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Abstract. In this paper, we consider a class of Steklov p(x)-Laplacian problems with a critical exponent,
given by the following equation:

(−∆)p(x)u = |u|r(x)−2u + f (x,u), in Ω,

|∇u|p(x)−2 ∂u
∂v = |u|

s(x)−2u, on ∂Ω,

where Ω ⊂ RN(N ≥ 2) is a bounded domain with Lipschitz boundary ∂Ω. Here, ∂
∂v denotes the outer

unit normal derivative, the function f : Ω × R → R is a Carathéodory function satisfying appropriate
assumptions, and the functions p and r are continuous in Ω, such that 1 < r(x) ≤ p∗(x) for all x ∈ Ω, where
p∗(x) represents the critical Sobolev exponent. To establish the existence and multiplicity of solutions, we
employ variational methods, including the mountain pass theorem and symmetric mountain pass theorem,
combined with the concentration-compactness principle. These techniques enable us to find solutions that
satisfy the given boundary conditions and exhibit interesting properties related to the critical exponent.

1. Introduction

In this paper, we focus on a class of Steklov p(x)-Laplacian problems with a critical exponent. The
problem is formulated as follows:

(−∆)p(x)u = |u|r(x)−2u + f (x,u) in Ω,

|∇u|p(x)−2 ∂u
∂v = |u|

s(x)−2u on ∂Ω,
(1)
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where Ω is a bounded domain in RN, with Lipschitz boundary denoted by ∂Ω. The symbol ∂∂v represents
the outer unit normal derivative and ∆p(x)u = div

(
|∇u|p(x)−2

∇u
)
.

The function f : Ω ×R→ R is a Carathéodory function that satisfies appropriate assumptions
We assume that both p(x) and r(x) are continuous functions in Ω, meaning they are defined and contin-

uous on the closure of Ω. Moreover, we consider the condition 1 < p(x) < r(x) ≤ p∗(x) for all x ∈ Ω, where
p∗(x) represents the critical Sobolev exponent. Additionally, we assume that the set A = {x ∈ Ω : r(x) = p∗(x)}
is non-empty.

In nonlinear elliptic equations with critical growth, the concentration-compactness principle introduced
by Lions (see [23]) has been widely recognized as a fundamental tool for establishing the existence of
solutions. This principle is particularly crucial when considering equations involving Sobolev embeddings,
which capture the critical growth behavior. For a more comprehensive understanding of this topic, we
suggest referring to the references [3, 4, 6, 12, 17–22, 27, 30–32] and the additional sources mentioned
therein.

In their work [8], Bonder and al. extend Lions’ well-known concentration-compactness principle to
the setting of variable exponents. This extension is stated as Theorem 3.8. By considering equations with
variable exponents, they allow for more flexibility in modeling various physical phenomena and capturing
the heterogeneity of the problem domain.

To apply the extended concentration-compactness principle, The authors in [8] consider the following
nonlinear elliptic equation:

(−∆)p(x)u = |u|r(x)−2u + a(x)|u|q(x)−2u in Ω,

u = 0 on ∂Ω,

here, p, q, and r are functions belonging to the space C(Ω), whereΩ represents the domain of the problem.
These functions are subject to the condition 1 < p(x) < r(x) ≤ p∗(x) for all x ∈ Ω, where p(x) denotes the
critical Sobolev exponent associated with p(x). The set A = {x ∈ Ω : r(x) = p∗(x)} is assumed to be non-empty,
indicating the presence of the critical growth behavior. To establish the existence of solutions, Bonder and
al. [8] employ variational methods and make use of the mountain pass theorem. These techniques allow
them to construct a suitable functional and apply critical point theory to find nontrivial solutions to the
problem.

The study of problems with variable exponents has received significant attention in recent years. These
problems have proven to be interesting and relevant in various applications, such as the modeling of
electro-rheological fluids [13, 26, 28] and image processing [11]. Additionally, they give rise to challenging
mathematical problems that require careful investigation. Also, we note that in reference [36], a concise
summary of recent advancements and references in the study of problems with variable exponents is
provided. This resource offers valuable insights into the progress made in this field, serving as a useful
reference for further exploration. Furthermore, the study of variational problems with nonstandard growth
is a new and intriguing topic, as mentioned in the references cited as [1, 2, 5, 7, 10, 14, 24, 25, 29, 34, 35]. These
works contribute to understanding the behavior and properties of variational problems with nonstandard
growth, expanding the knowledge and research in this field.

In their publication [9], the authors extensively investigated the following nonlinear Steklov problem
with Neumann boundary value conditions:

(−∆)p(x)u + a(x)|u|p(x)−2u = f (x,u) in Ω,

|∇u|p(x)−2 ∂u
∂v + b(x)|u|q(x)−2u = 1(x,u) on ∂Ω.

(P)

Under suitable conditions on the functions a, b, p, q, f , and 1, the authors employed variational methods,
the mountain pass lemma, and the Ekeland principle to establish the existence and multiplicity of solutions
for problem (P). Notably, they imposed the condition f (x,u) ≤ v1(x)|u|α(x)−1, where α(x) < p∗(x).
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Motivated by the results presented in reference [9], our paper aims to contribute further by studying
the critical case of the aforementioned problem. To this end, we utilize a recent concentration-compactness
principle for Sobolev spaces with variable exponents to investigate the weighted Steklov problem (1).
Our study provides a generalization, improvement, and extension of the aforementioned references under
additional, appropriate conditions. Consequently, this research project holds significant importance and
offers valuable insights.

In this paper, we consider the problem (1) in two distinct cases. Firstly, we examine the scenario where
f (x,u) = v1(x)h1(u). Under specific hypotheses, we employ the variational method, the mountain pass
theorem, and the symmetric mountain pass theorem to establish the existence and multiplicity of nontrivial
weak solutions for problem (1). This rigorous approach ensures the robustness and reliability of our results.

Secondly, we investigate the case where f (x,u) = v1(x)h1(u) + λ|u|γ(x)−2u. By imposing suitable as-
sumptions, we utilize the mountain pass theorem and the symmetric mountain pass theorem to prove the
existence and multiplicity of nontrivial solutions for problem (1). This analysis provides valuable insights
into the behavior and properties of the solutions in this particular case, further enriching the understanding
of the problem.

In summary, our research significantly contributes to the existing literature by exploring the critical case
of the Steklov problem with Neumann boundary conditions. Through rigorous mathematical techniques
and the utilization of recent concentration-compactness principles, we establish the existence and multi-
plicity of solutions for problem (1) under different scenarios, enhancing the overall understanding of this
important topic.

This paper is organized as follows: In Section 2, we present some necessary preliminary knowledge on
variable exponent Lebesgue and Sobolev spaces. Section 3 contains our first main result, where we present
and prove the existence and multiplicity of solutions for the weighted Steklov problem. In Section 4, we
present and prove our second result, further extending our study of the weighted Steklov problem.

2. Preliminaries

In this section, we provide an overview of some important properties of variable exponent spaces. For
more detailed information, we recommend referring to the works [2, 9, 10, 15, 16, 33] and the references
therein. Let Ω be a bounded domain in RN, where N ≥ 2. We consider the set

C+(Ω) =
{
p ∈ C(Ω), p(x) > 1,∀, x ∈ Ω

}
.

