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Existence and blow up of solutions for a singular higher-order
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Abstract. In this work, we obtain the singular higher-order viscoelastic parabolic type equation with
logarithmic nonlinearity. We establish the local existence, global existence and blow up of solutions. By
employing the cut-off technique and the Faedo-Galerkin approximation method, the local existence of a
weak solution is established. The global existence of the weak solution is then derived using the potential

well method. Moreover, we demonstrate that the blow up in finite time through the application of concavity
method.

1. Introduction

In this work, we investigate the following the initial-boundary value problem of singular higher-order
viscoelastic parabolic equation with logarithmic nonlinearity

2t

o+ Az - fotg(t — 1) Az (1)dt = |2l % zInz, (x,1) € Q% (0,T),

22D 2 0,i=0,1,..,m~1, (x, 1) € JQ%(0,T), @
z(x,0) = z (x) x €4,

here A = (-A)", m > 1 is naturel number, Q ¢ RN (N > 2m) be open bounded Lipschitz domain with a

smooth boundary d€, zo (x) € X = (H31 Q) nrLt (Q)) \[0},2 <7< 2(1 + %) and 0 < s < 2 is a constant.
T > 0 and a unit outher normal v, X = (X1, X2, ..., Xz), [X| = /X3 + X3 + ... + X7,
In 2021, Han [17] proved the following the equation of the form

zi + A%z = k) f(z).

He established the explosion in finite time using differential inequalities. Furthermore, he derived both
upper and lower limits for the time at which the explosion happens.
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Han [16] studied the following the equation of the form

Zy

e —Az=k®) |z 2
x

He proved the upper and lower bounds on the blow-up time of weak solutions.
In 2021, Thanh et al. [26] considered the reaction-diffussion parabolic problem with time dependent
coefficients
2y Nz =k =
x|
They proved the upper and lower bound for blow-up time. Problems with variable coefficients have been
handled carefully in several papers, some results relating the local existence, global existence, blow up and
stability have been found [2, 9, 11, 13, 16, 22, 23].
Heat equation with singular potential and logarithmic nonlinearity which can be used to describe many
phenomena in the viscoelastic mechanics, quantum mechanics theory [3-8, 10, 12, 14, 15, 19, 28].
In 2023, Wu et al. [30] investigated the following fourth-order parabolic equation

4 Nz - Az = 2z In .
x|
They obtained finite-time blowup results of weak solutions using the Galerkin method and determined
upper and lower bounds for the blowup time.

In 2020, Deng and Zhou [6] considered the following of singular and nonlinear parabolic equations with
logarithmic source term

Z—ts + Az =zlIn|z|.
x|
They obtained infinite time blow-up of the solutions and the global existence.
In 2024, Yang [32] considered the following p—Laplacian type pseudo-parabolic equation with singular
potential and logarithmic nonlinearity

% +Apz— Az = 172 zIn|z|.
He has established a new criterion for solutions to blow up in finite time using Gagliardo-Nirenberg’s
interpolation inequality and inverse Sobolev inequality.
In [27], Thanh et al. proved the higher-order version A (IAI’”_2 A) of the p—Laplacian and the function
k (t) non- newtonian filtration equation and obtained the blow-up result with lower and upper bounded.
In 2024 [15] Gao et al. studied the the following of singular and viscoelastic nonlinear parabolic equations
with logarithmic source

¢
% —Az+f g(t—1)Az(1)dt = |z]"*zInz.
X 0

They obtained global existence and blow up of solutions.
This work is organized as follows:

e In part 2, we give some assumptions needed in this work.

e In Part 3, we obtain the local existence of a weak solution with the cut-off technique and the Faedo-
Galerkin approximation method.

e In part 4, we obtain the global existence of solutions using the potential well method.

e In Part 5, we prove the blow up in finite time through the application of concavity analysis of the
weak solutions.
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2. Preliminaries

9193

In this part, we present certain lemmas and assumptions required for the formulation and proof of our
results. Let |||, [lll, and |||y indicate the typical L2(Q), L' (Q) (1 £r < 00) and W™ (Q) norms (see
[1, 24]). We denote the inner product by (.,.). By problem (1), assume that r and g (.) satisfy the following

conditions:
(A1)2 < r<2<1+ %“),N>2m,

(A2) g € C' (R*, R*) satisfiying g (s) > 0,9’ (s) <0,1=1- fom g(s)ds > 0.
Multiplying equation (1) by z; and integrating over Q X [0, t), we have

fot » %(1—£tg(s)ds)”ﬂ%z'2
+1 ftg(f)”ﬂ%z ’

Zr
s/2

’ drt — 1ft<g’ Oﬂ%z)(T)dT-i-%(gOﬂ%Z)(t)
= ( f g(s) ds) |ﬂzzo|| g o ﬂzzo) ®)

