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The possible orders of growth of solutions to linear fractional
differential equations with polynomial coefficients

Saada Hamoudaa,∗, Sofiane Mahmoudia

aLaboratory of Pure and Applied Mathematics, Abdelhamid Ibn Badis University (UMAB), Mostaganem, Algeria

Abstract. In this paper, we study the possible orders of growth of solutions to certain class of linear
fractional differential equations with polynomial coefficients. For that, we use the Nevanlinna theory
in complex domain, the generalized Wiman-Valiron theorem in the fractional calculus and the Caputo
fractional derivatives. Several illustrative examples are given.

1. Introduction

For an entire function f (z) , the order of growth is defined by

σ
(

f
)
= lim sup

r→+∞

log+m
(
r, f
)

log r
,

where

m
(
r, f
)
=

1
2π

2π∫
0

ln+
∣∣∣∣ f (reiφ

)∣∣∣∣ dφ;

and we have also

σ
(

f
)
= lim sup

r→+∞

log+ log+M
(
r, f
)

log r
,

where M
(
r, f
)
= max

{∣∣∣ f (z)
∣∣∣ : |z| = r

}
; for more details see [8, 12, 19]. If f (z) is given by f (z) =

+∞∑
n=0

anzn, the

order of growth is equal to

σ
(

f
)
= lim sup

n→+∞

n log n
− log |an|

;
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see [3]. For example, σ
(
ezn
)
= n, n ∈N, σ

(
exp {ez

}
)
= +∞, σ (P (z)) = 0 where P (z) is any polynomial.

We know that every solution f of the differential equation

f (n) + Pn−1 (z) f (n−1) + ... + P1 (z) f ′ + P0 (z) f = 0, (1)

where P0 (z) . 0,P1 (z) , ...,Pn−1 (z) are polynomials, is an entire function of finite rational orderσ
(

f
)

satisfying

σ
(

f
)
≤ 1 + max

0≤k≤n−1

deg Pk

n − k
; (2)

see [9, 12, 17, 18]. In 1998, Gundersen et al investigated the possible orders of solutions of (1), see [6].
We can ask the following question: how about the linear fractional differential equations with polynomial
coefficients?

Recently, extensive research is being published about fractional differential equations and this is due
to the importance of this theory for modeling diffusion phenomena and anomalous relaxation in many
various fields of science and engineering; (see, for example, Kilbas et al. [10]). There are many definitions
of fractional derivatives and many discussions for their properties notably similarities and differences of
them, see [1, 2, 4, 11, 14, 15]. In this work we will use the Caputo fractional derivative operator which is
defined as follows:

Definition 1.1. [10, 15, 16] Suppose that α > 0, r ≥ 0 and 1 (r) is a real function defined on [0,+∞) and n time
continuously differentiable on (0,+∞) . The fractional operator

D
α1 (r) =


1

Γ(n−α)

r∫
0

1(n)(t)
(r−t)α+1−n dt, n − 1 < α < n

dn

drn 1 (r) , α = n ∈N \ {0}

is called the Caputo derivative.

We recall that Γ denotes the gamma function which is defined by the integrale

Γ(z) =
∫
∞

0
tz−1e−tdt,

where z is a complex number. It is well known that Γ generalizes the factorial, i.e. Γ(n) = n!.

Consider the function f (z) =
+∞∑
j=0

a jz j, where z = reiθ. By using the properties of the Caputo operator

derivative, for n − 1 < α < n,we have

D
α f
(
reiθ
)
=

+∞∑
j=n

Γ
(
j + 1
)

Γ
(
j − α + 1

)a jr j−αe jiθ, (3)

rαDα f
(
reiθ
)
=

+∞∑
j=n

Γ
(
j + 1
)

Γ
(
j − α + 1

)a jz j.

For α = n ∈N \ {0} ,we have

rα

zα
D
α f (z) =

dn

dzn f (z) .

Proposition 1.2. [7, 13] The two power series f (z) =
+∞∑
j=0

a jz j and rαDα f (z) have the same radius of convergence.

