x)
(φ(x))1−α dx

]
= (φ(t))1−α f (t)

(φ(t))1−α = f (t).
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2. Since f is differentiable, then

Ia
α,φ

(
Tα,φ( f )

)
(t) = Ia

1,φ

(
(φ(t))1−α f ′(t)

)
=

∫ t

a

(φ(x))1−α f ′(x)
(φ(x))1−α dx =

∫ t

a
f ′(x)dx = f (t) − f (a).

So, Ia
α,φTα,φ( f )(t) = f (t) − f (a).

In the next result, we show that point 2 of Theorem 3.9 hold true if we assume only that f is an (α, φ)-
differentiable function and X = R.

Theorem 3.10. If f : [0,∞[→ R is (α, φ)-differentiable then, for all t ≥ 0: Ia
α,φTα,φ( f )(t) = f (t) − f (a).

Proof. • Step 1: If f (x) =
p∑

k=0
λk fk is a polynomial mapping, where fk(x) = xk, 0 ≤ k ≤ p. Then by the

linearity of conformable derivative and integral, we get

Ia
α,φTα,φ( f )(t) =

p∑
k=0

λkIa
α,φTα,φ( fk)(t) =

p∑
k=0

λk

∫ t

a

Tα,φ( fk)(t)
(φ(x))1−α dx

=

p∑
k=0

λk

∫ t

a

kxk−1(φ(x))1−α

(φ(x))1−α dx =
p∑

k=0

λk

∫ t

a
kxk−1dx =

p∑
k=0

λk(tk
− ak)

where we have used point 5 of Theorem 3.3. Thus

Ia
α,φTα,φ( f )(t) = f (t) − f (a).

• Step 2: General case. Let t ≥ 0 and [b, c] ⊂ [0,∞[ such that t ∈ [b, c]. Since f is (α, φ)-differentiable,
then f is continuous. By using Weierstrass approximation Theorem, there exists a sequence (Pk) of
polynomial functions, which is uniformly convergent to f on the compact interval [b, c]. Thus using
the first case, we have∣∣∣Ia

α,φTα,φ( f )(t) − f (t) + f (a)
∣∣∣ = ∣∣∣Ia

α,φTα,φ( f )(t) − Ia
α,φTα,φ(Pk)(t) + Pk(t) − f (t) + f (a) − Pk(a)

∣∣∣
≤

∣∣∣Ia
α,φTα,φ( f − Pk)(t)

∣∣∣ + |Pk(t) − f (t)| + | f (a) − Pk(a)|.

Clearly, |Pk(t) − f (t)| and | f (a) − Pk(a)| converge to 0 as k → ∞. Moreover, using the double limit theorem,
one obtains

lim
k→∞

Tα,φ( f − Pk)(t) = lim
k→∞

lim
ε→0

f (t + ε(φ(t))1−α) − Pk(t + ε(φ(t))1−α) + Pk(t) − f (t)
ε

= lim
ε→0

lim
k→∞

f (t + ε(φ(t))1−α) − Pk(t + ε(φ(t))1−α) + Pk(t) − f (t)
ε

= 0.

We deduce by the dominated convergence Theorem that

lim
k→∞

Ia
α,φTα,φ( f − Pk)(t) = 0.

Hence, Ia
α,φTα,φ( f )(t) = f (t) − f (a).

So, the condition ” f is differentiable” , added by the author of [2] to prove this result in Lemma 2.8, is
superfluous and it is sufficient to assume that f is (α, φ)-differentiable.
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4. New fractional conformable strongly continuous semigroups

Remark 4.1. To generalize the notion of a conformable C0
− α-semigroup on X, we assume from now on

that φ : [0,∞[→ [0,∞[ is an increasing diffeomorphism of class C1, verifying φ(0) = 0 and lim
t→0+

φ(t)
t = C > 0.

Definition 4.2.
By a conformable fractional strongly continuous (α, φ)-semigroup on X, we mean a family {T(t), t ≥ 0} of linear
bounded operators from X into itself verifying points (i), (iii) of Definition 2.5 and the following alternative condition:

(ii) T((φ(s + t))
1
α ) = T((φ(s))

1
α )T((φ(t))

1
α ) for all s, t ≥ 0.

