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Abstract. The logistic equation, which is usually represented as a differential equation, is used to simulate
the population expansion or the spread or evolution of phenomena within a confined area. However, it is
frequently discussed in terms of the evolution of solutions in unbounded time and the longterm behavior
of the population size. In this paper, we analyze it by using variable order fractional calculus within the
constraint of a finite time frame, allowing for a more realistic and applicable assessment of real-world
scenarios with finite resources or boundaries.

1. Introduction

The theory of dynamical systems is a field of mathematics and physics that investigates the mathemat-
ical behavior and the corresponding classification concerning how systems evolve over time by providing
valuable insights into the complexities that surround the development of real-world processes in response
to their initial conditions and the governing equations that describe the dynamics, which may vary from
simple deterministic systems to extremely complicated and chaotic ones. This theory possesses wide-
ranging applications in physics, engineering, biology, economics, and even in the social sciences, allowing
researchers to examine the stability, periodicity, and long-term behavior of systems, making it an indispens-
able tool for predicting and modeling the behavior of different events in the natural and social world.

As a result of its obvious importance and vast range of applications, fractional calculus in mathemat-
ical modeling has grown in popularity and significance, thus gaining prominence in diverse scientific
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and engineering domains such as science, engineering, finance, and social sciences, by extending the tra-
ditional concepts of differentiation and integration to non-integer orders rather than being confined to
integer numbers, and consequently allowing to examine derivatives and integrals with fractional indexes,
revolutionizing our understanding of complicated structures thanks to its ability for capturing intricate
behaviors involving memory, heredity, and complex dynamics. However, recent research work has shown
that constant fractional order calculus is not the ultimate tool for modeling every natural occurrence. As a
result, variable order fractional calculus is presented and extensively investigated for its capacity to offer
a better description for problems with local and nonlocal circumstances (see [1, 4, 5, 12–15, 20, 22] and the
references therein).

The logistic equation is a fundamental mathematical model that is utilized to predict the population
growth or the spread of phenomena in a constrained context. It was initially presented in the nineteenth
century by Pierre François Verhulst and has since then been a cornerstone in many domains, including
ecology, epidemiology, economics, and even the study of social trends.

The logistic equation’s continuous form is expressed as a nonlinear ordinary differential equation of the
type 

d
dt

X(t) = κX(t)
(
1 −

X(t)
K

)
,

X(0) = X0.
(1)

This equation takes two essential aspects into account: the Malthusian parameter κ > 0, expressing the
intrinsic growth rate of the species, and K, representing the carrying capacity of the environment.

If we take ϑ =
X
K

, then equation (1) is reduced to the nonlinear differential equation written as
d
dt
ϑ(t) = κϑ(t) (1 − ϑ(t)) ,

ϑ(0) = ϑ0,
(2)

where ϑ0 =
X0

K
.

This simple but powerful model captures the idea that growth is initially exponential but eventually
flattens as the resources become scarce, making it especially useful for predicting and understanding
population dynamics, disease outbreaks, market saturation, and other scenarios where the growth is
constrained by the available resources. Because of its wide range of uses and adaptability, the logistic
equation has become a vital tool for academics as well as decision-makers across many fields.

In [19], B. J. West studied a more generalized version of the logistic equation by incorporating a memory
term through the use of fractional derivatives in continuous timeC

D
ϖ
0+ϑ(t) = κϖϑ(t)(1 − ϑ(t)),

ϑ(0) = ϑ0,
(3)

where 0 < ϖ < 1, ϑ0 ∈ R, and CDϖ0+ denotes the Caputo fractional derivative operator of order ϖ.
The author of [19] provided the exact solution to this extension of equation, which has been denominated

as West function, given by

ϑ(t) =
∞∑

n=0

(
ϑ − 1
ϑ

)n

Eϖ(−nκϖtϖ), (4)

where Eϖ denotes the so–called one parameter Mittag–Leffler function, denoted by

Eϖ(Λ) =
∞∑

n=0

Λn

Γ(ϖn + 1)
, ϖ > 0, Λ ∈ C, (5)
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which was first proposed by G. M. Mittag-Leffler and may be thought of as a generalization of the expo-
nential function. In the previous expression, Γ represents the Gamma function, defined as:

Γ(z) =
∫
∞

0
tz−1e−t dt, ℜ(z) > 0.