. 1
+—f|2|’ lnzdx——fIZOI’IHIZOIdx——ZIIZIII+—2IIZOIIZ-
r Ja r Jo T T

For each z € Hy () N L™ (Q) and t € [0, o0) define the functinals of the problem (1) following:

J2) = %(1—£tg(s)ds)|'ﬂ;z'2

—%lelylnzdx+ %(goﬂ%z) (t)+rlz||z||;,

and Nehari functional is as follows:

I(z) = (1—f:g(s)ds)||ﬂ§z|2

—f|z|’lnzdx+(g0ﬂ;z)(t),
Q

E(t) = ft » d + = ( fotg(s)ds)”?ﬁzz

r 1 1 r
—;lel In zdx + 5(!]0ﬂ22)(t)+r—2||2”w

s/2

where (g0 A2) () = [ 9(t=9) Atz () - ALz 0 ds.
Then it follows from (3) and (4) that

@) = —1<)+—( fg(s)ds) o

1/_

t— (goﬂzz)(t)+r—2||z||:.

Furthermore, we introduce the Nehari manifold

N={zeX:I(z)=

€)

)
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and the following sets:
W={zeX:]J(z) <d, I(z) >0},
V={zeX:](z)<dIz)<0}.
The depth of potential well is defined as follows:

= g

Now, we give some definitions.

Definition 2.1. (Weak solution) A function z is called a weak solution to equation (1) ifz € L™ (0, T; Hy (Q)NL’ (Q))
and =25 € L? (O, T; L2 (Q)) where z satisfies the following equation:

‘xls/z

(i) For any ¢ € Hy' (Q) and t € [0, T), so that

t
(2. )+ (e p) (-t A (),

(ii) z (x,0) = z (x) in H" (Q) N L1 (Q).

Definition 2.2. (see [31])(Finite time blow-up) Assume that z(t) is a weak solution to (1). If z(t) exists for all t in
the interval [0, T*), and the limit as to blow up at a finite time T* if z(t) exists for all t € [0, T*) and

z(x,1)
s/2

2

©)

m
=T || x|
Where T* is called the maximal existence time of z(t) and also the blow time. If (4) does not happen for any finite time
T", then z(t) is called a global solution and the maximal existence time of z(t) is oo.

Definition 2.3. (Maximal existence time [29, 31]) Suppose that z(x, t) is a weak solution of problem (1), we determine
the maximal existence time Tmax as follows

Tmax = sup {T > 0;z(x, t) exists on [0, T]}.

(1) If Tmax = +00, then z(t) is global;
(i) If Tmax < +00, we say that the solution z(t) is blow up in finite time where Tmay is the blow-up time.

After that, in Lemma 2.4, we outline some fundamental properties of the fiber mapping J (Az) that can
be verified directly.

Lemma 2.4. Assume that z € X, then

(1) limy g+ [ (Az) = 0, lim 400 ] (A2) = —c0.

(ii) There exists a unique A* = A*(z) > 0 so that % J(A2)2p = 0; J(Az) is increasing on 0 < A < 400, and
attains the maximum at A = A*.

(iii) I(Az) > 0 for 0 < A < A*, I (Az) < 0 for A* < A < +o0,and [ (A*z) = 0.
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Proof. (i) By the definition of | (1) , we obtain
1 ' |
2 = a2 (1 - [ 90 ds) |z
2 0

r 1 r
—%lelrlnzdx+ A (g0 A22) (1) + %||z||;, (10)

2 r
- Xy
r

where A > 0. Therefore, it is evident that the conclusion of (i) is valid
(ii) By differentiating J(1z) at A we get:

d ! 1
ﬁ](AZ) = A(l—j(:g(s)ds)”ﬂzz
A f l2l Inzdx + A (g 0 Az) (1),

Q

2| (= B g@ds) |t - atina e an
—A2 fQ |z|" In zdx + (g o ﬂ%z) 63) '

2
= A Al

Let A(Az) = 1+ 4] (Az), then

AU e

AN = = (1= 2) A In Al - A el

—(r=2)A3 f lz|" In zdx
Q
= A3 [(r =2)InAJlz|l; + |lzl; + (r — 2) f |z|" lnzdx] (12)
Q
Hence, by taking

N llzll; + (r = 2) [ l2l Inzdx
b Q@-nlll '

(13)

so that
d

ﬁy[()\z) > 0OonAe€(0,Ay),

%.7[ (Az) < OonA € (A, +00) and

d
ﬁﬂ (/\12) = 0.

Since A (Az)|29 = (1 - fotg(s) ds) ”ﬂ%znz + (g o Jﬂ%z) (t) > 0 and lim) _, ;00 A (Az) = —0c0, there exists

A" > 0sothat A(A'z) =0,
A(Az) > O0onAe(0,A") and
A(Az) < OonA e (A7, +00).