For all p ∈ C+(Ω) , we define,
p− = inf

Ω
p(x), and p+ = sup

Ω

p(x).

Additionally, we define

Lp(x)(Ω) =
{

u : Ω→ R, measurable :
∫
Ω

|u(x)|p(x)dx < ∞
}
,

with the norm on Lp(x)(Ω) defined as

|u|Lp(x)(Ω) = inf
{
µ > 0 :

∫
Ω

|
u(x)
µ
|
p(x)dx ≤ 1

}
.

Also, we define

Lp(x)(∂Ω) =
{

u : Ω→ R, measurable :
∫
∂Ω
|u(x)|p(x)dx < ∞

}
,
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with the norm on Lp(x)(∂Ω) defined as

|u|Lp(x)(∂Ω) = inf
{
µ > 0 :

∫
∂Ω
|
u(x)
µ
|
p(x)dx ≤ 1

}
,

The space
(
Lp(x)(Ω), |.|Lp(x)(Ω)

)
and

(
Lp(x)(∂Ω), |.|Lp(x)(∂Ω)

)
are a Banach spaces, which we refer to as variable

exponent Lebesgue spaces. Now, we introduce the space

W1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
,

equipped with the norm
∥u∥ = ∥u∥W1,p(x)(Ω) = ∥u∥Lp(x)(Ω) + ∥∇u∥Lp(x)(Ω) .

Finally, we denote by W1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W1,p(x)(Ω).

The following proposition provides important properties of variable exponent spaces.

Proposition 2.1. (see [9, 15]) The following statements hold:

1. The space
(
Lp(x)(Ω), |.|Lp(x)(Ω)

)
is a separable and uniformly convex Banach space, and its conjugate space is

Lp′ (x)(Ω), where 1
p(x) +

1
p′ (x) = 1. Moreover, the Hölder inequality holds, that is, for any u ∈ Lp(x)(Ω) and

v ∈ Lp′ (x)(Ω), we have ∣∣∣∣ ∫
Ω

uvdx
∣∣∣∣ ≤ (

1
p−
+

1
(p′ )−

)|u|p(x)|v|p′ (x).

2. If p1, p2 ∈ C+(Ω) such that p1(x) ≤ p2(x) for all x ∈ Ω, then the embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω) is continuous.

Note that ∥u∥ and ∥∇u∥Lp(x)(Ω) are equivalent in the space W1,p(x)
0 (Ω), see [9, 10], so, for simplicity let’s use

∥u∥ = ∥∇u∥Lp(x)(Ω).
The following proposition highlights the properties of the variable exponent Sobolev spaces.

Proposition 2.2. (see [15, 16])The following statements hold:

1. The spaces W1,p(x)(Ω) and W1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

2. If q ∈ C+(Ω) with q(x) < p∗(x) for all x ∈ Ω, then the embedding from W1,p(x)(Ω) into Lq(x)(Ω) is compact and
continuous. Here, p∗(x) is defined as follows:

p∗(x) =


Np(x)

N−p(x) , if p(x) < N,

∞, if p(x) ≥ N,

3. If q ∈ C+(∂Ω) with q(x) < p∗(x) for all x ∈ ∂Ω, then the embedding from W1,p(x)(Ω) into Lq(x)(∂Ω) is compact
and continuous. Here, p∗(x) is defined as follows:

p∗(x) =


(N−1)p(x)

N−p(x) , if p(x) < N,

∞, if p(x) ≥ N,

here N is the dimension of the space.

For simplicity, let us denote

Γ(u) =
∫
Ω

|∇u|p(x)dx.

The following proposition provides important properties of the functional Γ.
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Proposition 2.3. (see [9, 36]) There exist positive constants ξ1 and ξ2 such that

1. If Γ(u) ≥ 1, then ξ1||u||p
−

≤ Γ(u) ≤ ξ2||u||p
+ .

2. If Γ(u) ≤ 1, then ξ1||u||p
+
≤ Γ(u) ≤ ξ2||u||p

− .
3. Γ(u) ≥ 1(= 1,≤ 1)⇔ ||u|| ≥ 1(= 1,≤ 1).

Let us define

ρ(u) =
∫
Ω

|u(x)|p(x)dx.

The next proposition provides properties of the functional ρ.

Proposition 2.4. (see [9, 15, 16]) For all u ∈ Lp(x)(Ω), we have

1. |u|Lp(x)(Ω) < 1; (resp = 1, > 1)⇔ ρ(u) < 1; (resp = 1, > 1).

2. |u|Lp(x)(Ω) > 1⇒ |u|p
−

Lp(x)(Ω)
≤ ρ(u) ≤ |u|p

+

Lp(x)(Ω)
.

3. |u|Lp(x)(Ω) < 1⇒ |u|p
+

Lp(x)(Ω)
≤ ρ(u) ≤ |u|p

−

Lp(x)(Ω)
.

The next proposition relates the norms of a function in variable exponent Lebesgue spaces with its
pointwise behavior:

Proposition 2.5. (see [9, 15, 16]) If p and q are measurable functions such that p ∈ L∞(RN) and 1 ≤ p(x)q(x) ≤ ∞
for all x ∈ RN, then for all u ∈ Lq(x)(RN) with u , 0, we have

1. |u|p(x)q(x) ≤ 1⇒ |u|q
+

p(x)q(x) ≤ ||u|
p(x)
|q(x) ≤ |u|

q−

p(x)q(x).

2. |u|p(x)q(x) ≥ 1⇒ |u|q
−

p(x)q(x) ≤ ||u|
p(x)
|q(x) ≤ |u|

q+

p(x)q(x).

Denote for u ∈ Lp(ξ)(∂Ω),

ρ∂(u) =
∫
∂Ω
|u(x)|p(ξ)dσ.

Proposition 2.6. [9, 10] For all u ∈ Lp(ξ)(∂Ω), we have,
(1) |u|Lp(ξ)(∂Ω) > 1⇒ |u|p

−

Lp(ξ)(∂Ω)
≤ ρ∂(u) ≤ |u|p

+

Lp(ξ)(∂Ω)
,

(2) |u|Lp(ξ)(∂Ω) < 1⇒ |u|p
+

Lp(ξ)(∂Ω)
≤ ρ∂(u) ≤ |u|p

−

Lp(ξ)(∂Ω)
.

Finally, let’s define the Palais-Smale (PS) condition at a given level c for φ ∈ C1(X,R):

Definition 2.7. Let X be a Banach space and φ ∈ C1(X,R), where c ∈ R. We say that φ satisfies the (PS) condition
at level c if any sequence un ⊂ X, such that

φ(un)→ c, and φ′(un)→ 0, in X∗, as n→∞,

contains a convergent subsequence.

In the context of our analysis and proofs, we will now introduce and recall several important theorems: the
Mountain Pass Theorem, its symmetric version for even functions. These theorems play a crucial role in
establishing our results. Here are the statements of the theorems:

Theorem 2.8. (Mountain pass theorem)(see [2]) Let X be a Banach space. Consider a functional φ ∈ C1(X,R)
satisfying the following conditions:

1. φ(0) = 0,
2. φ satisfies the Palais-Smale condition,
3. There exist positive constants η and ρ such that if ||u|| = η, then φ(u) ≥ ρ,
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4. There exists e ∈ X with ||e|| > η such that φ(e) ≤ 0. Then, φ possesses a critical value c ≥ ρ which can be
characterized as

c = inf
γ∈Γ

max
t∈[0,1]

φ(γ(t)),

where,
Γ = {γ ∈ C([0, 1],X) : γ(0) = 0, γ(1) = e}.