Shortly after, I. Area et al., in a short note [3], showed that the real function (4) proposed by B. J. West
[19] is not an exact solution for the fractional logistic equation.

In summary, finding exact solutions to the fractional logistic equation explicitly can be challenging.
For this purpose, researchers typically resort to numerical methods to explore the system’s behavior and
dynamics, such as finite difference methods or spectral methods. These methods can provide valuable
insights into the behavior of the system described by the fractional logistic equation (for more details, see
[8–11] and the references therein).

Recently, in [7], K. Devendra et al. analyzed the logistic equation with the novel fractional derivative
given by Caputo and FabrizioCF

D
ϖ
0;tϑ(t) = κϑ(t)(1 − ϑ(t)),

ϑ(0) = ϑ0.
(6)

Motivated by the aforementioned works, in this paper, we study the dynamical properties of the following
fractional logistic equation involving the variable order Caputo fractional derivativeC

D
ϖ(t)
0+ ϑ(t) = κϑ(t)(1 − ϑ(t)), 0 ≤ t ≤ T < +∞,

ϑ(0) = ϑ0,
(VOFLE)

where 0 < ϖ(t) < 1, ϑ0 ∈ R+, κ > 0, and CDϖ(t)
0+ denotes the Caputo fractional derivative operator of variable

order ϖ(t) for the function ϑ(t) defined by [2, Definition 30]

C
D
ϖ(t)
a+ ϑ(t) =

1
Γ(1 − ϖ(t))

∫ t

a
(t − s)−ϖ(t)ϑ′(s)ds, t > a,

and the Riemann-Liouville integral of variable order ϖ(t) for ϑ is given by [18]

Iϖ(t)
a+ ϑ(t) =

1
Γ(ϖ(t))

∫ t

a
(t − s)ϖ(t)−1ϑ(s)ds, t > a.

It is known that, when the orderϖ(t) is a constantϖ, then the variable order fractional integral and derivative
operators coincide with its constant order counterparts. Therefore, due to the property of semi-group, we
obtain the following properties

Iϖ1
a+ Iϖ2

a+ = Iϖ2
a+ Iϖ1

a+

= Iϖ1+ϖ2
a+ .

However, some recent studies have proved that such properties do not hold for variable order fractional
operators. Indeed,

Iϖ1(t)
a+ Iϖ2(t)

a+ , Iϖ2(t)
a+ Iϖ1(t)

a+

, Iϖ1(t)+ϖ2(t)
a+ ,

where ϖ1(t) and ϖ2(t) are general non negative functions. We shall give an example to prove these claimed
arguments.



M. D. A. Zaak et al. / Filomat 39:26 (2025), 9179–9189 9182

Example 1.1. Let ϖ1(t) =
t + 1

4
, ϖ2(t) =

3 − t
4

, ϑ(t) = t, for 0 ≤ t ≤ 1. Then

Iϖ1(t)
0+ Iϖ2(t)

0+ ϑ(t) =
∫ t

0

(t − s)
t+1

4 −1

Γ
(

t+1
4

) 
∫ s

0

(s − h)
3−s

4 −1

Γ
(

3−s
4

) h dh

 ds

=

∫ t

0

(t − s)
t−3

4 s
7−s

4

Γ
(

t+1
4

)
Γ
(

11−s
4

)ds,

Iϖ1(t)
0+ Iϖ2(t)

0+ ϑ(t)
∣∣∣
t= 1

2
=

∫ 1
2

0

(
1
2 − s

)− 5
8 s

7−s
4

Γ
(

3
8

)
Γ
(

11−s
4

) ds

≈ 0.12138,

Iϖ2(t)
0+ Iϖ1(t)

0+ ϑ(t) =
∫ t

0

(t − s)
3−t

4 −1

Γ
(

3−t
4

) 
∫ s

0

(s − h)
s+1

4 −1

Γ
(

s+1
4

) h dh

 ds

=

∫ t

0

(t − s)
−1−t

4 s
5+s

4

Γ
(

3−t
4

)
Γ
(

7+s
4

)ds,

Iϖ2(t)
0+ Iϖ1(t)

0+ ϑ(t)
∣∣∣
t= 1

2
=

∫ 1
2

0

(
1
2 − s

)− 3
8 s

5+s
4

Γ
(

5
8

)
Γ
(

7+s
4

) ds

≈ 0.19956,

Iϖ1(t)+ϖ2(t)
0+ ϑ(t)

∣∣∣
t= 1

2
=

∫ 1
2

0
s ds =

s2

2

∣∣∣∣∣∣
1
2

0

= 0.125.