So,

d
ﬁ (AZ)

\Y

0 is positive on (0,A%),

% J(Az) < Oisnegative on (A", +o0) and

d . .
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Therefore (ii) is valid.
(iii) From the definition of I (z), we get

A? (1 - fotg(s) ds) ”ﬂ%z

A" | |z Inzdx + A2 (g o ﬂ%z) )
Q

A1= [ g)ds) [ A — AT In A I
—A [ el Inzdx + A (g 0 AZz) (1)

2
I(Az) — A In Az,

= A

d
= Aﬁ J(Az2) (14)

here A > 0. When combined with (ii), result (iii) holds. [

Lemma 2.5. Let (A1) and (A2) hold and z € X satisfy I (z) < 0. Later, there exists a A* € (0, 1) such that [ (A*z) = 0.

Proof. For VYA >0, we get

[(Az) = A2 [(1 - fg(s) ds) Hy{%z
0

p(A)=A"2 f Iz Inzdx + A" 2 In A ||z|". (16)
Q

2 1
+(g0A2z2) () - ¢ (/\)], (15)

here

By I(z) < 0, we obtain

fQ |z|" In zdx > (1 - fotg(s) ds)Hﬂ;Z

By (15) and (17), we get

pl) = flzlrlnzdx
0

g (70 A22)(t). (17)

t 1 2 1
> (1—f g(s)ds)”?hz +<gOﬂfz) t)
0
> 0 (18)
pA)=A"2 f Iz Inzdx + A" 2InA|lz|, = 0as A — 0*. (19)
Q

Combining (15),(18) and from the above equation, we can deduce that there is A* € (0, 1) so that

pA) = (1 - fotg(s) ds)”ﬂ%z

and [ (A*z) = 0. The proof is completed. [

’ + (g o ﬂ%z) )]

Lemma 2.6. Suppose that (A1) and (A2) hold and z (x,t) be a weak solution of problem (1). Then, E (t) is nonin-
creasing function, that is

E'(t) <0. (20)
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Proof. Multiplying the equation (1) with z; and integrating with respect to x over the domain (), we obtain

ZT ' 1 1
12 2dt ” _j(; g(t—T)dTLﬂZZ(S)ﬂ zpdxds
j‘lzlr_2 zz; In zdx. 1)
Q

Through direct calculation, for the third term from the left it can be seen that

|

' 1 1 d| 1 1 1 1
f(;g(t—s)foﬂzz(s)ﬂzztdxds = a[—i(go\?{zz)(t)+§f(;g(s)ds”ﬂzz

1., 1 1 1|12

+[§(g 0 ALz) (H) - E_q(t>Hﬂzz| ] (22)

If similar operations are performed on the left side of the equation,
5 Iz 2 zz; Inzdx = = — f |z|" In zdx — _ZE lIzIl7 . (23)

Inserting (22) and (23) into (21), we get
2 t 2
2t |, d %(l - fo g(s) ds) ||.?I%z|| + %(g o ﬂ%z) ()
|x[*/2 dt -1 [, 121" In zdx + LIzl
1., 1 1 1|2

= (7oAt -390 Hy{zz <0. (24)

The proof is completed. [

Lemma 2.7. Assume that (A1) and (A2) hold and zy € X. Later,
(i) the solution z of problem (1) with zy € ‘W satisfies that z (t) € ‘W forall t € [0, T"].
(if) the solution z of problem (1) with zg € V satisfies that z(t) € V forall t € [0, T"].

Proof. (i) Suppose that z (t) be the weak solution by problem (1) with zy € ‘W, The meaning is that ] (z9) < d,
I(zp) > 0. The time variable on (0, t) is integrated on both sides with respect to t (21), we have

t 2 ¢ ¢
Zr 1 1 2 1 , % _
T(z() +f0 Hlxl”z dr Ej; g(T)”ﬂZZ' dt — ifo (¢ o A2) () de = ] (z0). (25)
By (25), we can get
J(z) < J(z0) <d, Vt€[0,T"]. (26)

Next, we assert that I (z(f)) > 0 for all £ € [0, T*], which, combined with equation (26), implies that
z(x,t) € W . Otherwise, by the continuity of I (z), there would exist a time fy € (0, T*) such that I (z(t)) > 0
fort € [0,tp) and I (z (tp)) = 0 while z (t;) # 0. This would imply that z (t) € N. Referring to the definition
of d, it is clear that d < ] (z (tp)) which contradiction with (26). Therefore, z (t) € ‘W for all t € [0, T*].