Consequently, if f (z) is an entire function, then rαDα f (z) is also an entire function.
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Recently, the authors investigated the growth of solutions of the following linear fractional differential
equations

rqn

z[qn]
D

qn f (z) + Pn−1 (z)
rqn−1

z[qn−1]
D

qn−1 f (z) + ... + P1 (z)
rq1

z[q1]
D

q1 f (z) + P0 (z) f (z) = 0, (4)

where P0 (z) . 0,P1 (z) , ...,Pn−1 (z) are polynomials such that P0 (0) = 0 and 0 = q0 < q1 < q2 < ... < qn. They
proved that all solutions are entire functions of order of growth σ

(
f
)

satisfying

σ
(

f
)
≤ max

0≤k≤n−1

{
dk +
[
qn
]
−
[
qk
]

qn − qk

}
, (5)

where dk = deg Pk (z) and [x] is the integer part of x. They proved also the following statements:
(i) If

d0 +
[
qn
]

qn
= max

0≤k≤n−1

dk +
[
qn
]
−
[
qk
]

qn − qk
, (6)

holds for all k = 1, ...,n − 1, then every solution f . 0 of (4) is an entire function of order of growth

σ
(

f
)
=

d0 +
[
qn
]

qn
.

(ii) If

dk −
[
qk
]
< dn−1 −

[
qn−1
]

(7)

holds for all k = 0, 1, ...,n − 2, then every solution f . 0 of (4) is an entire function of order of growth

σ
(

f
)
=

dn−1 +
[
qn
]
−
[
qn−1
]

qn − qn−1
.

The purpose of this paper is to determine all possible orders of growth of solutions of (4).

2. Main results

We will follow the same method used in [6] with necessary modifications. Set d j = deg P j.We define a
strictly decreasing finite sequence of non-negative integers

s1 > s2 > ... > sp ≥ 0,

in the following manner; we choose s1 to be the unique integer satisfying

ds1 +
[
qn
]
−
[
qs1

]
qn − qs1

= max
0≤k≤n−1

dk +
[
qn
]
−
[
qk
]

qn − qk
; and (8)

ds1 +
[
qn
]
−
[
qs1

]
qn − qs1

>
dk +
[
qn
]
−
[
qk
]

qn − qk
for all 0 ≤ k < s1

Then given s j, j ≥ 1, we define s j+1 to be the unique integer satisfying

ds j+1 − ds j +
[
qs j

]
−

[
qs j+1

]
qs j − qs j+1

= max
0≤k<s j

dk − ds j +
[
qs j

]
−
[
qk
]

qs j − qk
> 0; and (9)

ds j+1 − ds j +
[
qs j

]
−

[
qs j+1

]
qs j − qs j+1

>
dk − ds j +

[
qs j

]
−
[
qk
]

qs j − qk
for all 0 ≤ k < s j+1.
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For a certain p, the integer sp will exist, but the integer sp+1 will not exist, and then the sequence s1, s2, ..., sp
terminates with sp. Obviously, p ≤ n.

Correspondingly, for j = 1, 2, ..., p, define the following values

α j =
ds j − ds j−1 +

[
qs j−1

]
−

[
qs j

]
qs j−1 − qs j

, (10)

where we set

s0 = n and ds0 = dn = 0.

We mention that we can define the integers s1, s2, ..., sp in (8) and (9) as the following manner:

s1 = min
{

i :
di +
[
qn
]
−
[
qi
]

qn − qi
= max

0≤k≤n−1

dk +
[
qn
]
−
[
qk
]

qn − qk

}
; (11)

given s j, j ≥ 1, we have

s j+1 = min

i :
di − ds j +

[
qs j

]
−
[
qi
]

qs j − qi
= max

0≤k<s j

dk − ds j +
[
qs j

]
−
[
qk
]

qs j − qk
> 0

 . (12)

Proposition 2.1. If s1 ≥ 1 and p ≥ 2, then the following inequalities hold

α1 > α2 > ... > αp ≥
1

qsp−1 − qsp

≥
1

qs1 − qsp

≥
1

qs1

.