Definition 4.3.
The (α, φ)-infinitesimal generator A of the conformable C0

− (α, φ)-semigroup {T(t), t ≥ 0} is defined by A : x 7→ Ax =
lim
t→0+

T(α)
φ (T(t)x) the conformable (α, φ)-derivative of T(t) at t = 0, with domain D(A) = {x ∈ X| lim

t→0+
T(α)
φ (T(t)x) exists}.

For a family {T(t), t ≥ 0} of linear bounded operators from X into itself, define S(t) = T((φ(t))
1
α ) that

is T(t) = S(φ−1(tα)), for all t ≥ 0. The following results describe the relationship between conformable
fractional and classical semigroups and give the link between their generators. Some proofs will be omitted
since they are obvious.

Proposition 4.4. {T(t), t ≥ 0} is a C0
− (α, φ)-semigroup on X if and only if {S(t), t ≥ 0} is a C0-semigroup on X.

Theorem 4.5. Let {T(t), t ≥ 0} be a C0
− (α, φ)-semigroup on X. Then, there exist two constants M ≥ 1 and w ≥ 0

such that

∥T(t)∥ ≤Mewφ−1(tα), for all t ≥ 0. (2)

Proof. It is well known that: ∃M ≥ 1,w ≥ 0,∀t ≥ 0, ∥S(t)∥ ≤Mewt.
Therefore, ∥T(t)∥ = ∥S(φ−1(tα))∥ ≤Mewφ−1(tα), for all t ≥ 0.

Proposition 4.6. If {T(t), t ≥ 0} is a C0
− (α, φ)-semigroup on X then for all x ∈ X, the function 1 : t 7→ T(t)x is

continuous all over [0,∞[.

Proof. Consider the continuous function ψ : t 7→ φ−1(tα) and the map h : t 7→ S(t)x, then 1(t) = T(t)x =
S(φ−1(tα)) = h ◦ ψ(t), for all t ≥ 0. Since {S(t), t ≥ 0} is a classical C0-semigroup on X , then h is continuous
over [0,∞[ (see [10]). Thus, 1 = h ◦ ψ is also continuous over [0,∞[.

The major defect of Definition 2.6, due to Alhorani et al., is that it defines implicitly the generator of a
conformable C0

− α-semigroup. Hence, the interest and the importance of our following Theorem 4.7, in
which we will give an explicit expression for the α-infinitesimal generator A of a conformable fractional
C0
− α-semigroup {T(t), t ≥ 0}.

Theorem 4.7. Let A be the infinitesimal generator of the conformable C0
− (α, φ)-semigroup {T(t), t ≥ 0} on X. Then,

for all x ∈ D(A):

Ax =
αC1−α

φ′(0)
lim
t→0+

T((φ(t))
1
α )x − x

t
. (3)

Proof. Let x ∈ D(A), we have

Ax = lim
t→0+

T(α)
φ (T(t)x) = lim

t→0+
lim
ε→0+

T(t + εφ(t)1−α)x − T(t)x
ε

= lim
ε→0+

lim
t→0+

S ◦ φ−1((t + εφ(t)1−α)α)x − S ◦ φ−1(tα)x
ε

,
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where the exchange of the limits follows from the uniform continuity of the mapping (t, ε)→ T(t+εφ(t)1−α)x−T(t)x
t

on the compact [0, 1] × [0, 1], since it is continuous therein. Therefore

Ax = lim
ε→0+

lim
t→0+

S ◦ φ−1(tα(1 + εφ(t)1−α/t)α)x − S ◦ φ−1(tα)x
ε

= lim
ε→0+

lim
t→0+

S ◦ φ−1(tα(1 + αεφ(t)1−α/t + o(ε))x − S ◦ φ−1(tα)x
ε

= lim
ε→0+

lim
t→0+

S ◦ φ−1(tα + αε(φ(t)/t)1−α + o(ε))x − S ◦ φ−1(tα)x
ε

= lim
ε→0+

lim
t→0+

S(φ−1(tα) + αε(φ(t)/t)1−α(φ−1)′(tα) + o(ε))x − S ◦ φ−1(tα)x
ε

= lim
ε→0+

lim
t→0+

S ◦ φ−1(tα)
[

S(αε(φ(t)/t)1−α(φ−1)′(tα) + o(ε))x − x
ε

]
= lim

ε→0+
S ◦ φ−1(0)