(if) Since the proof is similar to part (i), so we omitit. [

Lemma 2.8. (see [21]) (Hardy-Sobolev Inequality). Suppose that RN : R x RN¥ 2 < k < Nand x = (y,2) €
R¥ x RNk For specific values of y and s, there exists a range where 1 <y < N, 0 < s <y, and s < k, such that
m(s, N, y) equals y, H = H(s,N, y, k) is positive

f |y| |z ()™ dx<H(f ‘ﬂzz(x)' dx)gi VZGWW(Q) (27)
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Remark 2.9. When m = 2 is set, the above inequality becomes

L x|~ |z ()| dx < H(L |ﬂ%z(x)

From 0 <5 <2and N > 2, we can obtain by Holder’s inequality

lel_s |z (x)* dx H(L |ﬂ%z(x)

N—.

s+2_1 1
HIQ v |\ Azz
’2

N—s+2
N

A dx) . (28)

N-—s+2

2N N
N-s+2
dx)

IA

IN

’2

(29)

HN ”ﬂ%z

We introduce the following inequality to address the logarithmic nonlinearity.
Lemma 2.10. [18] Assume that 1 is a positive number. Then we have the following inequalities:
s'Ins < (ep) ' s, foralls > 1,
and

Is" Ins| < (er)™", forall0 <s < 1.

Lemma 2.11. (see[1, 18, 24]).
(i) For any given function z € W, ¥ (Q), we have the inequality

1
lall, < B |72

7

P

for everyone 1 < r < p*, here

1) lfNSp.

The optimal constant B depends only on ), N, p and r.
(ii) For any z € ng’p (Q),p =1,q =1, the inequality

all, < ||z

a
llzllg™
| et

is valid, here

J(Lory(i_i, 1yt
a_qurq'

op>N=1 g<r<oo

relqgp] ifg<p
N>1landp <N d / . d
oo e relp.ql ifgzp ™
op=N>1, g<r<oo
op>N>1 g<r<o

where, the constant C is determined by N, p,r and q.
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Our next result is known as the concavity argument, which is widely used in the literature and is used
for the sufficient condition of blow-up.

Lemma 2.12. [20] Let F (t) be a nonincreasing function defined on the [to, co) that satisfies the inequality
F () >a+bF ()7 > ¢

where a > Qand b € R. Then, there exists a finite positive time T* so that
tll)r? F(t)=0.

The upper bound of T* can be estimated in the following cases:
(i) When b < 0 and F () < min{l, (—g)f},

T <ty+ (_ib)ln
(-%) - F(to)
(ii) When b = 0,
T <ty+ w

a

(iii) When b > 0,
1 (Sh 1
T <t +235+zo(—) 1—[1+hF )] >
0 N {1-[1+nF (t)] "5}

1

here h = (%)H% .

3. Local existence
We will show the local existence of weak solutions to the problem (1).

Theorem 3.1. Assume that (A1) and (A2) hold and zo (x) € H' (Q) N L™Y(Q). Therefore, there is a positive
constant T and a unique weak solution

z(x,t) € L*(0,T;Hy (Q) N L"*1(Q) of problem (1),

ﬁ e 1*(0,T;L* (). (30)
xZ

Proof. The proof of Theorem 13 into 4 steps:
Step 1. Approximate problem.
¥n € Z*, problem (1) has a corresponding solution z,; satisfying

N (x) zys + Az, — fot g(t —s) Az, (s)ds = |z, zsInz,, (x,£) € Qx(0,T),
22l 20, i=0,1,...,m-1, (x,1) € JQx (0,T), (31)
Zy (x,0) = z,0 (x) € X xeQ,
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where
N (x) = min{|x|™,n}¥n e Z*. (32)

Let {wj}]: denote an orthogonal basis for the space Hj' (€2) which is a complete orthogonal system in
L2 (Q). Set
ﬂw]‘ = /\jw]‘/

(wj/ wj) = bij, (33)
for Vi, j € Z*, here A; € R and ;; is the Kronecker’s delta. We know that z,9 € C’ (Q) so that

Zno — 2o (x) strongly in HJ' (Q) N L™ (Q)).
We define the finite-dimensional space

Wy, = span {wy, ws, ..., wy}, heZ*

and create the approximate solution
(x,t) = Z & Hw; (), e (o, T, (34)

solving the problem

<N (x) z’:,t, w]-> + <3{%zn,ﬂ%wj> - j: gt—s) <ﬂ%zﬁ (s),ﬂ%w]) ds

<|z |r 2 hln w]> (35)
h

2 (x,0) = Z cSZ]. 0)w; (x) = Z]:lo — 2o (x) in Hi () N L1(Q), (36)
=1

ash — 400, n — +00. We get

h h
( (x)znt, = Z(LN(x)w/ (x)wjdx) éh (t Za” é';] (t) (37)
=1

=1

Furthermore, one has

<ﬂ%zn,ﬂ%w] <Zé (t)/\ Wi x) w]> ]él:,] (t)/

(A7 2

< h
=1

, Wj fg(t—s)(:ﬂzz (s), :ﬂzw]>d

Zé (Hw; (x)

t
+)\j](; gt —s) EZ]' (s)ds

Zg (Hw;(x)In

,wj>

ch (B w; (x)
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= FZ]. OF (38)

