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The possible orders of growth of solutions to linear fractional
differential equations with polynomial coefficients

Saada Hamouda®*, Sofiane Mahmoudi?®

“Laboratory of Pure and Applied Mathematics, Abdelhamid Ibn Badis University (UMAB), Mostaganem, Algeria

Abstract. In this paper, we study the possible orders of growth of solutions to certain class of linear
fractional differential equations with polynomial coefficients. For that, we use the Nevanlinna theory
in complex domain, the generalized Wiman-Valiron theorem in the fractional calculus and the Caputo
fractional derivatives. Several illustrative examples are given.

1. Introduction

For an entire function f (z), the order of growth is defined by

o(f) =lim supM

r—+00 10g r

7

where
21

mief) =5 [

0

f (fei‘”)' do;

and we have also

) log™ log" M(r, f)
7 (f) = limsup = 0g

7

+00
where M (7, f) = max{|f (z)| szl = r}; for more details see [8, 12, 19]. If f (z) is given by f (z) = }, a,z", the
n=0
order of growth is equal to
1
o(f) =1lim sup_nloﬂ'

7
n—+0co g |ay]
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see [3]. For example, o (ez ) =n, n €N, o(exp {e*}) = +o0, 0 (P (z)) = 0 where P (z) is any polynomial.
We know that every solution f of the differential equation

fP 4P @ " V4 +P () f +Py(z) f=0, (1)
where Py (z) # 0, P; (2), ..., Py-1 (z) are polynomials, is an entire function of finite rational order o ( f) satisfying

deg Py
< .
a(f)=1 HE @

see [9, 12, 17, 18]. In 1998, Gundersen et al investigated the possible orders of solutions of (1), see [6].
We can ask the following question: how about the linear fractional differential equations with polynomial
coefficients?

Recently, extensive research is being published about fractional differential equations and this is due
to the importance of this theory for modeling diffusion phenomena and anomalous relaxation in many
various fields of science and engineering; (see, for example, Kilbas et al. [10]). There are many definitions
of fractional derivatives and many discussions for their properties notably similarities and differences of
them, see [1, 2, 4, 11, 14, 15]. In this work we will use the Caputo fractional derivative operator which is
defined as follows:

Definition 1.1. [10, 15, 16] Suppose that a > 0,r > 0 and g (r) is a real function defined on [0, +0c0) and n time
continuously differentiable on (0, +o0) . The fractional operator

AN
D) = F(n—a) e dt, n—-1<a<n

fZLg(r) a=neN\{0)

is called the Caputo derivative.

We recall that I' denotes the gamma function which is defined by the integrale

I'(z) = f e tdr,
0

where z is a complex number. It is well known that I' generalizes the factorial, i.e. I'(n) = n!.
+00 . X
Consider the function f(z) = Y, a;z/, where z = re’®. By using the properties of the Caputo operator
j=0
derivative, forn — 1 < @ < n, we have

N ow I(j+1 .
Daf (7’619) — Z r(] (] ; +)1)a]r]—a€]19, (3)

rg+1) .
e 10 e
Z)fre Z (]—a+1)]
Fora =n € N\ {0}, we have
dn

—D“f (2) = (2).

+00 )
Proposition 1.2. [7, 13] The two power series f (z) = }. a;jz’ and r*D" f (z) have the same radius of convergence.

=0

Consequently, if f (z) is an entire function, then r*D* f (z) is also an entire function.
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Recently, the authors investigated the growth of solutions of the following linear fractional differential
equations

—]Z)q"f(z +P,_q (Z)

o an @) +..+P1(2) [—Z)”l f@)+Po(z)f(z) =0, 4)

[
where Py (z) # 0, P (), ..., Ps—1 (z) are polynomials such that Py (0) =0and 0 = g0 < g1 < 42 < ... < g,. They
proved that all solutions are entire functions of order of growth o (f) satisfying

o () < max {dk +q[jn_]q_k[qk]}’ 5)

where d; = deg Px (z) and [x] is the integer part of x. They proved also the following statements:
i) If

do + [qu] _ d + (1] — [9]
max — 1= (6)
In ()<k<n 1 In — gk

holds for all k = 1, ...,n — 1, then every solution f # 0 of (4) is an entire function of order of growth