[
S(αεC1−α(φ−1)′(0) + o(ε))x − x

ε

]
= lim

ε→0+
S(0)

[
S(αεC1−α(φ−1)′(0))x − x

ε

]
= lim
ε→0+

S(αεC1−α(φ−1)′(0))x − x
ε

; S(0) = I

= αC1−α(φ−1)′(0) lim
ε→0+

S(αεC1−α(φ−1)′(0))x − x
αεC1−α(φ−1)′(0)

=
αC1−α

φ′(0)
lim
t→0+

S(t)x − x
t

.

By consequence, Ax = αC1−α

φ′(0) lim
t→0+

T((φ(t))
1
α )x−x

t .

Remark 4.8. In the particular case φ(t) = t, the expression (3) becomes

Ax = α lim
t→0+

T(t
1
α )x − x

t
. (4)

Theorem 4.9. Let A be the infinitesimal generator of the conformable C0
− (α, φ)-semigroup {T(t), t ≥ 0} and B be

the infinitesimal generator of the C0-semigroup {S(t), t ≥ 0}on X. Then

1. D(A) = D(B) and for all x ∈ D(A), we have Ax = αC1−α

φ′(0) Bx.

2. The domain D(A) is dense in X and A is a closed linear operator.

Proof. 1. let x ∈ D(A), we have seen in the proof of Theorem 4.7 that Ax = αC1−α

φ′(0) lim
t→0+

S(t)x−x
t , so x ∈ D(B)

and Ax = αC1−α

φ′(0) Bx. Now, let x ∈ D(B) then by a similar way we show that lim
t→0+

T(α)
φ (T(t)x = αC1−α

φ′(0) Bx

exists. Hence, x ∈ D(A). Therefore, D(A) = D(B) and Ax = αC1−α

φ′(0) Bx.

2. It is well known that the domain D(B) of the C0-semigroup {S(t), t ≥ 0} is dense in X and B is a closed
linear operator (see [10]). Hence, the domain D(A) is also dense in X and A is a closed linear operator,
since A = αC1−α

φ′(0) B.

Remark 4.10. By taking φ(t) = t, which leads to φ′(t) = φ′(0) = C = 1,

• the identity (2) in Theorem 4.5 is reduced to ∥T(t)∥ ≤Mewtα , for all t ≥ 0.

• The link between the two generators A and B turns into A = αB.
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Theorem 4.11. Let A be the infinitesimal generator of the conformable C0
− (α, φ)-semigroup {T(t), t ≥ 0}. Then, for

all x ∈ D(A), we have T(t)x ∈ D(A), the function
1 : t 7→ T(t)x is (α, φ)-differentiable and

dα

dtα
(T(t)x) =

φ′(0)
φ′(φ−1(tα))

(
φ(t)
C.t

)1−α

AT(t)x =
φ′(0)

φ′(φ−1(tα))

(
φ(t)
C.t

)1−α

T(t)Ax. (5)

Proof. In one hand, we have

dα

dtα
(T(t)x) = T(α)

φ (T(t)x) = lim
ε→0+

S ◦ φ−1(tα(1 + εφ(t)1−α/t)α)x − S ◦ φ−1(tα)x
ε

= lim
ε→0+

S ◦ φ−1(tα)
[

S(αε(φ(t)/t)1−α(φ−1)′(tα) + o(ε))x − x
ε

]
= T(t) lim

ε→0+

[
S(αε(φ(t)/t)1−α(φ−1)′(tα))x − x

ε

]
= α(φ(t)/t)1−α(φ−1)′(tα)T(t) lim

h→0+

[
S(h)x − x

h

]
=
α(φ(t)/t)1−α

φ′(φ−1(tα))
T(t)Bx

=
φ′(0)

φ′(φ−1(tα))

(
φ(t)
C.t

)1−α

T(t)Ax.