0
Hence, {ézj},  is determined by the following Cauchy problem:
j=
i
Y [l @] Ak @ = B,

j=1
h
Y &)
j=1

A standard result for systems of ODEs guarantees the existence of a unique solution éﬁj e C' ([0, T]) to (39)

and consequently, z/: (x, ) € C! (O, T, H () n L1 (Q)) )
Step 2. A Priori estimates.
By multiplying equation (35) by EZ], (t) and summing over j = 1,2,...,h, we obtain

f zﬁowjdx. (39)
Q

<N (x) zﬁt,z’fl> + <ﬂ%zn,&7{%z’;> - ftg(t —s) <ﬂ%zﬁ (s),&’l%z’;>ds
0

r=2
= <|ZZ| Z'In |z’,1,

,z’;> . (40)

If we integrate from 0 to ¢ in (40),we get
t T
sty < St0)+ f f f g (1 —s) A2 (x,5) A2 (x, T) dxdsdt
0o Jo Ja

t
+£ L(zﬁ(x,T)‘71n|zi’l(x,T)|dxdT, (1)

where
St = |INeit | + fo t |2 o a. (42)

Morever, by applying Holder’s inequality and Young’s inequality, we get

f | f T f g (1 —5) Az (x,5) ALz, (x, ) dxdsdt
0 Jo Ja
s gl o [ [ oe-alriof ds)z .

< 3 [l do-n [ [[se-aliofas

IA

< (=) [ Il
< (1 - é)sh (t). (43)

Furthermore, by Lemma 2.10, we have

f|ZZ|V11‘1‘ZZ|dx — f ’ZZ|’ln|ZZ|dX
Q Oy ={xeQ;|z, (x)|>1}
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v f 12 In |21 dx

Qy={xeQ;|z,,(x)|<1}

IA

)zﬁr In |zf’l| dx
O ={xeQ;|z, (x)|>1}
()™ llzull 2l (44)

IA

Furthermore, by Lemma 2.11, Young’s inequality and we can choose 0 < pt <2 (1 + ZW'”) — 1, we get

[ mE e < e
< (e‘u)_l CO ||ﬂ%zz ﬁ(HIJ) Hzm (1—ﬁ)(r+y)
< ¢ ”?ﬁzﬁ”z +C(¢) ||zi’,(|2(21::()’($) , (45)

here ¢ € (O, é),

=P

=, (46)
2-B(r+p)
thena > 1,since2 <r < 2(1 + zﬁm)
Since Q is a bounded domain in RN, we can conclude that
h 2 1 h 2
zp (@) dx = f—Nx z, (B)| dx
J Bl [ e NI @
. 2
< CON@EZO| @)

here C (Q)) is related to Q. Thus, by (45) and (47), we get
¢
f f |2 (x, O In2] (x, 7)| dxdz
0 Ja
t 1 2 ! 2a
ef Hﬂizﬁ(’c)” dT+C(£)f ||z],1, (T)” dt
0 0

eS! (1) + C (e) f t (sh(0) dr (48)
n 0 n *

Combining with (41), (43) and (48), we have

IA

IN

t
Sh(t)<C+Cy f st @] dr, (49)
0
here C1 = ?ﬁ(z(l), Cz = 25—;)
We get
Sh(t) < Cr, (50)

here Cr (constant dependent on T and) is independent of n and /, that is,

% ”lN ()| 2" (t)”2 + fot Hﬂ%zz (T)”2 dt < Cr, VhyneZ". (51)



A. Fidan, E. Piskin / Filomat 39:26 (2025), 9191-9211

h
By multiplying the first equation of problem (35) by {é’; } o and integrating on Q x (0,t),, we get

‘j‘”lN(x)lzz”T dt + = ( fg(s)ds)“ﬂzz

+3 (7o A2) 00+ 5 [
+%‘fog(1)| T—%f(g 0 A1) (x) de

—% ‘L |zZ|:ln |zZ'dx

= J(z), 0<t<T.

ﬂizn

Given the continuity of the functional J(z) in Hf' ((2) there exists a constant C > 0 such that
] (ZZO) < C, for every positive integer and Vh,n € Z™.

From (48), (50), (52) and (53), we obtain

C h t
2 ](ZnO)ZfO‘
1 t
5(1—f9(s)ds)|

ro1 ,
e -3 [ Bl il 0]

I} vk, zdﬂ(é _ §)||ﬂ%zﬁ :

C(e a 1 1 1 r
_ ie) 122 o) + E(goﬂazg)(m r—2||z’,1,H7

t N 2 | dr+ f—f
r

C(E) (25, ()" + > (gOﬂzz )(t)+—||z I

1 2
IN (x)|2 2! || d

T

1
ik
?(22,,

+3 (g0 At)

1\

\Y

2
Lon
A2z,

Subsequently, we get

ft H|N(x)|% z'}” Zd’c + (l - E) H.?(%zﬁl ’

+3 (7o A2) @0+ 5 4]
< CT, VYhneZ".