Here, we have written the approximations with several decimal positions in order to clearly illustrate that these
quantities are different. Therefore,

Iϖ1(t)
0+ Iϖ2(t)

0+ ϑ(t)
∣∣∣
t= 1

2
, Iϖ2(t)

0+ Iϖ1(t)
0+ ϑ(t)

∣∣∣
t= 1

2

, Iϖ1(t)+ϖ2(t)
0+ ϑ(t)

∣∣∣
t= 1

2
.

This paper is organized as follows. In Section 2, we present some definitions and necessary lemmas as-
sociated with the variable order logistic equation. In Section 3, we establish some existence and uniqueness
results for the solutions of the problem (VOFLE). In Section 4, the uniform stability of initial value problem
(VOFLE) associated with variable order Caputo fractional derivative is discussed, and we complete the
paper with some numerical approximations to illustrate the obtained results.

2. Preliminaries

This section introduces certain essential concepts and lemmas that will be important to present the main
results in the next sections.

Definition 2.1. Let T > 0, and [0,T] be a closed interval of R. We denote by:

i) C([0,T],R) the Banach space of continuous functions ϑ : [0,T] −→ R, with the usual supremum norm

||ϑ||∞ := sup{|ϑ(t)|, t ∈ [0,T]}.
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ii) L1([0,T],R) the Banach space of measurable functions ϑ : [0,T] −→ R that are Lebesgue integrable, equipped
with the norm

||ϑ||L1 =

∫ T

0
|ϑ(s)| ds.

Definition 2.2. [21, Definitions 2.1− 2.3] Let S be a subset of the real spaceR. We introduce the following notation:

i) S is called a generalized interval if it is either a standard interval, a point, or the empty set ∅.
ii) Assuming that S is a generalized interval, the finite set P consisting of all the generalized intervals contained

in S is termed as a partition of S provided that every x ∈ S lies in exactly one of the generalized intervals in the
finite set P.

iii) Evidently, the function ϖ : t 7→ R is piecewise constant with respect to the partition P of S, if, for any I ∈ S, ϖ
is constant on I.

Lemma 2.3. [14] Let ϖ1, ϖ2 > 0, 0 < a < b, and ϑ ∈ L1(a, b) with C
D
ϖ1
a+ ϑ ∈ L1(a, b). Then the unique solution of

the following equation

C
D
ϖ1
a+ ϑ(t) = 0

is given by

ϑ(t) = ϱ0 + ϱ1(t − a) + ϱ2(t − a)2 + · · · + ϱl−1(t − a)l−1,

and

Iϖ1
a+

C
D
ϖ1
a+ ϑ(t) = ϑ(t) + ϱ0 + ϱ1(t − a) + ϱ2(t − a)2 + · · · + ϱl−1(t − a)l−1,

with l = [ϖ1] + 1, ϱk ∈ R, k = 0, 1, . . . , l − 1.
Furthermore,

C
D
ϖ1
a+ Iϖ1

a+ ϑ(t) = ϑ(t),

and

Iϖ1
a+ Iϖ2

a+ ϑ(t) = Iϖ2
a+ Iϖ1

a+ ϑ(t) = Iϖ1+ϖ2
a+ ϑ(t).

3. Existence of solutions

Based on the previous discussion, in this section, we present our main results.
Let P = {[0,T1], (T1,T2], (T2,T3], . . . , (Tn−1,T]} be a partition of the finite interval [0,T], and let ϖ(t) :

[0,T] −→ (0, 1] be a piecewise constant function with respect to P given by

ϖ(t) =
n∑

l=1

ϖlIl(t) =


ϖ1, t ∈ [0,T1],
ϖ2, t ∈ (T1,T2],
...