Theorem 2.9. (Symmetric mountain pass theorem)(see [2]) Let X be an infinite dimensional real Banach space. Let
φ ∈ C1(X,R), satisfying the following conditions:

1. φ is an even functional such that φ(0) = 0,
2. φ satisfies the (PS)-condition,
3. There exist positive constants η and ρ, such that if ||u|| = η, then, φ(u) ≥ ρ,
4. For each finite dimensional subspace X1 ⊂ X, the set {u ∈ X1, φ(u) ≥ 0} is bounded in X. Then φ has an

unbounded sequence of critical values.

Throughout the rest of the paper, the constants mentioned in the theorems, such as ci, i = 1, 2, ....,, are
positive constants that may vary from line to line in the proofs.

3. First main results

In this section, we will present and demonstrate the first main result of this paper. Before proceeding,
we assume the following hypotheses:

(A1) The function f (x,u) can be expressed as v1(x)h1(u), where v1 and h1 are measurable functions satisfying
the following conditions: there exists c1 > 0, α,S ∈ C+(Ω) such that for all (x,u) ∈ Ω ×R, we have

v1(x) ∈ L
S(x)

S(x)−α(x) (Ω), h1(u) ≤ c1 |u|α(x)−1 ,

and

p+ < α(x) < S(x) < p∗(x) and p+ < N. (2)

(A2) There exist M1 > 0, p+ < θ < min(r−, s−), such that for all x ∈ Ω, we have

0 < θv1(x)H1(u) ≤ v1(x)h1(u)u, |u| ≥M1,

where H1(t) =
∫ t

0
h1(s)ds.

(A3) We have p+ ≤ s(x) < p∗(x) .

(A4) For all x ∈ Ω, we have h1(−u) = −h1(u).

(A5) We have α− < min(r−, s−).

Next, we define a weak solution for the problem (1) as follows:

Definition 3.1. We say that u ∈ X :=W1,p(x)
0 (Ω) is a weak solution for the problem (1) if, for any v ∈ X, we have∫

Ω

|∇u|p(x)−2
∇u∇v −

∫
Ω

|u|r(x)−2uvdx −
∫
Ω

v1(x)h1(u)vdx −
∫
∂Ω
|u|s(x)−2uvdx = 0.

Now, we are ready to state and prove the first main results.
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Theorem 3.2. Under the hypotheses (A1) − (A3), problem (1) has a nontrivial weak solution.

Theorem 3.3. Under the hypotheses (A1) − (A4), problem (1) has infinitely many solutions.

Now, we introduce the functional χ(u) associated with problem (1), which characterizes the critical points
and plays a key role in the existence of solutions.

χ(u) = L(u) − J(u) − ϕ(u) − T(u),

where

L(u) =
∫
Ω

|∇u|p(x)

p(x)
dx, J(u) =

∫
Ω

|u|r(x)

r(x)
dx ϕ(u) =

∫
Ω

v1(x)H1(u)dx and T(u) =
∫
∂Ω

|u|s(x)

s(x)
dx.

We recall from [9], that L ∈ C1(X,R).Moreover, for all u, v ∈ X, we have

< L
′

(u), v >=
∫
Ω

(|∇u|p(x)−2
∇u∇vdx.

The functional L′ satisfies the following properties.

Proposition 3.4. [9]

1. L′ : X→ X∗ is a continuous, bounded, and strictly monotone operator.
2. L′ is a mapping of (S+) type, that is, if un ⇀ u in X and lim sup

n→∞
< L

′

(un) − L
′

(u),un − u >≤ 0, then, un → u

strongly in X.

Remark 3.5. It can be shown, using (A1), Propositions 2.3, 2.5, and the Hölder inequality, that ϕ ∈ C1(X,R).
Furthermore, for all u, v ∈ X, we have

< ϕ
′

(u), v >=
∫
Ω

v1(x)h1(u(x))v(x)dx.

From Proposition 3.4 and Remark 3.5, it follows that χ ∈ C1(X,R). Moreover, for all u, v ∈ X, we obtain

< χ′(u), v > =

∫
Ω

(|∇u|p(x)−2
∇u∇vdx −

∫
Ω

|u|r(x)−2uvdx

−

∫
Ω

v1(x)h1(u(x))v(x)dx −
∫
∂Ω
|u|s(x)−2uvdx.

Hence, the weak solutions of problem (1) correspond to the critical points of the functional χ.
Now, we establish a key result that provides a lower bound for the functional χ(u) associated with

problem (1).

Lemma 3.6. Assume that (A1) − (A3) is satisfied. Then, there exist m, η > 0 such that, for u ∈ X,

if ∥u∥ = η, then, χ(u) ≥ m.

Proof. Let u ∈ X, with ∥u∥ < 1. Under the hypothesis (A1), we have for all x ∈ Ω,

H1(u) ≤
c1

α(x)
|u|α(x). (3)

Using propositions 2.1, 2.5, and the Hölder inequality, and according to proposition 2.2, we obtain the
existence of c3, c4 c5 > 0, such that

|u|LS(x)(Ω) ≤ c3 ∥u∥ , |u|Lr(x)(Ω) ≤ c4 ∥u∥ and , |u|Ls(x)(∂Ω) ≤ c5 ∥u∥ (4)
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Since 1 < S(x) < p∗(x), 1 < r(x) ≤ p∗(x), 1 < s(x) < p∗(x) Then, using Proposition 2.3, we obtain

χ(u) ≥
ξ1

p+
||u||p

+

−
c3

α−
|v1|

L
S(x)

S(x)−α(x) (Ω)
||u||α

−

−
c4

r−
||u||r

−

−
c5

s−
||u||s

−

≥ ||u||p
+

(
ξ1

p+
−

c3

α−
|v1|

L
S(x)

S(x)−α(x) (Ω)
||u||α

−
−p+
−

c4

r−
||u||r

−
−p+
−

c5

s−
||u||s

−
−p+

)
≥ ||u||p

+

(
ξ1

p+
− t||u||min(α−−p+,r−−p+,s−−p+)

)
,

where

t =
c3

α−
|v1|

L
S(x)

S(x)−α(x) (Ω)
+

c4

r−
+

c5

s−
.

Since α−, s− and r− are both greater than p+, we can choose ∥u∥ = η to be sufficiently small such that

ξ1

p+
− tηmin(α−−p+,r−−p+,s−−p+) > 0.

Finally, we conclude that

χ(u) ≥ ηp+
(ξ1

p+
− t ηmin(α−−p+,r−−p+,s−−p+)

)
:= m > 0.

In the following lemma, we establish a result regarding the boundedness of a Palais-Smale sequence in
X.

Lemma 3.7. Suppose that conditions (A1) − (A2) are satisfied. Let {un} be a Palais-Smale sequence in X. Then {un}

is bounded in X.