Therefore by (55), we obtain

f f (zne) dxdt < f f Nl(x)N (%) (22 )* dxd

er 1|~ >n

f f ﬁN (%) (2u0)” dxdt

Qz er ||~ <n

9203

(52)

(53)

(54)

(55)
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1 ' 2 . s ' 2
< EL ‘LN(X)(ZM) dxdt + diam (Q) [)LNOC)(ZM) dxdt

t
< (1 +diam (Q)°) f f N (x) (2ye)* dxdt < C. (56)
0 Q

Step 3. Pass to the limit

From (51), (55) and (56), there exists a subsequence of {zﬁ’,}oo

4eq » Which we still state with this {zﬁ}Do for

hn=1
simplicity. Ash — +00, n — 400, we get

Zl -z  weakly star in L® (0, T; Hy' (Q)) , (57)
2>z inL*(0,T; HY (Q), (58)
IN ([t 2, — % inL?(0, T, 12 (), (59)
2, >z inl?(0,T;L2(Q). (60)

Since (57) and (60), from the Aubin-Lions Lemma it follows that(see [25], Corollary 4)

Zl >z inC(0,T;L*(QY), (61)
as h — +00,1 — +00. Thus, we obtain z/! — z, a.e. (x,t) € Q x (0, T), which implies

|2Z|F2 Z'In |z’f,| - 22 zInlzl ae. (x,H)eQx(0,T). (62)

Furthermore, by Lemma 2.10 and Lemma 2.11, we get

r=2 2 2 2
f|zf§| znln|zﬁ| dx = |zﬁ| zﬁln|zﬁ| dx
Q

Oy ={xeQlz, (v)|121}

2

h|™=2 _h h
+ f |zn) Zy 1n|z,,' dx
Op={xeQlzq (x)I<1}
2
B[t h
< |zn| ln(zn| dx

O ={xeQz, (x)|>1)

—u r=1+u|?
+ |zﬁ| “In |ZZ||ZZ| g dx
Qp={xeQ;|z,(v)|<1}
_ 2(r=1+pu —
< @R e -0l
2(r-1+
< (ey)‘Zzsz“ﬂ%zﬁ N e PTe (63)

here B, is the optimal constant for the Sobolev embedding Hj' (Q2) — 2(r-1+u) (QQ). Where we choose
O<u< 2(1 + ZW’”) +1-rr-1< 2(1 + %”),we know that by (61) and (63), we obtain

|z’,§|r_2 Z'n |z’:l| — |z2"?zIn|z|  weakly star in L® (O, T;L? (Q)). (64)

From (61), we get z}: (x,0) — z(x,0) in L?(Q) . By combining (36) with 2", — zy (x) in HJ' (Q) N L™ (Q)), we
observe this z (x,0) = z in H}' () N L'+ (Q) . From (57), (59) and (64) passing to the limit in (35) as i — +co,
n — +oo, we see this z satisfies

f
(I z¢, ) + <ﬂ%z,ﬂ%¢> - fo g(t—s) <ﬂ%z (s),ﬂ%(p> ds = <|z|’_zzln |z| ,(p>, (65)
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for all p € H (Q), and fora.e. t € [0, T).
Step 4. Uniqueness

Suppose there are two solutions z; and z; to the problem (1) with identical initial condition z; (x,0) =
2 (x,0) = 2o € H3 (Q), we obtain

(™% zq4, V) + <ﬂ%21,ﬂ%v> - fotg(t —5) <ﬂ%zl (s) ,ﬂ%v> ds = <|21|r_2 z1 In |z ,v>, (66)
and

(] ™° zop, V) + <ﬂ%zz,.‘ﬂ%v> - j: g(t—s) <.7{%22 (s) ,ﬂ%v> ds = <|zz|’_2 zyIn |z, v). (67)
Suppose that w = z; — z; and w (x, 0) = 0,then by subtracting the (66) and (67), we can derive

(™ wr, ) + (A, Arv) - f t g(t=9)(Arw(s), Atv)ds = (|l Pz Infa| - [zl 22 In |zl ,v) . (68)

Let v = w integrating it on [0, ], we get

—Hlxl ZC‘)“ f“ﬂza’” dT—f f g T—S)fﬂza)(S)ﬂza)(’c)dxdsdT

f f (Iz1/ 21 In |21 = [22] ™ 22 In |22 ) . (69)
0 Q
Then (43) into the (69), we have

t
f f (lzllr_2 z1In|z1] = |z 2 22 In |22|) wdxdt
0 Ja
1 s 2 ' 1 2 ! t 1 1
= 5l o] +f o dT—f f g(T—S)fﬂZa)(s)ﬂzw(T)dxdsdT
0 0 Jo Q
| dt

slitolt [ ol ae(1-3) [ oo

\%

t
= Jlrtelf ] [ e ac
> 2w ol (70)
Furthermore
) t
%”|x|—§a)”2§ f fg (1211 21 In |21 - 2] 22 In |22 ) . (71)
0

We define G (z) : R* - R* and G (z) = |z % zIn |z| . Which implies G (z) is locally Lipscitz continue, so we

t t
fo L [G (z1) = G (z2)] wdxdt < Cr fo llwll? dr. (72)

Combining with (47), (71) and (72), we have

2 t
o < 2-Cr [ lolP e 73)
Q 0

Using Gronwall’s inequality, the inequality above implies that [|lw|[* = 0. Consequently, we have @ = 0
almost everywhere in Q X (0, T). Moreover, the uniqueness of problem (1) can be inferred.
The proof of Theorem 3.1 is completed. [J
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4. Global existence
In this section, we will show the global existence of problem (1).