_do + [q4]
a(f) ==
(i) If
dk - [qk] < dn—l - [Qn—l] (7)

holds for all k = 0,1, ..., n — 2, then every solution f # 0 of (4) is an entire function of order of growth

dp-1 + [gn] = [gn-1]
dn — qn-1

The purpose of this paper is to determine all possible orders of growth of solutions of (4).

a(f) =

2. Main results

We will follow the same method used in [6] with necessary modifications. Set d; = deg P;. We define a
strictly decreasing finite sequence of non-negative integers

§1>82 > ...>5, 20,

in the following manner; we choose s; to be the unique integer satisfying

w = max w and (8)
Gn — qs, 0<k<n—1 qn — gk ’
ds, +[g9n] — [95/] S di + [q0] — [4] forall 0 <k<s;

qn — s qn — qk

Then given s, j > 1, we define s;;; to be the unique integer satisfying
ds,., —ds; + |qs;| = |4s;1 di — ds; +{4s [9x]

R 0 B A

dsj = Gsjn Osk<s; Js; — gk

ds]ﬂ - ds/ + [%,] - [qu+1] S di — dsi + [qsf] B [qk]
dsj = Gsin s —

> 0; and )

forall 0 <k <sj1.
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For a certain p, the integer s, will exist, but the integer s,,1 will not exist, and then the sequence sy, s, ..., p

terminates with s,. Obviously, p < n.
Correspondingly, for j = 1,2, ..., p, define the following values

b ds,- - ds,-_l + [‘15/_1] - [qs,-]
I Gsi — YGs; ’

where we set
sop=nandds, =d, =0.
We mention that we can define the integers sy, 52, ..., s, in (8) and (9) as the following manner:

o {..di"‘[Qn]_[Qi]_ dH[%]-[%]},
$) =minqgi: —————— = max ————— ;
Gn — Gi O<ksn-1  Gn — Gi

givens;, j > 1, we have

$j+1 = min {i : i [qu] Lo = max e dsf ! [qu] ~lad > O}.

Js; — qi O<k<s; Gs; — 4k
Proposition 2.1. Ifs; > 1 and p > 2, then the following inequalities hold

1 1 1
ap>ay> .. >0y > > > —.
Asp-1 =Yqs,  Gs1 = s, s

Proof. First we prove a; > az > ... > a,. From the definitions of s;and a; we obtain for j = 1,2,..,p -1,

ds; — ds; , + [qu—l] - [qu] S Aejn — oy + [qsf-l] - [qu]

S;j > Sj+1 and
Gsi.1 — 4s; Gsiy — YGsjn

7

which yields

- (ds, - [’75/']) Bsjva — (dsH - [’75;—1]) (qsf - ‘75f+1) > (dsm - [‘1%1]) (qu s ) - (dsf - [ﬂls,- ]) sj-

Adding (ds], - [qs /]) gs; to both sides of (13) gives

(= o ]~ ) 5~ )> (= = [0 ) 5 -:)
we obtain immediately a; > ;1 . This proves that
A > ap > . > ap.
From the definition of s; we have s; > s;;; and then Gs; > Gs;i which implies

1 1 1
> > —
qsl

qspfl - qsﬁ B qsl - qsp

and so to complete the proof, we need only to prove that

re qsp*l _qu'

(10)

(11)

(12)

(13)
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We have

ds,, - dspfl + [%V,l] B [qsp] >0
Gsp1 — s,

then

o, =y + 0] = [a,] 21
because

s, —4qs, > 0and ds, —ds, , + [ﬂisp_l] - [qsp] e IN%;
therefore

dsp - dsp—l + [qsp—l:l - [qsp] S 1
s, = s, T s — 45,

ap =

O

Theorem 2.2. Consider the equation (4) with Py (0) = 0. Then every transcendental solution f of (4) is of order of
growth p(f) = a; for some j, 1 < j < p; where a; is defined in (10).