Proof. First we prove α1 > α2 > ... > αp. From the definitions of s j and α j we obtain for j = 1, 2, ..., p − 1,

s j > s j+1 and
ds j − ds j−1 +

[
qs j−1

]
−

[
qs j

]
qs j−1 − qs j

>
ds j+1 − ds j−1 +

[
qs j−1

]
−

[
qs j+1

]
qs j−1 − qs j+1

,

which yields

−

(
ds j −

[
qs j

])
qs j+1 −

(
ds j−1 −

[
qs j−1

]) (
qs j − qs j+1

)
>
(
ds j+1 −

[
qs j+1

]) (
qs j−1 − qs j

)
−

(
ds j −

[
qs j

])
qs j−1 (13)

Adding
(
ds j −

[
qs j

])
qs j to both sides of (13) gives(

ds j − ds j−1 +
[
qs j−1

]
−

[
qs j

]) (
qs j − qs j+1

)
>
(
ds j+1 − ds j +

[
qs j

]
−

[
qs j+1

]) (
qs j−1 − qs j

)
we obtain immediately α j > α j+1 . This proves that

α1 > α2 > ... > αp.

From the definition of s j we have s j > s j+1 and then qs j > qs j+1 which implies

1
qsp−1 − qsp

≥
1

qs1 − qsp

≥
1

qs1

and so to complete the proof, we need only to prove that

αp ≥
1

qsp−1 − qsp

.
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We have

dsp − dsp−1 +
[
qsp−1

]
−

[
qsp

]
qsp−1 − qsp

> 0;

then

dsp − dsp−1 +
[
qsp−1

]
−

[
qsp

]
≥ 1

because

qsp−1 − qsp > 0 and dsp − dsp−1 +
[
qsp−1

]
−

[
qsp

]
∈N∗;

therefore

αp =
dsp − dsp−1 +

[
qsp−1

]
−

[
qsp

]
qsp−1 − qsp

≥
1

qsp−1 − qsp

.

Theorem 2.2. Consider the equation (4) with P0 (0) = 0. Then every transcendental solution f of (4) is of order of
growth ρ( f ) = α j for some j, 1 ≤ j ≤ p; where α j is defined in (10).

Example 2.3. Consider the fractional differential equation

rα

z[α]
D
α f (z) + z f (z) = 0, (14)

where n − 1 < α < n (n ∈N∗) . In this case s1 = sp = 0, and then there exists only one value α1 =
d0−d1+[α]−[0]

α−0 = n
α .

So, by Thoerem 2.2 every transcendental solution f of (14) is an entire function of order of growth σ
(

f
)
= α1 =

n
α .

The two cases n = 1 and n = 2 are confirmed in [7] by the power series method.

Example 2.4. Consider the fractional differential equation

r2.3

z2 D
2.3 f (z) + z2 r1.8

z
D

1.8 f (z) + z2r0.5
D

0.5 f (z) + zD f (z) = 0. (15)

We have s1 = 2 and s2 = 1 = sp. So α1 = 6 and α2 =
1

1.3 =
10
13 . By Theorem 2.2, every transcendental solution f of

(15) is an entire function of order of growth σ
(

f
)
= 6 or σ

(
f
)
= 10

13 .

Corollary 2.5. Consider the equation (4) with P0 (0) = 0. Then every transcendental solution f of (4) is of order of
growth ρ( f ) satisfying

ρ( f ) ≥
1
qn

. (16)

In fact, if s1 ≥ 1 then by Proposition 2.1, we have ρ( f ) ≥ 1
qs1
≥

1
qn

; and if s1 = 0, then by theorem 2.2 there

exists only one value α1 =
d0+[qn]

qn
such that ρ( f ) =

d0+[qn]
qn

and since P0 (0) = 0, we have d0 ≥ 1 and then (16)
holds.

Remark 2.6. By Corollary 2.5, we deduce that there is no transcendental solution of (4) of order zero.

Theorem 2.7. Consider the equation (4) with P0 (0) = 0. Let C = max
0≤k≤n

{
d j −
[
q j

]}
and A =

{
i : di −

[
qi
]
= C
}
, where

dn = q0 = 0. Then, the following conclusions hold:
(a) If Card(A) = 1 then there is no polynomial solution for (4).
(b) If Card(A) ≥ 2 then the equation (4) can admit a polynomial solutions;
where Card(A) designates the number of elements of the set A.
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Corollary 2.8. Consider the equation (4) with P0 (0) = 0. If d0 ≥ dk for all k = 1, ...,n−1, then there is no polynomial
solution for (4).