Theorem 4.1. Let zo (x) € H' (QQ) N L*1(Q), (A1) and (A2) hold. If ] (zo) < d, I (zo) > O, then problem (1) admits
a global solution z € L (O, T; Hy (Q) N L1 (Q)) with le—‘,z el? (O, T; L2 (Q)).
Proof. To demonstrate the existence of global solutions, we consider the following two cases:

Case 1. [ (z9) < d and I(zg) > 0.
By (27), then we get

I(Z(t))+f0t 2dr+%f0tg<r>“ﬂ%z

t
—%fo(g’oﬂ%z)(r)w
= J(z0) <d, 0<t< Toax (74)

z (1)

|x|5/2

‘2 dt

here Ty is the maximal existence time of solution z (t), we will show that Ty = +00.
After, we will demonstrate that

z(x,t) € Wiorall0 <t < Thax- (75)

Essentially, suppose that (75) doesn’t hold and let ¢, be the smallest time for which z () ¢ W7
Then, due to the continuity of z (t), we have z (t.) € JW} . Therefore the following result emerges

J (&(t)) = d, (76)

or

J (z(t)) = 0. (77)

However, it is clear that (76) is invalid compared to (74). Conversely, assuming (77) is true, according to the
definition of d we get

J(&(t) 2 inf ] (2) = d,

which also contradicts with (74). From here we obtain z (x,t) € ‘W, i.e. I(z(¢)) > 0.
Next, we demostrate that T* = +co. By Lemma 2.7, we obtain z € ‘W, for all t € [0, T*]. By combining
equations (6) and (74), we derive

fot ’ dt + 52 (1 - fot g(s) ds) ”ﬂ%znz
+132 (g0 AzZ) (1) + LI} < d,

2T
|x‘s/2

(78)

which implies
2

t
f()‘ |XZ|ST/2 < d,
||5“%Z|2 < (rz—n;)l’
2rd

(goVz)(h) <
lzll, < 7. (79)
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Itis clear that the constants on the right-hand side of equations (78)-(79) are independent of T. This estimation
enables us to set Tmax = +00. Consequently, we can infer that there is a singular global solution, denoted as
z(t) € ‘W, for problem (1).

Case 2. [(z9) =d and I(z9) > 0.

Fork=2,3,..., we define 6, = 1 — (%) and zyy = Oxzo. Then we take into account the following problem

= +ﬂz—f0tg(t—s)ﬂz(s)ds: 2/ 2zlnz, (x,£) e Qx(0,T),

i
P2l =, §=0,1,..,k—1, (v,1) €90 % (0,T), %0
z (x,0) = zgx (x) x €.

From I(zp) > 0, By Lemma 2.10, it follows that A* > 1 > 6,,.
From here, from 0, < 1 < A* we can deduce that I (zor) = I (6kz0) > 0 and ] (zox) = J (Okz0) < ] (z0) = 4,
which means zgr € W. Similar to Case 1. We see that the (80) problem admits of the global weak solution

zr € L® (0, T; Hy' (Q) N L™ (Q)) with I% € L? (O, T;1? (Q)) and z; € ‘W. The remainder of the proof can be
processed similarly to the previous subsection. The proof of Theorem 4.1 is completed. [J

5. Blow up

In this part, we consider with the finite time blow-up results.

Lemma 5.1. Suppose that (A1) and (A2) hold and zy € V, then we get

(r—2)(1 —fotg(s)ds)”ﬂ;z

Proof. Since zp € V, from Lemma 2.7, we getz € V, i.e. J(z()) <d, [(z(t)) < 0. By Lemma 2.5, we know
that there exists A* € (0,1), such that I (A*z) = 0. Using the definition of d, we can get

]2 +(r—2) (g o y{%z) (t) + % llz|l” > 2rd. (81)

2

t
0

r_z 1 * ]' * r
t (g0 A1) (H) + = Izl (82)

(r—2)(1 —fotg(s)ds)”ﬂ;z

We will write it for convenience

Then

]2 +(r—2) (g o y—t%z) (t) + % llz|l" > 2rd. (83)