Proof. Let {un} be a sequence in X such that

χ(un)→ c, and χ′(un)→ 0, in X∗, as n→∞,

where c is a positive constant.
Since χ(un)→ c, there exists M1 > 0, such that

|χ(un)| ≤M1. (5)

On the other hand, the fact that χ′(un)→ 0 in X∗, implies that < χ′(un),un >→ 0. In particular, < χ′(un),un >
is bounded. Thus, there exists M2 > 0, such that

|< χ′(un),un >| ≤M2. (6)

We claim that the sequence {un} is bounded. If it is not true, by passing to a sub-sequence if necessary, we
may assume that ∥un∥ → ∞. Without loss of generality, we assume that ∥un∥ ≥ 1.

From (5), (6) and using the fact that p+ < θ < min(r−, s−), we obtain

M1 ≥ χ(un) = I(un) − J(un) − ϕ(un) − T(un)

≥
1

p+
Γ(un) −

1
r−

∫
Ω

|un|
r(x)dx − ϕ(un) −

1
s−

∫
∂Ω
|un|

s(x)dx (7)

≥
1

p+
Γ(un) −

1
θ

∫
Ω

|un|
r(x)dx − ϕ(un) −

1
θ

∫
∂Ω
|un|

s(x)dx,
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and

M2 ≥ − < χ
′(un),un >= −Γ(un) +

∫
Ω

|un|
r(x)dx +

∫
∂Ω
|un|

s(x)dx+ < ϕ′(un), (un) >, (8)

By combining (7), (8), and using proposition 2.3, we obtain

θM1 +M2 ≥ (
θ
p+
− 1)Γ(un) − θϕ(un)+ < ϕ

′

(un), (un) >

≥ (
θ
p+
− 1)ξ1 ∥un∥

p− +

∫
Ω

v1(x)(h1(un)un − θH1(un))dx.

Hence, assumption (A2) implies

θM1 +M2 ≥ (
θ
p+
− 1)ξ1 ∥un∥

p− .

So, by letting n tend to infinity, we obtain a contradiction. Therefore, {un} is bounded in X.

Now, we introduce the nonempty set A define by A = {x ∈ Ω : r(x) = p∗(x)}. Also, define the set
Aδ = {x ∈ Ω : dist((x,A) < δ} for δ > 0.We note r−δ = infAδ

r(x), and r−A = infA r(x).
We will now introduce and recall several important theorem.

Theorem 3.8. (Concentration-compactness principle )(see [8]) Let p(x) and r(x) be two continuous functions such
that

p− = inf
Ω

p(x) ≤ p+ = sup
Ω

p(x) < N and 1 < r(x) ≤ p∗(x) in Ω

Let {u j} j∈N be a weakly convergent sequence in W1,p(x)(Ω) with weak limit u and such that:
• |u j|

r(x) ⇀ ν weakly in the sense of measures.
• |∇u j|

p(x) ⇀ µ weakly in the sense of measures.
Also assume that A = {x ∈ Ω : r(x) = p∗(x)} is nonempty. Then, for some countable index set I, we have:

ν = |u|r(x) +
∑
i∈I

νiδxi , vi > 0.

µ ≥ |∇u|p(x) +
∑
i∈I

µiδxi , µi > 0.

Sν
1

p∗ (xi )

i ≤ µ
1

p(xi )

i .

where {xi}i∈I ⊂ A and S is the best constant in the Gagliardo-Nirenberg-Sobolev inequality for variable exponents,
namely

S = Sr(Ω) = inf
ϕ∈C∞0 (Ω)

||∇ϕ||Lp(x)

||ϕ||Lr(x)
.

If {un} is a Palais-Smale sequence with energy level c, then according to Theorem 3.8, we have the
following convergence results:

|un|
r(x) ⇀ ν = |u|r(x) +

∑
i∈I

νiδxi , vi > 0. (9)

|∇un|
p(x) ⇀ µ ≥ |∇u|p(x) +

∑
i∈I

µiδxi , µi > 0. (10)

Sν
1

p∗ (xi )

i ≤ µ
1

p(xi )

i . (11)
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If the set I = ∅, then un → u in Lr(x)(Ω). It should be noted that {xi}i∈A ⊂ A.
We aim to demonstrate that if c < ( 1

p+ −
1
r−A

)SN, then I = ∅, where S is defined in Theorem 3.8.
The following lemma establishes an important result regarding the behavior of Palais-Smale sequences

under certain conditions.

Lemma 3.9. If conditions (A1) − (A3) are satisfied. Let {un} be a Palais-Smale sequence in X with energy level c. If
c < ( 1

p+ −
1
r−A

)SN, then the index set I is empty.

Proof. Suppose that I , ∅ and let φ ∈ C∞0 (RN) such that φ(0) , 0. Now, we consider the functions
φi,ϵ(x) = φ( x−xi

ϵ ).
We have < χ′(un), φi,ϵun >→ 0. Thus,

< χ′(un), φi,ϵun > =

∫
Ω

|∇un|
p(x)−2

∇un∇(φi,ϵun)dx −
∫
Ω

|un|
r(x)φi,ϵdx

−

∫
Ω

v1(x)h1(un(x)) −
∫
∂Ω
|un|

s(x)φi,ϵdx.

Passing to the limit as n→∞, we obtain

0 = lim
n→∞

( ∫
Ω

|∇un|
p(x)−2

∇un∇(φi,ϵ)undx +
∫
Ω

φi,ϵdµ −
∫
Ω

φi,ϵdν

−

∫
Ω

v1(x)h1(un(x))φi,ϵundx −
∫
∂Ω
|un|

s(x)φi,ϵdx
)
.

By Hölder’s inequality, we can show that

lim
n→∞

∫
Ω

|∇un|
p(x)−2

∇un∇(φi,ϵ)undx = 0 and lim
n→∞

∫
∂Ω
|un|

s(x)φi,ϵdx = 0.

On the other hand, we have

lim
ϵ→0

∫
Ω

v1(x)h1(un(x))φi,ϵundx = 0,

lim
ϵ→0

∫
Ω

φi,ϵdµ = µiφ(0),

and

lim
ϵ→0

∫
Ω

φi,ϵdν = νiφ(0).

By combining the aboe informations, we get
(
µi − νi

)
φ(0) = 0,which implies that µi = νi. Consequently,

Sν
1

p∗ (xi )

i ≤ ν
1

p(xi)

i .

Thus, we conclude that νi = 0 or SN
≤ νi.

Now, by the fact that min(r+, s+, θ) > p+ and by (A2), we have

c = lim
n→∞
χ(un) = lim

n→∞

(
χ(un) −

1
p+
< χ′(un),un >

)
= lim

n→∞

( ∫
Ω

|∇un|
p(x)

p(x)
dx −

∫
Ω

|un|
r(x)

r(x)
dx −

∫
Ω

v1(x)H1(un)dx −
∫
∂Ω

|un|
s(x)

s(x)
dx

−
1

p+

∫
Ω

|∇un|
p(x)dx +

∫
Ω

|un|
r(x)

p+
dx +

1
p+

∫
Ω

v1(x)h1(un)undx +
∫
∂Ω

|un|
s(x)

p+
dx

)
= lim

n→∞

( ∫
Ω

(
1

p(x)
−

1
p+

)|∇un|
p(x)dx +

∫
Ω

(
1

p+
−

1
r(x)

)|un|
r(x)dx +

∫
∂Ω

(
1

p+
−

1
s(x)

)|un|
s(x)dx
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+
1

p+

∫
Ω

v1(x)h1(un)undx −
∫
Ω

v1(x)H1(un)dx
)

≥ lim
n→∞

( ∫
Ω

(
1

p(x)
−

1
p+

)|∇un|
p(x)dx +

∫
Ω

(
1

p+
−

1
r(x)

)|un|
r(x)dx +

∫
∂Ω

(
1

p+
−

1
s(x)

)|un|
s(x)dx

+
1
θ

∫
Ω

v1(x)h1(un)undx −
∫
Ω

v1(x)H1(un)dx
)

≥ lim
n→∞

∫
Ω

(
1

p+
−

1
r(x)

)|un|
r(x)dx

≥ lim
n→∞

∫
Aδ

(
1

p+
−

1
r−Aδ

)|un|
r(x)dx.