Example 2.9. Consider the fractional differential equation

r
7
2

z3D
7
2 f (z)+ (

−16
15
√
π

z4 +
24

15π
z2 +

8
3
√
π

z)r
3
2D

3
2 f (z)− (

4
√
π

z4 +
8
√
π

z2 +
4
√
π

)r
1
2D

1
2 f (z)+

224
15π

z4 f = 0 (17)

we have C = max
0≤k≤2

(
d j −
[
q j

])
= 4 and A = {0, 1, 2} , Card (A) = 3. So by Theorem 2.7 the equation (17) possibly

has polynomial solutions. In fact, the two polynomials

f1(z) = z2 + 1 and f2(z) = z3
− 1

are solutions to (17).

Example 2.10. Consider the fractional differential equation

r3.2

z3 D3.2 f (z) + (
8

5Γ( 5
3 )

z2
−

2
Γ( 5

3 )
z +

2
Γ( 5

3 )
)r1.6D1.6 f (z) + (

2
Γ(1.4)

z2)r1.3D1.3 f (z) −
4

Γ(1.4)Γ( 5
3 )

z2 f = 0 (18)

we have C = sup
0≤k≤2

(
d j −
[
q j

])
= 2 and A = {0, 1, 2} , Card (A) = 3. So by Theorem 2.7 the equation possibly has

polynomial solutions. In fact, the two polynomials

f1(z) = z and f2(z) = z2
− 2z + 1

are solutions to (18).

By combining Theorem 2.2 and Theorem 2.7 we can obtain the following result:

Corollary 2.11. Consider the equation (4) with P0 (0) = 0. If s1 = 0 then every solution f . 0 of (4) is an entire
function of order of growth

σ
(

f
)
=

d0 +
[
qn
]

qn
.

In fact, if s1 = 0 then by theorem 2.2, there exists only one value α1 =
d0+[qn]

qn
as order of growth to

transcendental solutions. It remains to prove that there is no polynomial solution for (4). By definition,
s1 = 0 means that we have

d0 +
[
qn
]

qn
≥

dk +
[
qn
]
−
[
qk
]

qn − qk
, (19)

holds for all k = 1, ...,n − 1; which yields d0 > dk −
[
qk
]

for all k = 1, ...,n − 1 : because if we suppose to the
contrary that there exists k ∈ {1, ...,n − 1} such that d0 ≤ dk −

[
qk
]

; then combining this with (19) gives

1
qn
≥

1
qn − qk

;

a contradiction. Now the statement d0 > dk −
[
qk
]

for all k = 1, ...,n − 1 yields A = {0} , Card (A) = 1; and by
Theorem 2.7 there is no polynomial solution for (4).

We signal here that the result of Corollary 2.11 is proved in [7] by another method.
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3. Preliminary lemmas

In order to prove our results we state the following lemmas.

Lemma 3.1. For any fixed j = 0, 1, ..., p − 1, let α be any real number satisfying α > α j+1, and let k be any integer
satisfying 0 ≤ k < s j. Then

qn + dk + αqk −
[
qk
]
< qn + ds j + αqs j −

[
qs j

]
. (20)

Proof. Since

qn + dk + αqk −
[
qk
]
= (qn + ds j + αqs j −

[
qs j

]
) + α(qk − qs j ) + dk − ds j −

[
qk
]
+
[
qs j

]
we get

qn + dk + αqk −
[
qk
]
< (qn + ds j + αqs j −

[
qs j

]
) + α j+1(qk − qs j ) + dk − ds j −

[
qk
]
+
[
qs j

]
. (21)

Now from the definition of α j+1, we obtain

α j+1(qk − qs j ) + dk − ds j −
[
qk
]
+
[
qs j

]
=
(
qk − qs j

) α j+1 −
dk − ds j +

[
qs j

]
−
[
qk
]

qs j − qk

 . (22)

Since 0 ≤ k < s j, it follows from the definition of s j+1 that

(
qk − qs j

) α j+1 −
dk − ds j +

[
qs j

]
−
[
qk
]

qs j − qk

 ≤ 0. (23)

Then, (20) follows from (21)- (23).