Example 2.3. Consider the fractional differential equation

r

D f@+zf@) =0, (14)
wheren —1 <a <n (n € N"). In this case sy = s, = 0, and then there exists only one value a; = M = 2.
So, by Thoerem 2.2 every transcendental solution f of (14) is an entire function of order of growth o (f ) =m =1
The two cases n = 1 and n = 2 are confirmed in [7] by the power series method.
Example 2.4. Consider the fractional differential equation

23 A8

2—21)2'3f (z) + ZZTDl'Bf (z) + zer'SDO'Sf (2) +zDf (z) = 0. (15)
We have sy = 2and s; =1 =s,. So a; = 6 and az = 13 = By Theorem 2.2, every transcendental solution f of

(15) is an entire function of order of growth o (f) = 6 or ¢ (f)

Corollary 2.5. Consider the equation (4) with Py (0) = 0. Then every transcendental solution f of (4) is of order of
growth p(f) satisfying

pmz%. (16)

In fact, if s; > 1 then by Proposition 2.1, we have p(f) 2 -2 % ;and if s; = 0, then by theorem 2.2 there

exists only one value a; = “ti[q”] such that p(f) = °+[q"] and since Py (0) = 0, we have dy > 1 and then (16)
holds.

Remark 2.6. By Corollary 2.5, we deduce that there is no transcendental solution of (4) of order zero.

Theorem 2.7. Consider the equation (4) with Py (0) = 0. Let C = max{ = [qj]} and A = {i : d; — [gi] = C}, where

0<k<n
dy = qo = 0. Then, the following conclusions hold:
(a) If Card(A) = 1 then there is no polynomial solution for (4).
(b) If Card(A) > 2 then the equation (4) can admit a polynomial solutions;
where Card(A) designates the number of elements of the set A.



S. Hamouda, S. Mahmoudi / Filomat 39:26 (2025), 9169-9178 9174

Corollary 2.8. Consider the equation (4) with Py (0) = 0. Ifdg > dy forallk = 1, ...,n—1, then there is no polynomial
solution for (4).

Example 2.9. Consider the fractional differential equation

-16 &2 3 4 4, 8 4 224 A
15\52 +15nz 3\/_z)rZ)f(z (‘/_z+\/_z+\/_)r1)f(z)+ z f=0 (17)

we have C = max (d; (d - [q,]) 4and A =1{0,1,2}, Card (A) = 3. So by Theorem 2.7 the equation (17) possibly

has polynomial solutions. In fact, the two polynomials

SO @) +(

filz) = 22 +1and folz) = 22 -1
are solutions to (17).

Example 2.10. Consider the fractional differential equation

8 2 2 ) 16 l6f(z )71'3D1‘3f(z) _ 4

_ 4,
51"(%)Z F(%) r() r(14) 1"(1.4)1"(§)Zf 0 (18

r? s
— D@+ (

we have C = sup (dj - [q]-]) =2and A =1{0,1,2}, Card(A) = 3. So by Theorem 2.7 the equation possibly has
0<k<2
polynomial solutions. In fact, the two polynomials

fi(z) =zand fr(z) = 22 -2z+1
are solutions to (18).
By combining Theorem 2.2 and Theorem 2.7 we can obtain the following result:

Corollary 2.11. Consider the equation (4) with Py(0) = 0. If sy = 0 then every solution f # 0 of (4) is an entire
function of order of growth

do + [qn]
In

a(f) =

do+[an]

In fact, if s; = O then by theorem 2.2, there exists only one value a; = — == as order of growth to

transcendental solutions. It remains to prove that there is no polynomial solution for (4). By definition,
= 0 means that we have

do +[qu] _ di+[q4] - [9]
In In—qc

(19)

holds for all k = 1, ...,n — 1; which yields dy > di — [gi] for all k = 1,...,n — 1 : because if we suppose to the
contrary that there exists k € {1, ..., n — 1} such that dy < di — [gx] ; then combining this with (19) gives

1 1

G g
a contradiction. Now the statement dy > dj — [gx] forallk = 1,...,n — 1 yields A = {0}, Card (A) = 1; and by

Theorem 2.7 there is no polynomial solution for (4).
We signal here that the result of Corollary 2.11 is proved in [7] by another method.
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3. Preliminary lemmas
In order to prove our results we state the following lemmas.