On the other hand

lim
n→∞

∫
Aδ

(
1

p+
−

1
r−Aδ

)|un|
r(x)dx = (

1
p+
−

1
r−Aδ

)(
∫

Aδ
|u|r(x) +

∑
i∈I

νi)

≥ (
1

p+
−

1
r−Aδ

)νi

≥ (
1

p+
−

1
r−Aδ

)SN. (12)

Therefore, since δ is positive and arbitrary and r is continuous, we have

c ≥ (
1

p+
−

1
r−A

)SN.

Then if c < ( 1
p+ −

1
r−A

)SN, the index set I is empty.

We now present the following lemma that establishes an important convergence result.

Lemma 3.10. If conditions (A1) − (A3) are satisfied and let {un} be a Palais-Smale sequence in X, with energy level
c. If c < ( 1

p+ −
1
r−A

)SN, then there exists a subsequence of {un} that converges strongly in X.

Proof. Let {un} be a Palais-Smale sequence in X, with an energy level c such that c < ( 1
p+ −

1
r−A

)SN. By Lemma
3.7, {un} is bounded in X. Therefore, there exists a subsequence of {un} that converges weakly to u in X.

Using Lemma 3.9, the fact that S(x) < p∗(x) and s(x) < p∗(x), we deduce by proposition 2.2 that
un → u, strongly in LS(x)(Ω),
un → u, strongly in Lr(x)(Ω),
un → u, strongly in Ls(x)(∂Ω).

To complete the proof, we need to show that un → u strongly in X. We start by considering the inner
product

< χ′(un),un − u > = < L′(un),un − u > −
∫
Ω

|un|
r(x)−2un(un − u)dx

−

∫
Ω

v1(x)h(un)(un − u)dx −
∫
∂Ω
|un|

s(x)−2un(un − u)dx.

By applying Hölder’s inequality, Propositions 2.2 and 2.5, we can estimate the integral term as follows:∫
Ω

|un|
r(x)−1
|un − u|dx ≤ |un − u|Lr(x) ||u|r(x)−1

|
L

r(x)
r(x)−1
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≤ |un − u|Lr(x) max
(
|un|

r+−1
Lr(x) , |un|

r−−1
Lr(x)

)
≤ c1|un − u|Lr(x) max

(
||un||

r+−1, ||un||
r−−1

)
,

This leads to the conclusion

lim
n→∞

∫
Ω

|un|
r(x)−2un(un − u)dx = 0. (13)

Similarly, we have

lim
n→∞

∫
∂Ω
|un|

s(x)−2un(un − u)dx = 0. (14)

Now, by using (A1), propositions 2.2, 2.5, and Hölder’s inequality, we obtain∫
Ω

v1(x)h1(un)(un − u)dx ≤

∫
Ω

c1|v1(x)||un|
α(x)−1

|un − u|dx

≤ c1|un − u|LS(x) |v1(x)|
L

S(x)
S(x)−α(x)

||un|
α(x)−1

|
L

S(x)
α(x)−1

≤ c1|un − u|LS(x) |v1(x)|
L

S(x)
S(x)−α(x)

max
(
|un|

α+−1
|LS(x) , |un|

α−−1
|LS(x)

)
≤ c1|un − u|LS(x) |v1(x)|

L
S(x)

S(x)−α(x)
max

(
||un||

α+−1
|, ||un||

α−−1
|

)
.

Hence, we have

lim
n→∞

∫
Ω

v1(x)h1(un)(un − u)dx = 0. (15)

By combining (13)- (15), and using the fact that < χ′(un),un − u >→ 0, we conclude that

< L′(un),un − u >=
∫
Ω

|∇un|
p(x)−2

∇un∇(un − u)dx→ 0,

Passing to the limit as n tends to infinity and using the fact that un converges weakly to u, we get

< L′(u),un − u >→ 0.

Hence

lim
n→∞

< L′(un) − L′(u),un − u >= 0.

Since L′ is of type (S+) (see Proposition 2.1), we deduce that un → u strongly in X.

In order to further investigate the properties of the functional χ and its critical points, we establish the
following lemma.

Lemma 3.11. If conditions (A1), (A2) hold. Then, there exists an element e0 ∈ X such that

||e0|| > η, and χ(e0) < 0,

where η is defined in Lemma 3.6.

Proof. At first, by (A2), there exists ξ > 0, such that for all (x, t) ∈ Ω ×R, we have

v1(x)H1(t) ≥ ξ |t|θ . (16)
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Let e ∈ X be such that
∫
Ω
|e|θdx > 0 and let t > 1 be sufficiently large. Then, we have

χ(te) =

∫
Ω

|∇(te)|p(x)

p(x)
dx −

∫
Ω

|te|r(x)

r(x)
dx

−

∫
Ω

v1(x)H1(te)dx −
∫
∂Ω

|te|s(x)

s(x)
dx.

Using (16), we obtain

χ(te) ≤
tp+

p−

∫
Ω

|∇(e)|p(x)dx −
tr−

r+

∫
Ω

|(e)|r(x)dx

−ξtθ
∫
Ω

|e|θdx.

Since min(θ, r−) > p+, it follows that

χ(te)→ −∞, as t→∞.

Therefore, we can choose t0 > 0 and set e0 = t0e such that ||e0|| > η and χ(e0) < 0. This completes the
proof.

Now, we establish the following lemma that provides a key result regarding the boundedness of a set under
certain hypotheses.

Lemma 3.12. Under the hypotheses (A1), (A2), if F is a finite dimensional subspace of X, then the set

T = {u ∈ F, such that χ(u) ≥ 0},

is bounded in X.

Proof. Let u ∈ T.We have,

χ(u) ≤
1

p−1

∫
Ω

|∇u|p(x)dx −
1
r+

∫
Ω

|u|r(x)dx −
∫
Ω

v1(x)H1(u)dx.

Using inequality (16) and proposition 2.3, we obtain

χ(u) ≤
1

p−

∫
Ω

|∇u|p(x)dx − ξ
∫
Ω

|u|θdx

≤
ξ2

p−
(
||u||p

+

+ ||u||p
−
)
− ξ|u|θLθ ,

where |.|Lθ and ||.|| are equivalent norms in F. Thus, there exists a positive constant k such that

||u||θ ≤ k|u|θLθ .

Therefore, we have

χ(u) ≤
ξ2

p−
(
||u||p

+

+ ||u||p
−
)
−
ξ
k
||u||θ.

Hence, since p− < p+ < θ, we can conclude that the set T is bounded in X.

Proof. [Proof of Theorem 3.2] Lemmas 3.6, 3.10, and 3.11 establish the fulfillment of all the conditions
required by Theorem 2.8 (mountain pass theorem), ensuring the existence of a nontrivial solution to
problem (1). With this, the proof of Theorem 3.2 is now concluded.