Lemma 3.2. For any fixed j = 1, 2, ..., p let α be any real number satisfying α < α j and let k be any integer satisfying
s j < k ≤ n. Then

qn + dk + αqk −
[
qk
]
< qn + ds j + αqs j −

[
qs j

]
. (24)

Proof. We consider two separate cases.
Case (i). Suppose that s j < k ≤ s j−1. As in the proof of Lemma 3.1, we have

qn + dk + αqk −
[
qk
]
< (qn + ds j + αqs j −

[
qs j

]
) + α j(qk − qs j ) + dk − ds j +

[
qs j

]
−
[
qk
]
.

If k = s j−1, then

α j(qk − qs j ) + dk − ds j +
[
qs j

]
−
[
qk
]
= 0;

and then (24) follows.
On the other hand, if s j < k < s j−1, then from the definition of s j and α j we obtain

α j(qk − qs j−1 + qs j−1 − qs j ) + dk − ds j +
[
qs j

]
−
[
qk
]
= (qk − qs j−1 )

α j −
dk − ds j−1 +

[
qs j−1

]
−
[
qk
]

qs j−1 − qk

 ≤ 0

This proves Lemma 3.2 for Case (i).
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Case (ii). Suppose that s j−1 < k ≤ n. Since s j < s j−1 < ... < s1 < s0 = n and s j−1 < k ≤ n, it follows that
j ≥ 2 and there exists an integer m, 1 ≤ m ≤ j− 1, such that s j−m < k ≤ s j−m−1. Also, from Proposition 2.1, we
have

α j < α j−1 < ... < α j−m.

Since α < α j, we have α < α j−m; hence we can apply Case (i) to obtain that

qn + dk + αqk −
[
qk
]
< qn + ds j−m + αqs j−m −

[
qs j−m

]
Now from successive applications of Case (i), we obtain the following inequalities:

qn + ds j−1 + αqs j−1 −

[
qs j−1

]
< qn + ds j + αqs j −

[
qs j

]
, α < α j

qn + ds j−2 + αqs j−2 −

[
qs j−2

]
< qn + ds j−1 + αqs j−1 −

[
qs j−1

]
, α < α j−1

....................... < .....................

qn + ds j−m + αqs j−m −

[
qs j−m

]
< qn + ds j−m+1 + αqs j−m+1 −

[
qs j−m+1

]
, α < α j−m+1

then we obtain

qn + dk + αqk −
[
qk
]
< qn + ds j + αqs j −

[
qs j

]
, α < α j, s j < k ≤ n

Lemma 3.3. Let α > 0. Then for any integer k satisfying 0 ≤ k < sp, we have

qn + dk + αqk −
[
qk
]
< qn + dsp + αqsp −

[
qsp

]
(25)

Proof. Since sp is the last element in the sequence s1, s2, ..., sp it follows from the construction of sp that for
any k < sp, we obtain

dk − dsp +
[
qsp

]
−
[
qk
]

qsp − qk
≤ 0.

This gives dk −
[
qk
]
≤ dsp −

[
qsp

]
. Since qk < qsp , for any k < sp, (25) holds.

Lemma 3.4. [5] Let f (z) be a transcendental entire function, α > 0, 0 < δ < 1
4 and z be such that |z| = r and that∣∣∣ f (z)

∣∣∣ >M
(
r, f
)
ν (r)−

1
4+δ

holds; where ν (r) is the central index of f . Then there exists a set E ⊂ (0,+∞) of finite logarithmic measure, that is∫
E

dt
t < +∞, such that

rαDα f (z)
f (z)

= (ν (r))α (1 + o (1)) (26)

holds for r→ +∞ and r < E.

Remark 3.5. We signal here that the authors of [5] have used the Riemann-Liouville operator derivative in the proof

of Lemma 3.4; and for an entire function f (z) =
+∞∑
j=0

a jz j we have

D
α
RL f (z) =

+∞∑
j=0

Γ
(
j + 1
)

Γ
(
j − α + 1

)a jr j−αe jiθ. (27)

By (3) and (27), we confirm that the proof of Lemma 3.4 is valid also for the Caputo fractional derivative operator.
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Remark 3.6. For a non-constant polynomial P (z) = anzn + ... + a0 of degree n and 0 < α ≤ n, it is easy to get∣∣∣∣∣ rαDαP (z)
P (z)

∣∣∣∣∣ = Γ (n + 1)
Γ (n − α + 1)

(1 + o (1)) as r→∞.

In fact, by taking the limit as r→∞, the leading term of |rαDαP (z)| is Γ(n+1)
Γ(n−α+1) |an| rn.