In the other hand, one can write

T(α)
φ (T(t)x) = lim

ε→0+

[
S(αε(φ(t)/t)1−α(φ−1)′(tα) + o(ε))S ◦ φ−1(tα)x − S ◦ φ−1(tα)x

ε

]
= lim

ε→0+

[
S(αε(φ(t)/t)1−α(φ−1)′(tα) + o(ε))T(t)x − T(t)x

ε

]
=
α(φ(t)/t)1−α

φ′(φ−1(tα))
BT(t)x

=
φ′(0)

φ′(φ−1(tα))

(
φ(t)
C.t

)1−α

AT(t)x.

Finally, we have T(t)x ∈ D(A) and

T(α)
φ (T(t)x) =

φ′(0)
φ′(φ−1(tα))

(
φ(t)
C.t

)1−α

T(t)Ax =
φ′(0)

φ′(φ−1(tα))

(
φ(t)
C.t

)1−α

AT(t)x.

Remark 4.12. The foregoing Theorem 4.11 was studied by Al Horani et al. [3], in the particular caseφ(t) = t,
but it was proved under the strong condition: ”T(t) is continuously α-differentiable”. As it was shown
above, this condition is superfluous, since it is sufficient to assume that {T(t), t ≥ 0} is a C0

− α-semigroup
on X as in the classical case. Hence, for the generator of the conformable C0

− α-semigroup {T(t), t ≥ 0}, the
equality (5) is similar to usual formula and it becomes

dα

dtα
(T(t)x) = AT(t)x = T(t)Ax. (6)

Theorem 4.13. Let A be the infinitesimal generator of the conformable C0
− (α, φ)-semigroup {T(t), t ≥ 0} and for

fixed x ∈ X let 1 : s 7→ T(s)x. Then

1. lim
h→0

1
h

(
I0
α,φ(1)(t + h) − Ia

α,φ(1)(t)
)
= (φ(t))α−1T(t)x.

2. For x ∈ X let k : s 7→ φ′(0)
φ′(φ−1(sα))

(
φ(s)
C.s

)1−α
T(s)x, then I0

α,φ(k)(t) ∈ D(A) and one has A
(
I0
α,φ(k)(t)

)
= T(t)x − x.
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3. For fixed x ∈ D(A), we consider h1 : τ 7→ φ′(0)
φ′(φ−1(τα))

(
φ(τ)
C.τ

)1−α
T(τ)Ax and

h2 : τ 7→ φ′(0)
φ′(φ−1(τα))

(
φ(τ)
C.τ

)1−α
AT(τ)x, then for t ≥ s ≥ 0, we have

T(t)x − T(s)x = I0
α,φ (h1) (t) − I0

α,φ (h1) (s) = I0
α,φ (h2) (t) − I0

α,φ (h2) (s).

The proof of Theorem (4.13) is based on the application of the equality 5 and the well-known result

lim
h→0

1
h

∫ t+h

t ϕ(s)ds = ϕ(t), for continuous function ϕ : [0,∞[→ X.

5. Conformable differential equation with conformable semigroup

In this section, we study the following conformable fractional differential equation with initial condition

dαx(t)
dtα = Ax(t) + f (t, x(t)), t ∈ [0, a];

x(0) = x0; x0 ∈ X.
(7)

where A : D(A)→ X and f : [0, a] × Ca → X satisfying the following assumptions:

(H0) A is the infinitesimal generator of the conformable C0
− (α, φ)-semigroup {T(t), t ≥ 0} on X such that

D(A) = X and there exists M ≥ 1:

∥T(t)x − T(t)y∥ ≤M∥x − y∥, for all t ∈ [0, a], x, y ∈ X.