Proof. [Proof of Theorem 3.3] We observe that χ(0) = 0, and due to (A4), the functional χ is even. Fur-
thermore, Lemmas 3.6, 3.10, and 3.12 establish the fulfillment of all the conditions stated in Theorem
2.9 (symmetric mountain pass theorem). Consequently, we can conclude that problem (1) possesses an
unbounded sequence of nontrivial solutions. With this, the proof of Theorem 3.3 is now completed.
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4. Second main results

In this Section, we investigate the existence of solutions for problem (1) under small perturbations.
Specifically, we consider a perturbation term in the form of f (x,u) = v1(x)h1(u) + λ|u|γ(x)−2u, where λ is
a positive parameter and γ(x) belongs to the function space C+(Ω). The parameter γ(x) must satisfy the
condition 1 < γ− ≤ γ+ < p−, with p being another parameter. These choices allow us to examine the impact
of perturbations on the problem and explore the existence of nontrivial solutions. We present two main
theorems that establish conditions under which problem (1) has nontrivial solutions in the presence of these
perturbations.

Theorem 4.1. Assume that conditions (A1) − (A3) and (A5) hold. Under these assumptions, we prove the existence
of a positive constant λ0 such that for any λ in the interval (0, λ0), problem (1) has at least one nontrivial solution.

Theorem 4.2. Under the combined assumptions (A1) to (A5), we establish the existence of a positive constant λ0
such that for any λ in the interval (0, λ0), problem (1) has at least one nontrivial solution.

To prove the above theorems, we begin by noting that the funcional χλ : X → R associated with problem
(1) is defined as

χλ(u) = χ(u) − λ
∫
Ω

|u|γ(x)

γ(x)
,

where X is the appropriate function space for the problem. This modified functional includes an additional
integral term involving the parameter λ. The purpose of this term is to introduce a perturbation to the
original functional χ(u), allowing us to study the behavior of critical points under small perturbations.

Remark 4.3. Firstly, we remark that χλ is a C1 function, meaning that it is continuously differentiable. This ensures
the smoothness and well-behaved nature of the functional, which is important for variational analysis.

Furthermore, the remark 4.3 highlights the connection between weak solutions of problem (1) and critical
points of the modified functional χλ. In other words, solutions of the problem correspond to points in
the function space X where the derivative of χλ vanishes. This observation establishes the variational
nature of the problem, where finding solutions is equivalent to searching for critical points of the associated
functional.

Now, to establish a lower bound for the functional χλ(u) and investigate the behavior of solutions under
small perturbations, we present the following lemma:

Lemma 4.4. Assume that conditions (A1), (A3) and (A5) hold. Then, there exist three positive constants η, r and λ0,
such that, for all u ∈ X and all λ ∈ (0, λ0), the following statement holds:

if ||u|| = η, then χλ(u) ≥ m.

Proof. Let u ∈ X with ∥u∥ < 1. By applying Hölder inequality and using proposition 2.5, we obtain the
following inequalities:

χλ(u) ≥
1

p+
Γ(u) −

c1

α−

∫
Ω

|v1(x)||u|α(x)dx −
1
r−

∫
Ω

|u|r(x)dx −
λ
γ−

∫
Ω

|u|γ(x)dx −
1
s−

∫
∂Ω
|u|s(x)dx

≥
1

p+
Γ(u) −

c1

α−
|v1|

L
S(x)

S(x)−α(x) (Ω)
||u|α(x)

|
L

S(x)
α(x) (Ω)

−
1
r−

∫
Ω

|u|r(x)dx −
λ
γ−

∫
Ω

|u|γ(x)dx −
1
r−

∫
∂Ω
|u|s(x)dx

≥
1

p+
Γ(u) −

c1

α−
|v1|

L
S(x)

S(x)−α(x) (Ω)
max

(
|u|α

−

LS(x)(Ω), |u|
α+

LS(x)(Ω)

)
−

1
r−

max
(
|u|r

−

Lr(x)(Ω), |u|
r+
Lr(x)(Ω)

)
−

λ
γ−

max
(
|u|γ

−

Lγ(x)(Ω)
, |u|γ

+

Lγ(x)(Ω)

)
−

1
s−

max
(
|u|s

−

Ls(x)(Ω), |u|
s+
Ls(x)(Ω)

)
.
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Next, using Propositions 2.2, 2.3 and the fact that X is continuously embedded in LS(x)(Ω), Lr(x)(Ω), Ls(x)(∂Ω)
and Lγ(x)(Ω), we have:

χλ(u) ≥
ξ1

p+
||u||p

+

−
c1

α−
|v1|

L
S(x)

S(x)−α(x) (Ω)
||u||α

−

−
1
r−

c2||u||r
−

−
λ
γ−

c3||u||γ
−

−
1
s−

c4||u||s
−

≥ ||u||γ
−

(
ξ1

p+
||u||p

+
−γ−
− (

c1

α−
|v1|

L
S(x)

S(x)−α(x) (Ω)
+

c2

r−
+

c4

s−
)||u||α

−
−γ−
−
λ
γ−

c3

)
≥ ||u||γ

−
(
φ(∥u∥) −

λ
γ−

c3

)
,

since α− < min(r−, s−), where φ is a continuous function on [0,∞) defined by:

φ(t) =
ξ1

p+
tp+−γ−

−

(
c1

α−
|v1|

L
S(x)

S(x)−α(x) (Ω)
+

c2

r−
+

c4

s−

)
tα
−
−γ− .

Let us set

η =

 ξ1(p+ − γ−)
( c1
α− |v1|

L
S(x)

S(x)−α(x) (Ω)
+ c2

r− +
c4
s− )p+(α− − γ−)


1

α−−p+

.

It is easy to see that

max
t≥0
φ(t) = φ(η) > 0.

Put

λ0 =
γ−φ(η)

c3
, and m = ηγ

−
(
φ(η) −

λ
γ−

c3

)
. (17)

Therefore, it is very simple to see that if ∥u∥ = η, then, for all λ ∈ (0, λ0), we have

χλ(u) ≥ m > 0.

We aim to establish the existence of a specific function satisfying certain properties. To accomplish this, we
present the following lemma:

Lemma 4.5. Assume that condition (A3) hold. Then, for all λ > 0, there exists e0 ∈ X, such that

∥e0∥ > η and χλ(e0) < 0.

Proof. Let e ∈ X, such that
∫
Ω
|e|θ1 dx > 0. Choose t > 1, sufficiently large. From (16), we have

χλ(te) =

∫
Ω

|∇(te)|p(x)

p(x)
dx −

∫
Ω

v1(x)H1(te)dx −
∫
Ω

|te|r(x)

r(x)
dx − λ

∫
Ω

|te|γ(x)

γ(x)
dx −

∫
∂Ω

|te|s(x)

s(x)
dx

≤

∫
Ω

|∇(te)|p(x)

p(x)
dx −

∫
Ω

v1(x)H1(te)dx

≤
tp+

p−

∫
Ω

|∇(e)|p(x)dx −m1tθ
∫
Ω

|e|θdx.

Since p+ < θ, we can see that

χλ(te)→ −∞, as t→∞.