2 2

z (1)

xs/2

20

dee(T=0)|

, (84)

foreach t €[0,T). Then

2 2

z(t)

|x|s/2

-LN (t) — ZLZ(t)thx

20
|x|5/2

L) =

7

Jxf?
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112 ! 1 1
= —2”?( z +2f0g(t—s)(ﬂ z(s), A z(t))ds

+2 (lzlr_2 zlnz, z)

- —2||5q%z 2+2ftg(t—s)(ﬂ%z(s),ﬂ% (1)) ds
0

t
+2 f |z|" In zdx.
0

Lemma 5.2. Assume that j(; g(s)ds < =2, then

O

5 2
-L:" t _2 f T
> —2rE (0)
+a[(r—2)(1—fg(’c)d’r)||ﬂzz +(7’—2)<goﬂzz @t + flzl dx]
whereazl—ﬁ.

Proof. By applying Young's inequality and Lemma 2.6, we have

2
Z
.E"(t)—er‘ ‘
Q |x|/2

2 ! 1 1
+2f0 g(t—s)(ﬂ z(s), A z(t))ds

; 2
+2f|z|rlnzdx—2rf o
Q o x|

s/2

- —2Hﬂ%z

> —2rft ||s/2 dT— (1—fg(t—s)ds)':ﬂ§z2+zf(;
—2[(90&7{%2)(t)+1fg(t—s)ds“ﬂ;z
ot !
> —2rE(0)+(r—2)(1—f0g(t—s)ds)“ﬂ%z
—%j:g(t—s)ds”ﬂéz2+%lelrdx+(r—2)(g0ﬂéz)(t)
> —2rE(0)

+(1_ 1 )[ (r-2)(1- [ g(0dr)| Atz l

(r-=2)1 +(r—2)(90ﬂ%z)(t) + %fglzlrdx
The proof of Lemma 5.2 is completed. [

9208

(85)

(86)

(87)

Lemma 5.3. [15] Suppose that (A1) and (A2) hold and zy € V, z(x,t) is the solution of problem (1), if one of the

following conditions is true

EW0) < 0,
EWO0) = 0,
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0 < E)<ad. (88)
Then, L' (t) > 0 for t > 0.

Theorem 5.4. Assume that conditions (A1) and (A2) are satisfied and that zo € V. Let z be the weak solution of
problem (1), if one of the following conditions is true

Case 1E(0) <0, T < £, — (£ ) and if 7 (1) < min {1, [}, then

-
T <t [in| —— ]|
b fE-Fw

- F(t)
Case2E(0)=0,T St+ =5
Case30<E)<ad T* <t — (%),and if F () < min{l, /f‘—ﬁll}, then

&
1 V A1

T"<t.+ _—ﬁlln j’t_ﬁll_¢(t*) .
Proof. Let
F ()= L) (7). (89)
Then
7o) = ~2re (Do
= —r;2£(t)_5 L, (90)
7 (0 = -2 L) 270 Lo~ o7 91)

Applying Lemma 5.1, Lemma 5.2 and Holder’s inequality, we get
4 r ’
F(OF (O -5 (F O

2 [ = ® it — 2rE (0)
t ST O . F (f)
+a [(r—2) (1—fO g(s)ds)”ﬂzzH +;||z||,+(r—2)(g0ﬂzz) (t)]

r g ?
-2 {4? ® fo dT]

~2rE (0)
{ +a [(r -2) (1 - ﬂg(s) ds) ”ﬂ%zHZ + 2 Izl + (r = 2) (.’7 ° ﬂ%z) (t)] }¢(t)
—2rE (0) _2
{ ta [(r ~2)(1- [ g ds) At + 211zl + (= 2) (g 0 AEz) (f)] }ﬂt)

[2rad — 2/E ()] F ()72 (92)

v

ZT
2

|x[*

v

v
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Next, we substitute equation (92) into equation (91) to obtain
F (1) < 7(r—2) (E(0) — ad) F ()72 . (93)
If Case 1 or Case 2 holds, then from equation (93), we obtain
F (1) <r(r—2)EQ)F ()7 . (94)

From Lemma 5.3, multiplying equation (94) by ¥” (f) and integrating over the interval [f., {], we obtain

(F (O > a+pF O, t>t, (95)
here
a = F) - ( 2)E(O)T(t)“
)Y
p = %E(oy %)

If the Case 3 holds, we can get

F7(t) < —r(r —2) (ad — E(0)) F (£)"*72 . (97)

By applying the same reasoning as in equation (93), we know that

(F (O 2 a1+ BF 077, t2t, ©98)
here
2 2
m o= 7er- N L £ © - a1
r(r-2)°
p o= % (EO) - ad). %9)
Therefore, when y = 52 and ty = t, > 0, by Lemma 2.12, there exists a finite time T* so that
tlirﬁ Ft)=0, (100)
ie.,
2
z(x,t)
m = 101
F—T* |x|S/2 ( )

This finished the proof of Theorem 5.4. [
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