ϖn, t ∈ (Tn−1,T],

where 0 < ϖl < 1, l ∈ {1, 2, . . . ,n} are constants, and Il is the characteristic function for the interval [Tl−1,Tl],
l ∈ {1, 2, . . . ,n}, i.e.,

Il(t) =

1, if t ∈ [Tl−1,Tl],
0, elsewhere.
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To reach our primary conclusions, we first do some basic analysis on the equation of problem (VOFLE).
Indeed, since

ϖ(t) =
n∑

l=1

ϖlIl(t),

we get

C
D
ϖ(t)
0+ ϑ(t) =

∫ t

0

(t − s)−ϖ(t)

Γ(1 − ϖ(t))
ϑ′(s) ds =

n∑
l=1

Il(t)
∫ t

0

(t − s)−ϖl

Γ(1 − ϖl)
ϑ′(s) ds. (7)

So, the equation of the problem (VOFLE) can be written as the following

C
D
ϖ(t)
0+ ϑ(t) =

n∑
l=1

Il(t)
∫ t

0

(t − s)−ϖl

Γ(1 − ϖl)
ϑ′(s) ds = κϑ(t)(1 − ϑ(t)), 0 ≤ t ≤ T < +∞. (8)

Therefore, in the interval [0,T1], it can be written as

C
D
ϖ1
0+ϑ(t) =

∫ t

0

(t − s)−ϖ1

Γ(1 − ϖ1)
ϑ′(s) ds = κϑ(t)(1 − ϑ(t)), 0 < t ≤ T1. (9)

Again, in the interval (T1,T2], it can be written as

C
D
ϖ2
0+ϑ(t) =

∫ t

0

(t − s)−ϖ2

Γ(1 − ϖ2)
ϑ′(s) ds = κϑ(t)(1 − ϑ(t)), T1 < t ≤ T2. (10)

In the same way, in the interval (Tl−1,Tl], it can be written as

C
D
ϖl
0+ϑ(t) =

∫ t

0

(t − s)−ϖl

Γ(1 − ϖl)
ϑ′(s) ds = κϑ(t)(1 − ϑ(t)), Tl−1 < t ≤ Tl. (11)

We denote by El =
(
C([0,Tl],R), || · ||El

)
the class of functions that form a Banach space with the equivalent

norm

|| · ||El = sup
t∈[0,Tl]

e−Nt
| · (t)|, N > 0, l ∈ {1, 2, . . . ,n}.

Thus, we may consider the following auxiliary initial value problems of constant order defined on the
intervals of the type [Tl−1,Tl], l ∈ {1, 2, . . . ,n}, as followsC

D
ϖl
0+ϑl(t) = κϑl(t)(1 − ϑl(t)), Tl−1 < t ≤ Tl,

ϑl(0) = ϑ0.
(12)

Definition 3.1. For l ∈ {1, 2, . . . ,n}, we say that ϑl is a solution of the initial value problem (12) if ϑl ∈ C[0,Tl] and
it satisfies (12). Moreover, we say that ϑl is a solution of the initial value problem (12) in the set

Bl := {ϑl ∈ C([0,Tl],R) : |ϑl(t)| ≤ Rl,∀t ∈ [0,Tl]} ,

with Rl > 0, if:

1) For every t ∈ [0,Tl], (t, ϑl(t)) ∈ D, where D := [0,Tl] × BRl , being BRl := {ϑl ∈ R : |ϑl| ≤ Rl}.
2) ϑl satisfies (12).

Definition 3.2. We say that the problem (VOFLE) has a solution ϑ, if there exist functions ϑl, l ∈ {1, 2, . . . ,n}, such
that ϑ1 ∈ C[0,T1] satisfying equation (9), and ϑ1(0) = ϑ0; ϑ2 ∈ C[0,T2] satisfying equation (10), and ϑ2(0) = ϑ0;
ϑl ∈ C[0,Tl] satisfying equation (11), and ϑl(0) = ϑ0, for all l ∈ {3, . . . ,n}.
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Remark 3.3. We say that the problem (VOFLE) has a unique solution, if the functions ϑl in Definition 3.2 are
unique.