Lemma 3.1. For any fixed j = 0,1,...,p — 1, let a be any real number satisfying a > i1, and let k be any integer
satisfying 0 < k < s;. Then

Gn + dx + aqe — [qe] < gn + dsf +aqs; — [%7] . (20)
Proof. Since

G+ dic+ agi = [9] = (Gu +ds; + ags, = [, ]) + @@ - 45) + dic = do; = [36] + 4]
we get

Gn + di + aqy = [qk] < (qn +ds; + aqs, — [%,-]) +aje1(qe — qs,) + die — ds; — [qe] + [qs/] . (21)

Now from the definition of a,1, we obtain

dy —ds; + 95, | — [9x]
ajs1(qx = qs;) + dx — ds; — [qi] + [%;] = (Qk - qu) @y — ] [ /] . (22)
qu ‘]k
Since 0 < k < sj, it follows from the definition of s;,; that
d —ds; + [g5] - [2:]
(qk - qs/.) Qji1 — p—— <0. (23)

Then, (20) follows from (21)- (23). O

Lemma 3.2. Forany fixed j = 1,2, ..., p let & be any real number satisfying a < aj and let k be any integer satisfying
sj <k <n.Then

Gn + di + aqy — [qk] < gn +ds; + aqs, — [qu] . (24)

Proof. We consider two separate cases.
Case (i). Suppose that s; < k < s;_1. As in the proof of Lemma 3.1, we have

n + dic + aqe — [qi] < (qn +ds; + ags; — [qs,]) +aj(q — qs;) + dx — ds; + [‘75]] - [4x].-
If k =51, then
aj(qr — qs;) + di — ds; + [qs,-] —[9] =0;

and then (24) follows.
On the other hand, if s; < k < s;_1, then from the definition of s; and a; we obtain

dk - dS it Gsia | — [Qk]
O‘j(Qk - qu_1 + qu_1 - %,-) + dk - ds/- + [qu':l - [Qk] = (Qk - 5]5,4) a] - ]q [_ ;k] < 0
S];1

This proves Lemma 3.2 for Case (i).
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Case (ii). Suppose thats; 1 <k < n. Sinces; <sj 1 < .. <81 <sy =nands; <k < n, it follows that
j = 2 and there exists an integer m,1 < m < j—1, such thats;_,, <k < s;_-1. Also, from Proposition 2.1, we
have

O < jq <. < Ajgp.

Since @ < aj, we have a < a;_,; hence we can apply Case (i) to obtain that

q" + dk + aqk - [qk] < Qn + dsj—m + aqu—m - [qu—m]
Now from successive applications of Case (i), we obtain the following inequalities:
Gn + ds/.f1 +ags;, - [‘75]'—1] < gn+ dsj +ags; — [qu] ,a<a;

Gn +ds;, + aqs,, — [‘15]-_2] < Gutds, taqs., — [qs]_l] ,a<ajg
....................... < e,

qn +ds, +aqs;.,, = [qufm] < Gntds ., Fags,, - [%Hm] s A< Qi
then we obtain
Gn + dx + aqi — [qx] <gn+ds; +aqs, - [qsf], a<ajsi<k<n
O

Lemma 3.3. Let a > 0. Then for any integer k satisfying 0 < k < s, we have

Gn +dx + aqy — [qx] < qn +ds, + aqs, — [qsp] (25)

Proof. Since s, is the last element in the sequence s1, sy, ..., s, it follows from the construction of s, that for
any k < s,, we obtain

di —ds, + (g5, |~ [:]
Jsp — Gk

<0

This gives dx — [gx] < ds, — [qsp]. Since g < gs,, for any k <sp, (25) holds. [
Lemma 3.4. [5] Let f (z) be a transcendental entire function, « >0, 0 < 6 < 1 and z be such that |z| = r and that

[f @] > M, fyv() i

holds; where v (r) is the central index of f. Then there exists a set E C (0, +00) of finite logarithmic measure, that is
f% < +o00, such that
E

r*Df (z) 3 a
N V()" 1 +o(1) (26)

holds for r — +ocoand r ¢ E.
Remark 3.5. We signal here that the authors of [5] have used the Riemann-Liouville operator derivative in the proof

+00 i
of Lemma 3.4; and for an entire function f (z) = 'Zo a;z! we have
]:

o TI(+1) o
Drf @ = Z y Goarn" . @)
j:

By (3) and (27), we confirm that the proof of Lemma 3.4 is valid also for the Caputo fractional derivative operator.
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Remark 3.6. For a non-constant polynomial P(z) = a,z" + ... + ag of degree n and 0 < a < n, it is easy to get

r*D*P (z) Trn+1)
= 1 1 .
PG F(n—a+1)( +0(1)) asr — o
In fact, by taking the limit as r — oo, the leading term of |[r*D*P (z)| is l"(rn(f;}r)l) |la,| .