Therefore, there exists t0 > 0 sufficiently large such that

∥e0∥ > η, and χλ(e0) < 0,

where e0 = t0e.
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In order to demonstrate an important property of a Palais-Smale sequence in X, we present the following
Proposition:

Proposition 4.6. Assuming that conditions (A1) − (A2) hold, if {un} is a Palais-Smale sequence in X, then {un} is
bounded in X.

Proof. Let {un} ⊂ X, be a sequence such that

χλ(un)→ c, and χ′λ(un)→ 0, in X∗, as n→∞,

where c is a positive constant.
As in the proof of Lemma 3.7, we can find two positive constants M1 and M2, such that

|χλ(un)| ≤M1, (18)

and

| < χ′λ(un),un > | ≤M2. (19)

We claim that the sequence {un}is bounded. If this is not true, by passing to a subsequence if necessary, we
may assume that ∥un∥ → ∞. Without loss of generality, we assume that ∥un∥ ≥ 1. Similar to the proof of
Lemma 3.7, using assumptions (A2), and the fact that θ > p+ > γ−, we obtain

θM1 +M2 ≥ (
θ
p+
− 1)ξ1||un||

p− +

∫
Ω

v1(x)
(
h1(un)un − θH1(un)

)
dx + λ

∫
Ω

(1 −
θ
γ(x)

)|un|
γ(x)dx

≥ (
θ
p+
− 1)ξ1||un||

p− + λ

∫
Ω

(1 −
θ
γ(x)

)|un|
γ(x)dx,

≥ (
θ
p+
− 1)ξ1||un||

p−
− cλ(

θ
γ−
− 1)||un||

γ+ .

Since p− > γ+, letting n tend to infinity leads to a contradiction. Therefore, the sequence {un} is bounded in
X.

Suppose {un} is a Palais-Smale sequence with energy level c. By Theorem 3.8, we have:

|un|
r(x) ⇀ ν = |u|r(x) +

∑
i∈I

νiδxi , vi > 0.

|∇un|
p(x) ⇀ µ ≥ |∇u|p(x) +

∑
i∈I

µiδxi , µi > 0.

Sν
1

p∗ (xi )

i ≤ µ
1

p(xi )

i .

If I = ∅, then un → u in Lr(x)(Ω). We know that {xi}i∈A ⊂ A.

We want to show that if c <
(

1
p+ −

1
r−A

)
Sn, then I = ∅, where S is defined in Theorem 3.8.

In the study of Palais-Smale sequences and their properties, we present the following lemma.

Lemma 4.7. If conditions (A1)− (A3) are satisfied, let un be a Palais-Smale sequence in X with energy level c. There
exists a positive constant c0 such that if c < c0, the index set I is empty.

Proof. Suppose that I , ∅ and let φ ∈ C∞0 (RN) be such that φ(0) , 0. We now consider the function

φi,ϵ(x) = φ(
x − xi

ϵ
).
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We have < χ′λ(un), φi,ϵun >→ 0, Therefore, we can write

< χ′λ(un), φi,ϵun > =

∫
Ω

|∇un|
p(x)−2

∇un∇(φi,ϵun)dx −
∫
Ω

|un|
r(x)φi,ϵdx −

∫
∂Ω
|un|

s(x)φi,ϵdx

−

∫
Ω

v1(x)h1(un(x))φi,ϵundx − λ
∫
Ω

|un|
γ(x)φi,ϵdx.

Passing to the limit as n→∞, we have

0 = lim
n→∞

( ∫
Ω

|∇un|
p(x)−2

∇un∇(φi,ϵ)undx +
∫
Ω

φi,ϵdµ −
∫
Ω

φi,ϵdν

−

∫
Ω

v1(x)h1(un(x))φi,ϵundx − λ
∫
Ω

|un|
γ(x)φi,ϵdx −

∫
∂Ω
|un|

s(x)φi,ϵdx
)
.

By using the Hölder inequality, we can prove that

lim
n→∞

∫
Ω

|∇un|
p(x)−2

∇un∇(φi,ϵ)undx = 0, lim
n→∞

∫
∂Ω
|un|

s(x)φi,ϵdx = 0 and lim
n→∞

∫
Ω

|un|
γ(x)φi,ϵdx = 0.

On the other hand, we have

lim
ϵ→0

∫
Ω

v1(x)h1(un(x))φi,ϵundx = 0

lim
ϵ→0

∫
Ω

φi,ϵdµ = µiφ(0), and lim
ϵ→0

∫
Ω

φi,ϵdν = νiφ(0).

Thus, we obatain,
(
µi − νi

)
φ(0) = 0,which implies that µi = νi. Consequently, we have

Sν
1

p∗ (xi )

i ≤ ν
1

p(xi)

i ,

and we conclude that νi = 0 or SN
≤ νi.

Now, since min(r(x), s(x), θ) > p+ and according to (A2), we have

c = lim
n→∞
χλ(un) = lim

n→∞

(
χλ(un) −

1
p+
< χ′λ(un),un >

)
= lim

n→∞

( ∫
Ω

(
1

p(x)
−

1
p+

)|∇un|
p(x)dx +

∫
Ω

(
1

p+
−

1
r(x)

)|un|
r(x)dx + λ

∫
Ω

(
1

p+
−

1
γ(x)

)|un|
γ(x)dx

+
1

p+

∫
Ω

v1(x)h1(un)undx −
∫
Ω

v1(x)H1(un)dx +
∫
∂Ω

(
1

p+
−

1
s(x)

)|un|
s(x)dx

)
≥ lim

n→∞

( ∫
Ω

(
1

p(x)
−

1
p+

)|∇un|
p(x)dx +

∫
Ω

(
1

p+
−

1
r(x)

)|un|
r(x)dx + λ

∫
Ω

(
1

p+
−

1
γ(x)

)|un|
γ(x)dx

+
1
θ

∫
Ω

v1(x)h1(un)undx −
∫
Ω

v1(x)H1(un)dx
)

≥ lim
n→∞

( ∫
Ω

(
1

p(x)
−

1
p+

)|∇un|
p(x)dx +

∫
Ω

(
1

p+
−

1
r(x)

)|un|
r(x)dx + λ

∫
Ω

(
1

p+
−

1
γ(x)

)|un|
γ(x)dx

)
.

On the other hand, since p+ > γ−, and similarly to (12), we can prove that

(
1

p+
−

1
γ−

)
∫
Ω

|∇u|p(x)dx ≥ (
1

p+
−

1
γ−

)SN.

Then, using Proposition 2.1, we have,

c ≥ (
1

p+
−

1
γ−

)
∫
Ω

|∇u|p(x)dx + (
1

p+
−

1
r−

)
∫
Ω

|u|r(x)dx + λ(
1

p+
−

1
γ−

)
∫
Ω

|u|γ(x)dx
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≥ (
1

p+
−

1
γ−

)SN + (
1

p+
−

1
r−

)
∫
Ω

|u|r(x)dx + λ(
1

p+
−

1
γ−

)||u|γ(x)
|
L

r(x)
q(x) (Ω)

|Ω|
r+

r−−γ+ .

If ||u|γ(x)
|
L

r(x)
q(x) (Ω)

≥ 1, we have

c ≥ (
1

p+
−

1
γ−

)SN + (
1

p+
−

1
r−

)||u|γ(x)
|
( r
γ )−

L
r(x)
q(x) (Ω)

− λ(
1
γ−
−

1
p+

)||u|γ(x)
|
L

r(x)
q(x) (Ω)

|Ω|
r+

r−−γ+ .