(H1) f : [0, a] × Ca → X is a continuous function such that there exist K > 0, for all t ∈ [0, a], x, y ∈ X :
∥ f (t, x) − f (t, y)∥ ≤ K∥x − y∥.

(H2) Suppose that the integral θ(t) = αC1−α

φ′(0)

∫ t

0 (φ(s))α−1ds is convergent, for all t ∈ [0, a].

Definition 5.1. We say that x is a mild solution of equation (7) if

(i) x ∈ Ca, x(t) ∈ D(A) for all t ∈ [0, a], such that x(0) = x0;

(ii) and for all t ∈ [0, a]:

x(t) = T
(
(φ(θ(t)))

1
α

)
x0 +

∫ t

0
(φ(s))α−1T

(
(φ(θ(t) − θ(s)))

1
α

)
f (s, x(s))ds.

Theorem 5.2. Suppose that assumptions (H0) − (H2) hold. Then equation (7) has a unique mild solution provided
that L0 =

MKφ′(0)
αC1−α θ(a) < 1.

Proof. We define a mapping V : Ca → Ca, for all x ∈ Ca, by

Vx(t) = T
(
(φ(θ(t)))

1
α

)
x0 +

∫ t

0
(φ(s))α−1T

(
(φ(θ(t) − θ(s)))

1
α

)
f (s, x(s))ds.

For t ∈ [0, a], we have

Vx(t) = S (θ(t)) x0 +

∫ t

0
(φ(s))α−1S (θ(t) − θ(s)) f (s, x(s))ds.
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(a) Step 1: Let x ∈ Ca, we prove that Vx ∈ Ca. For t ∈ (0, a] and ξ very small such that t + ξ ∈ (0, a]:

∥Vx(t + ξ) − Vx(t)∥ ≤ R1(ξ) + R2(ξ) + R3(ξ),

where using the assumption (H0), one obtains

R1(ξ) = ∥S(θ(t + ξ))x0 − S(θ(t))x0∥ = ∥S(θ(t) + ξθ′(t) + o(ξ))x0 − S(θ(t))x0∥

= ∥S(θ(t))S(ξθ′(t) + o(ξ))x0 − S(θ(t))x0∥ ≤M∥S(ξθ′(t) + o(ξ))x0 − x0∥,

Since, ∥S(ξθ′(t) + o(ξ))x0 − x0∥ → 0, then R1(ξ)→ 0 as ξ→ 0+. Furthermore, we have

R2(ξ) =

∥∥∥∥∥∥
∫ ξ

0
(φ(s))α−1S(θ(t + ξ) − θ(s)) f (s, x(s))ds

∥∥∥∥∥∥ ≤
∫ ξ

0
(φ(s))α−1

∥∥∥S(θ(t + ξ) − θ(s)) f (s, x(s))
∥∥∥ ds

≤ M
∫ ξ

0
(φ(s))α−1

∥ f (s, x(s))∥ds

It is clear that
∫ ξ

0 (φ(s))α−1
∥ f (s, x(s))∥ds → 0 as ξ → 0+, thus R2(ξ) → 0 as ξ → 0+. Finally, we have

using an affine change of variable

R3(ξ) =

∥∥∥∥∥∥
∫ t+ξ

ξ
(φ(s))α−1S(θ(t + ξ) − θ(s)) f (s, x(s))ds −

∫ t

0
(φ(s))α−1S(θ(t) − θ(s)) f (s, x(s))ds

∥∥∥∥∥∥ .
=

∥∥∥∥∥∥
∫ t

0

[
(φ(s + ξ))α−1S(θ(t + ξ) − θ(s + ξ)) f (s + ξ, x(s + ξ)) − (φ(s))α−1S(θ(t) − θ(s)) f (s, x(s))

]
ds

∥∥∥∥∥∥
≤

∫ t

0

∥∥∥(φ(s + ξ))α−1S(θ(t + ξ) − θ(s + ξ)) f (s + ξ, x(s + ξ)) − (φ(s))α−1S(θ(t) − θ(s)) f (s, x(s))
∥∥∥ ds.