Lemma 3.7. [12] Let P (z) = a,z" + ... + ag be a polynomial of degree n. Then, for any given € > 0 there exists ro > 0
such that for all v = |z| > ry the inequalities

(1= e)lan| " <P () < (1 + &) lay| "
hold.
Lemma 3.8. [7] Let Py (z) # 0,P1(2), ..., Pu—1 (2) be polynomials such that Py (0) = 0; let 0 < g1 < g2 < ... < gy, be
real constants. Then, all solutions of (4) are entire functions.
4. Proof of theorems

Proof. [Proof of Theorem 2.2] By Lemma 3.8, all solutions of (4) are entire functions. Let f be a transcendental
solution of (4) with order p(f) = a. By (5) and Remark 2.6, we have 0 < @ < co. By Lemma 3.7, as r — oo we
have

P 2)] = b (1 + 0(1)). (28)

let b; denote the leading coefficient of the polynomial P;. By Lemma 3.4, there exists a set E C (0, +0) of
finite logarithmic measure, such that for r — +oco and r ¢ E, we have

r Dk f(z)| ) .

W =wM)*A+0Q), (j=1,..,n). (29)
As 0 < a < o it is well known that

v(r) = (1 +o0(1))Cr* (30)

as r — oo, where v (r) is the central index of f and C is a positive constant; see [9]. Seta; = c/ |b]-( . We now
divide equation (4) by f and then substitute (28)-(30) into (4). This yields an equation whose right side is
zero and whose left side consists of a sum of n + 1 terms whose absolute values are asymptotic (as r — oo;
r ¢ E) to the following n + 1 terms:

anraqn*[qn], a”_qu’1+dn—l +aqn—1*[‘7ﬂ—1]’ ey aqun +dk+aqk*[qk], .y aor% +d0‘ (31)

From(5) and (10), the order of any solution of (4) is at most a; i.e. a < @;. Now suppose that aj;1 < a < g;
forsome j=1,2,..,p — 1. Then from Lemma 3.1 and Lemma 3.2, we obtain

G + di + agqe — [q] < gu +ds; + aqs, — [qsi] for any k # s; (32)

which implies that there will exist exactly one dominant term (as r — oo; ¢ E) in (31) : there exists exactly
one term in (31) with exponent g, + ds; + ags o [qs ]] , where a;, # 0, which is greater than all the other
exponents of the terms. This is impossible.

Now, suppose that @ < a,. Then from Lemma 3.2 and Lemma 3.3, we obtain

G + dx + aqi — [qc] < gn + ds, +aqs, — [qsp] forany k # s, (33)

Again, there exists exactly one term in (31) with exponent g, + dsp +ags, — [qsp], where as, # 0, which is
greater than all the other exponents of the terms. This is impossible.
Therefore, the only admissible values for a, the order of f, are ay, ay, ..., p. O
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Proof. [Proof of Theorem 2.7] (i) Assume that f(z) = a,z" + ... + a9 (a, # 0) is a polynomial solution of (4).
By Remark 3.6, we have
D f ()
f@

Dividing equation (4) by f and using (34), we get an equation whose left side is a sum of n + 1 terms whose
absolute values are asymptotic (as ¥ — o0) to the following #n + 1 terms:

- I'(n+1)
—r(n_a+l)(1+o(1))asr—>oo. (34)

by 10, b,y perlaa] ) patlad (35)

where by, ..., b, are positive constants. If Card(A) = 1, then there exists exactly one dominant term in (35) (as
r — o0); which is impossible. Therefore, if Card(A) = 1 there is no polynomial solution for (4).

(ii) If Card(A) > 2 there does not exist one dominant term in (35), then it is possible that there exists a
polynomial solution as it is shown in Example 2.9 and Example 2.10. [J
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