Theorem 3.4. Let Rl > 0, for l ∈ {1, . . . ,n} be such that

|ϑ0| +Hl
κ

Γ(ϖl + 1)
tϖl < Rl,

where Hl := max
{

1
4 , |Rl(1 − Rl)|, | − Rl(1 + Rl)|

}
. Then the auxiliary initial value problem (12) has a unique solution

with ϑl ∈ Bl, for all l ∈ {1, . . . ,n}.

Proof. For all l ∈ {1, . . . ,n}, and from the properties of fractional calculus, the fractional order differential
equation in (12) can be written as

I1−ϖl
d
dt
ϑl(t) = κϑl(t)(1 − ϑl(t)),

using Lemma 2.3, we integrate the above equation ϖl−times. Therefore, we obtain

ϑl(t) = ϑ0 + Iϖl
0+ (κϑl(1 − ϑl)) (t). (13)

Define the family of operatorsNl : Bl −→ El, l ∈ {1, . . . ,n}, by

(Nϑl)(t) = ϑ0 + Iϖl
0+ (κϑl(1 − ϑl)) (t).

We prove thatNl(Bl) ⊆ Bl, l ∈ {1, . . . ,n}. Indeed, for each l ∈ {1, . . . ,n}, we have

|Nl(ϑl)(t)| =
∣∣∣ϑ0 + Iϖl

0+ (κϑl(1 − ϑl)) (t)
∣∣∣

=

∣∣∣∣∣∣ϑ0 +
κ
Γ(ϖl)

∫ t

0
(t − s)ϖl−1ϑl(s)(1 − ϑl(s))ds

∣∣∣∣∣∣
≤ |ϑ0| +Hl

κ
Γ(ϖl)

1
ϖl

tϖl = |ϑ0| +Hl
κ

Γ(ϖl + 1)
tϖl < Rl.

This way,Nl : Bl −→ Bl, for l ∈ {1, . . . ,n}. Moreover, for ϑl, ϑ̃l ∈ Bl,

e−Nt
|Nl(ϑl)(t) −Nl(ϑ̃l)(t)| = κ

∣∣∣∣e−NtIϖl
0+

[
(ϑl(t) − ϑ̃l(t)) − (ϑ2

l (t) − ϑ̃2
l (t))

]∣∣∣∣
≤ κ

∫ t

0

(t − s)ϖl−1

Γ(ϖl)
e−Nt
|ϑl(s) − ϑ̃l(s)|(1 + |ϑl(s)| + |ϑ̃l(s)|) ds

≤ κ

∫ t

0

(t − s)ϖl−1

Γ(ϖl)
e−N(t−s)e−Ns

|ϑl(s) − ϑ̃l(s)|(1 + |ϑl(s)| + |ϑ̃l(s)|) ds

≤ κ(1 + 2Rl)||ϑl − ϑ̃l||El

∫ t

0

(t − s)ϖl−1

Γ(ϖl)
e−N(t−s) ds

≤ κ(1 + 2Rl)||ϑl − ϑ̃l||El

∫ t

0

τϖl−1e−Nτ

Γ(ϖl)
dτ.

This implies that

||Nl(ϑl) −Nl(ϑ̃l)||El ≤ κ(1 + 2Rl)
∫ Tl

0

τϖl−1e−Nτ

Γ(ϖl)
dτ ||ϑl − ϑ̃l||El ,

and it can be proved, by virtue of the Banach contraction principle, that, if we choose N > 0 large enough

such that κ(1 + 2Rl)
∫ Tl

0

τϖl−1e−Nτ

Γ(ϖl)
dτ < 1, then we obtain that the operator Nl has a unique fixed point for

all l ∈ {1, 2, . . . ,n}.
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Conversely, from Eq (13), we get

d
dt
ϑl(t) = κ

d
dt

Iϖl
0+ (ϑl(t) − ϑ2

l (t))

I1−ϖl
0+

d
dt
ϑl(t) = κI1−ϖl

0+
d
dt

Iϖl
0+ (ϑl(t) − ϑ2

l (t))

C
D
ϖl
0+ϑl(t) = κ

d
dt

I1−ϖl
0+ Iϖl

0+ (ϑl(t) − ϑ2
l (t))

C
D
ϖl
0+ϑl(t) = κ(ϑl(t) − ϑ2

l (t)).