Lemma 3.7. [12] Let P (z) = anzn + ...+ a0 be a polynomial of degree n. Then, for any given ε > 0 there exists r0 > 0
such that for all r = |z| > r0 the inequalities

(1 − ε) |an| rn
≤ |P (z)| ≤ (1 + ε) |an| rn

hold.

Lemma 3.8. [7] Let P0 (z) . 0,P1 (z) , ...,Pn−1 (z) be polynomials such that P0 (0) = 0; let 0 < q1 < q2 < ... < qn be
real constants. Then, all solutions of (4) are entire functions.

4. Proof of theorems

Proof. [Proof of Theorem 2.2] By Lemma 3.8, all solutions of (4) are entire functions. Let f be a transcendental
solution of (4) with order ρ( f ) = α. By (5) and Remark 2.6, we have 0 < α < ∞. By Lemma 3.7, as r→∞we
have ∣∣∣P j (z)

∣∣∣ = b jrd j (1 + o(1)) . (28)

let b j denote the leading coefficient of the polynomial P j. By Lemma 3.4, there exists a set E ⊂ (0,+∞) of
finite logarithmic measure, such that for r→ +∞ and r < E,we have∣∣∣∣∣ rqkD

qk f (z)
f (z)

∣∣∣∣∣ = (ν (r))qk (1 + o (1)) ,
(
j = 1, ...,n

)
. (29)

As 0 < α < ∞ it is well known that

ν (r) = (1 + o(1))Crα (30)

as r→ ∞, where ν (r) is the central index of f and C is a positive constant; see [9]. Set a j = C j
∣∣∣b j

∣∣∣ .We now
divide equation (4) by f and then substitute (28)-(30) into (4). This yields an equation whose right side is
zero and whose left side consists of a sum of n + 1 terms whose absolute values are asymptotic (as r→ ∞;
r < E) to the following n + 1 terms:

anrαqn−[qn], an−1rqn+dn−1+αqn−1−[qn−1], ..., akrqn+dk+αqk−[qk], ..., a0rqn+d0 . (31)

From(5) and (10), the order of any solution of (4) is at most α1 i.e. α ≤ α1. Now suppose that α j+1 < α < α j
for some j = 1, 2, ..., p − 1. Then from Lemma 3.1 and Lemma 3.2, we obtain

qn + dk + αqk −
[
qk
]
< qn + ds j + αqs j −

[
qs j

]
for any k , s j (32)

which implies that there will exist exactly one dominant term (as r→∞; r < E) in (31) : there exists exactly
one term in (31) with exponent qn + ds j + αqs j −

[
qs j

]
, where as j , 0, which is greater than all the other

exponents of the terms. This is impossible.
Now, suppose that α < αp. Then from Lemma 3.2 and Lemma 3.3, we obtain

qn + dk + αqk −
[
qk
]
< qn + dsp + αqsp −

[
qsp

]
for any k , sp (33)

Again, there exists exactly one term in (31) with exponent qn + dsp + αqsp −

[
qsp

]
, where asp , 0, which is

greater than all the other exponents of the terms. This is impossible.
Therefore, the only admissible values for α, the order of f , are α1, α2, ..., αp.
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Proof. [Proof of Theorem 2.7] (i) Assume that f (z) = anzn + ... + a0 (an , 0) is a polynomial solution of (4).
By Remark 3.6, we have∣∣∣∣∣Dα f (z)

f (z)

∣∣∣∣∣ = Γ (n + 1)
Γ (n − α + 1)

(1 + o (1)) as r→∞. (34)

Dividing equation (4) by f and using (34), we get an equation whose left side is a sum of n+ 1 terms whose
absolute values are asymptotic (as r→∞) to the following n + 1 terms:

bnr−[qn], bn−1rdn−1−[qn−1], ..., bkrdk−[qk], ..., b0rd0 (35)

where b0, ..., bn are positive constants. If Card(A) = 1, then there exists exactly one dominant term in (35) (as
r→∞); which is impossible. Therefore, if Card(A) = 1 there is no polynomial solution for (4).
(ii) If Card(A) ≥ 2 there does not exist one dominant term in (35), then it is possible that there exists a
polynomial solution as it is shown in Example 2.9 and Example 2.10.
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