Now, let’s consider the function h(t) = ct( r
γ )−
− c′λt. This function attains its absolute minimum at

t0 =
( λc′

c( r
γ )−

) 1
( r
γ )−−1 .

Moreover, if ||u|γ(x)
|
L

r(x)
q(x) (Ω)

< 1, we have

c ≥ (
1

p+
−

1
γ−

)SN + (
1

p+
−

1
r−

)||u|γ(x)
|
( r
γ )+

L
r(x)
q(x) (Ω)

− λ(
1
γ−
−

1
p+

)||u|γ(x)
|
L

r(x)
q(x) (Ω)

|Ω|
r+

r−−γ+ .

Now, let’s define h2(t) = ct( r
γ )+
− c′λt. This function attains its absolute minimum at

t1 =
( λc′

c( r
γ )+

) 1
( r
γ )+−1 .

Therefore, there exists a positive constant C such that

c ≥ (
1

p+
−

1
γ−

)SN + C min{λ
( r
γ )−

( r
γ )−−1 , λ

( r
γ )+

( r
γ )+−1
}.

Let’s denote this constant as c0, given by

c0 = (
1

p+
−

1
γ−

)SN + C min{λ
( r
γ )−

( r
γ )−−1 , λ

( r
γ )+

( r
γ )+−1
}. (20)

Therefore, if c < c0, the index set I is empty. This completes the proof.

In the following lemma, we establish the convergence of a Palais-Smale sequence under certain condi-
tions.

Lemma 4.8. Assuming that assumptions (A1) − (A3) and (A5) are satisfied, consider a Palais-Smale sequence {un}

in X with energy level c, such that c < c0, where c0 is defined in (20). Then, up to a subsequence, {un} converges
strongly in X.

Proof. Let {un} be a Palais-Smale sequence in X, with energy level c such that c < c0, as defined in equation
(20). By Proposition 4.6, {un} is bounded in X. Thus, up to a subsequence, there exists u ∈ X such that, {un}

converges weakly to u in X. Using Lemma 3.9, the fact that S(x) < p∗(x) and s(x) < p∗(x), we deduce from
proposition 2.2 that 

un → u, strongly in LS(x)(Ω),
un → u, strongly in Lr(x)(Ω)
un → u, strongly in Ls(x)(∂Ω).

To complete the proof, it remains to show that un → u strongly in X. For that, we have

< χ′λ(un),un − u > = < L′(un),un − u > −
∫
Ω

|un|
r(x)−2un(un − u)dx
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−

∫
Ω

v1(x)h(un)(un − u)dx − λ
∫
Ω

|un|
γ(x)−2un(un − u)dx −

∫
∂Ω
|un|

s(x)−2un(un − u)dx.

Since γ(x) < p∗(x), r(x) < p∗(x) and using Hölder‘s inequality and propositions 2.2, 2.5, we obtain∫
Ω

|un|
r(x)−1
|un − u|dx ≤ |un − u|Lr(x) ||u|r(x)−1

|
L

r(x)
r(x)−1

≤ |un − u|Lr(x) max(|un|
r+−1
Lr(x) , |un|

r−−1
Lr(x) )

≤ c1|un − u|Lr(x) max(||un||
r+−1, ||un||

r−−1), (21)∫
Ω

|un|
γ(x)−1

|un − u|dx ≤ c1|un − u|Lγ(x) max(||un||
γ+−1, ||un||

γ−−1). (22)

On the other hand, {un} is bounded in X, un → u, strongly in Lr(x)(Ω), un → u, strongly in Lγ(x)(Ω) and
using (21) and (22), we conclude that

lim
n→∞

∫
Ω

|un|
r(x)−2un(un − u)dx = 0 and lim

n→∞

∫
Ω

|un|
γ(x)−2un(un − u)dx = 0. (23)

Similarly, since s(x) < p∗(x) and using Hölder‘s inequality, propositions 2.5 and propositions 2.2, we obtain∫
∂Ω
|un|

s(x)−1
|un − u|dx ≤ c1|un − u|Ls(x)(∂Ω) max(||un||

s+−1, ||un||
s−−1). (24)

Moreover, {un} is bounded in X, un → u, strongly in Ls(x)(∂Ω) and by (24), we conclude that

lim
n→∞

∫
∂Ω
|un|

s(x)−2un(un − u)dx = 0. (25)

On the other hand, using condition (A1), propositions 2.2, 2.5, and the Hölder’s inequality, we have∫
Ω

v1(x)h1(un)(un − u)dx ≤

∫
Ω

c1|v1(x)||un|
α(x)−1

|un − u|dx

≤ c1|un − u|LS(x) |v1(x)|
L

S(x)
S(x)−α(x)

||un|
α(x)−1

|
L

S(x)
α(x)−1

≤ c1|un − u|LS(x) |v1(x)|
L

S(x)
S(x)−α(x)

max(|un|
α+−1
|LS(x) , |un|

α−−1
|LS(x) )

≤ c1|un − u|LS(x) |v1(x)|
L

S(x)
S(x)−α(x)

max(||un||
α+−1
|, ||un||

α−−1
|).

Thus, we obtain

lim
n→∞

∫
Ω

v1(x)h1(un)(un − u)dx = 0. (26)

By combining (23)-(26), and using the fact that < χ′λ(un),un − u >→ 0, we conclude that

< L′(un),un − u >=
∫
Ω

|∇un|
p(x)−2

∇un∇(un − u)dx→ 0,

passing to the limit as n tends to infinity, and using the fact that un converges weakly to u, we get

< L′(u),un − u >→ 0.

Hence,

lim
n→∞

< L′(un) − L′(u),un − u >= 0.

Since L′ is of type (S+) (see Proposition 2.1), we deduce that un → u strongly in X. This completes the
proof.
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In the following lemma, we establish a boundedness result for a set of functions under certain hypotheses.

Lemma 4.9. Under hypotheses (A1) − (A2), if F is a finite-dimensional subspace of X, then the set

Tλ = {u ∈ F, such that χλ(u) ≥ 0},

is bounded in X.

Proof. Let u ∈ Tλ.We have, χλ(u) ≤ χ(u), and by Lemma 3.12, it follows that

χ(u) ≤
ξ2

p−
(||u||p

+

+ ||u||p
−

) −
ξ
k
||u||θ.

Consequently, we obtain

χλ(u) ≤
ξ2

p−
(||u||p

+

+ ||u||p
−

) −
ξ
k
||u||θ.

Since p− < p+ < θ, we conclude that the set Tλ is bounded in X.

Proof. [Proof of Theorem 4.1] Lemmas 4.4, 4.5, and 4.8 establish the fulfillment of all the conditions required
by Theorem 2.8 (mountain pass theorem), ensuring the existence of a nontrivial solution to problem (1).
With this, the proof of Theorem 4.1 is now concluded.

Proof. [Proof of Theorem 4.2] We observe that χλ(0) = 0, and due to (A4), the functional χλ is even.
Furthermore, Lemmas 4.4, 4.8, and 4.9 establish the fulfillment of all the conditions stated in Theorem
2.9 (symmetric mountain pass theorem). Consequently, we can conclude that problem (1) possesses an
unbounded sequence of nontrivial solutions. With this, the proof of Theorem 4.2 is now completed.
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