Also, from the continuity of the solution, we deduce that

ϑl(0) = ϑ0 + κ Iϖl
0+ (ϑl(t) − ϑ2

l (t))
∣∣∣
t=0

= ϑ0.

In view of Remark 3.3, we have the uniqueness of solution to problem (VOFLE).

4. Uniform stability

Definition 4.1. Under uniqueness hypotheses, for a given l ∈ {1, 2, . . . ,n}, we say that the solution ϑl of the initial
value problem (12) is uniformly stable if, for every ε > 0, there exists δ > 0 such that

|ϑ0 − ϑ̃0| ≤ δ =⇒ ||ϑl − ϑ̃l||El ≤ ε,

where ϑ̃l is the solution to the initial value problem (12) with the initial condition

ϑ̃l(0) = ϑ̃0.

Definition 4.2. Under uniqueness hypotheses, we say that the solution to the problem (VOFLE) is uniformly stable
if all the functions ϑl, l ∈ {1, 2, . . . ,n}, are uniformly stable.

Theorem 4.3. Under uniqueness hypotheses (see the statement of Theorem 3.4), for all l ∈ {1, 2, . . . ,n}, the solution
ϑl of the initial value problem (12) is uniformly stable, that is, problem (VOFLE) is uniformly stable.

Proof. Direct computation gives

||ϑl − ϑ̃l||El ≤ |ϑ0 − ϑ̃0| + κ(1 + 2Rl)
∫ Tl

0

τϖl−1e−Nτ

Γ(ϖl)
dτ ||ϑl − ϑ̃l||El ,

which implies that, given ε > 0,

||ϑl − ϑ̃l||El ≤

(
1 − κ(1 + 2Rl)

∫ Tl

0

τϖl−1e−Nτ

Γ(ϖl)
dτ

)−1

|ϑ0 − ϑ̃0| ≤ ε,

provided that |ϑ0 − ϑ̃0| ≤ δ, where the relation between ε > 0 and δ > 0 is given by

ε =

(
1 − κ(1 + 2Rl)

∫ Tl

0

τϖl−1e−Nτ

Γ(ϖl)
dτ

)−1

δ.

In view of Definition 4.2, we have proved the uniform stability of the solution to problem (VOFLE).
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5. Numerical methods and results

We recall the problem of interest, which is the following fractional logistic equation involving the
variable order Caputo fractional derivativeC

D
ϖ(t)
0+ ϑ(t) = κϑ(t)(1 − ϑ(t)), 0 ≤ t ≤ T < +∞,

ϑ(0) = ϑ0,
(VOFLE)

where 0 < ϖ(t) < 1, ϑ0 ∈ R+, and κ > 0.
For a numerical study of this problem, we choose the finite difference method with different space steps

h [6, 17].
The first step
Since the exact solution to this problem with ϖ(t) = 1 is

ϑ1(t) =
ϑ0

ϑ0 + (1 − ϑ0) exp(−κt)
,

we apply the finite difference method in this problem with size 0.001 and T = 10 for different expressions
of ϖ(t) and ϑ0, and we present the results obtained in the following images:

Figure 1: The exact solution ϑ1 and our solution with ϖ(t) = 1 and κ < 1.

Figure 2: The exact solution ϑ1 and our solution with ϖ(t) = 1 and κ ≥ 1.
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We observe that the solution obtained with this method is the same as the exact solution.
The second step
Now, we calculate the solution of the problem (VOFLE) with the variable order ϖ(t) in two cases (one for
the increasing case and other for the decreasing case) in the interval ]0, 1] for different ϑ0 and size 0.001,
and the results are presented in the following figures:

Figure 3: The solution ϑ for different values of κ, ϑ0, and ϖ(t) = 9t+10
100 .

Figure 4: The solution ϑ for different values of κ, ϑ0, and ϖ(t) = −t+10
10 .
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