And by the dominated convergence theorem, we get∫ t

0

∥∥∥(φ(s + ξ))α−1S(θ(t + ξ) − θ(s + ξ)) f (s + ξ, x(s + ξ)) − (φ(s))α−1S(θ(t) − θ(s)) f (s, x(s))
∥∥∥ ds

converges to 0 as ξ→ 0+, so R3(ξ)→ 0 as ξ→ 0+. Hence, ∥Vx(t+ξ)−Vx(t)∥ → 0 as ξ→ 0+. Similarly,
we prove that ∥Vx(t − ξ) − Vx(t)∥ → 0 as ξ→ 0+. So, Vx is continuous at each t , 0 and obviously at
t = 0. Therefore, Vx ∈ Ca i.e., V maps Ca into itself.

(b) Step 2: Claim: V is a contraction on Ca. For x, y ∈ Ca and t ∈ [0, a], we have

∥Vx(t) − Vy(t)∥ =

∥∥∥∥∥∥
∫ t

0
(φ(s))α−1S (θ(t) − θ(s))

[
f (s, x(s)) − f (s, y(s))

]
ds

∥∥∥∥∥∥
≤

∫ t

0
(φ(s))α−1

∥∥∥S (θ(t) − θ(s))
[

f (s, x(s)) − f (s, y(s))
]∥∥∥ ds

≤ MK
∫ t

0
(φ(s))α−1

∥x(s) − y(s)∥ds

≤
MKφ′(0)
αC1−α θ(a)Ha(x, y) = L0Ha(x, y).

Thus, Ha(Vx,Vy) ≤ L0Ha(x, y). Since L0 < 1, then V is a contraction on the complete metric space
(Ca,Ha). Hence, there exists a unique x ∈ Ca such that Vx = x. So, x is the unique mild solution of
equation (7).
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Theorem 5.3. (Continuous dependence on initial data). Suppose that assumptions (H0) − (H2) and the condition
L0 =

MKφ′(0)
αC1−α θ(a) < 1 hold true. Let x = x(t, x0) and y = y(t, y0) be mild solutions of equation (7) corresponding to

x0 and y0 respectively. Then

Ha(x, y) ≤M∥x0 − y0∥ exp
(

MKφ′(0)
αC1−α θ(a)

)
. (8)

Proof. Let t ∈ [0, a], for all u ∈ [0, t] we have

∥x(u) − y(u)∥ ≤ ∥T
(
(φ(θ(t)))

1
α

)
x0 − T

(
(φ(θ(t)))

1
α

)
y0∥

+

∫ u

0
(φ(s))α−1

∥∥∥∥T
(
(φ(θ(u) − θ(s)))

1
α

) [
f (s, x(s)) − f (s, y(s))

]∥∥∥∥ ds

≤ M∥x0 − y0∥ +M
∫ u

0
(φ(s))α−1

∥∥∥ f (s, x(s)) − f (s, y(s))
∥∥∥ ds

≤ M∥x0 − y0∥ +MK
∫ u

0
(φ(s))α−1

∥x(s)) − y(s)∥ds

Passing to the supremum on [0, t], we obtain

Ht(x, y) ≤M∥x0 − y0∥ +MK
∫ t

0
(φ(s))α−1Hs(x, y)ds

Then by Gronwall’s inequality, we have for all t ∈ [0, a]

Ht(x, y) ≤M∥x0 − y0∥ exp
(

MKφ′(0)
αC1−α θ(a)

)
By consequence

Ha(x, y) ≤M∥x0 − y0∥ exp
(

MKφ′(0)
αC1−α θ(a)

)

Remark 5.4. In the particular case φ : t 7→ φ(t) = t, the expression of the mild solution for equation (7)
becomes, for all t ∈ [0, a]: x(t) = T(t)x0 +

∫ t

0 sα−1T((tα − sα)
1
α ) f (s, x(s))ds. The value of L0 in Theorem 5.2 is

L0 =MK aα
α < 1. And inequation (8) in Theorem 5.3 is simplified to

Ha(x, y) ≤M∥x0 − y0∥ exp
(
MK

aα

α

)
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