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Abstract. Dilation theory offers various structural characterizations of numerical contractions, i.e. oper-
ators whose numerical radius does not exceed one. Among these, a recent factorization result establishes
that a matrix A ∈ Mn×n(C) is a numerical contraction if and only if it can be written as A = 2X∗Y, where
X,Y ∈ Mn×n(C) satisfy X∗X + Y∗Y = In. In this article, we show how an equivalent formulation of this
factorization may be employed to derive new bounds for the numerical radius. The principal contributions
include generalizations of several known numerical radius inequalities for Hilbert space operators, thereby
extending and refining existing results in operator theory.

1. Introduction

Let Mm×n(C) denote the C∗-algebra of all complex m × n matrices, equipped with the standard inner
product ⟨·, ·⟩. For A ∈ Mn×n(C), the numerical radius ω(A) is a norm, defined as

ω(A) = sup{|⟨Ax, x⟩| : x ∈ Cn, ∥x∥ = 1}.

The numerical radius plays a crucial role in understanding the behavior of operators. Several important
characterizations of operators with numerical radius bounded by one have been discovered by various
researchers, including Berger[6], Sz-Nagy and Foias [16], as well as T. Ando [1]. Recently, Bhatia and Jain
[3] established a crucial factorization theorem for such operators: A matrix A ∈ Mn×n(C) satisfies ω(A) ≤ 1
if and only if there exist matrices X,Y ∈ Mn×n(C) such that A = 2X∗Y and X∗X + Y∗Y = In. Their proof
employs an operator-theoretic adaptation of the classical Fejer-Riesz theorem from complex analysis, which
provides conditions under which a Laurent polynomial is positive on the unit circle.

The primary objective of this article is to demonstrate how an equivalent version of the factorization
theorem by Bhatia and Jain can be used to derive new inequalities for the numerical radius. This is achieved
by optimizing unitary invariant norms of matrix functions on the set {A ∈ Mn×n(C) : ω(A) ≤ 1}.
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A norm ∥ · ∥u onMn×n(C) is called a unitarily invariant norm if

∥A∥u = ∥UAV∥u for all U,V ∈ U(n),

whereU(n) denotes the set of unitary matrices inMn×n(C). The unitarily invariant norm of a matrix solely
depends on its singular values. Among the class of unitarily invariant norms, the Ky Fan k-norm [4] is of
particular interest. For a matrix A ∈ Mm×n(C), it is defined by

∥A∥k =
k∑

i=1

σi(A), for 1 ≤ k ≤ n,

where σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) denote the singular values of A, arranged in non-increasing order. In
particular, when k = 1, the Ky Fan 1-norm coincides with the usual operator norm, which we denote by
∥A∥. It is well known that the numerical radius ω(A) and the operator norm ∥A∥ of a matrix A ∈ Mn×n(C)
are related by the inequality

1
2
∥A∥ ≤ ω(A) ≤ ∥A∥. (1)

A proof of this result can be found in [4]. A significant refinement of these inequalities was later obtained
by Kittaneh [14], who established that

1
4
∥AA∗ + A∗A∥ ≤ ω2(A) ≤

1
2
∥AA∗ + A∗A∥. (2)

Subsequently, El-Haddad and Kittaneh[8] generalized the second inequality in (2) by employing a special
case of Schlömilch’s inequality for weighted means of non-negative real numbers, along with various norm
inequalities, including a generalized version of the mixed Schwarz inequality. They established that for
arbitrary matrix A ∈ Mn×n(C), for 0 < α < 1 and r ≥ 1, we have

ωr(A) ≤
1
2
∥(A∗A)rα + (AA∗)r(1−α)

∥ (3)

and

ω2r(A) ≤ ∥α(A∗A)r + (1 − α)(AA∗)r
∥. (4)

Several operator-theoretic generalizations of the Cauchy–Schwarz inequality have been established
and effectively employed to derive numerical radius inequalities analogous to the second inequality in
(2)[9, 10, 15]. However, finding an alternative approach to Kittaneh’s elegant proof of the first inequality in
(2), which can lead to its generalized versions, remains a significant challenge.

The inequality ω(AB) ≤ ∥A∥ ·ω(B) does not hold in general, even when A and B are commuting matrices
inMn×n(C). Nevertheless, two notable positive results in this direction were established in [7], which state
that for matrices A,B ∈ Mn×n(C), the following inequalities hold:

ω(AB + BA) ≤ 2
√

2ω(A)∥B∥, (5)

and

ω(AB + B∗A) ≤ 2ω(A)∥B∥. (6)

Throughout this article, by tr(A), ρ(A) and σ(A), we denote the trace, rank and spectrum of a matrix A,
respectively. The Hadamard product of matrices A,B ∈ Mn×n(C) is denoted by A ◦ B.

Now, we state a result due to Bhatia and Jain [3], which will be used in the subsequent work.
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Theorem 1.1. A matrix A ∈ Mn×n(C) is a numerical contraction if and only if there exists X,Y ∈ Mn×n(C) such
that A = 2X∗Y, where X∗X + Y∗Y = In.

In this paper, we present several generalizations of the first inequality in (2), including analogues of
inequality (4) for the case where the exponent r ≥ 1 is restricted to be a natural number. For the special case
α = 1

2 , we further extend these results to the class of unitarily invariant norms. As an application of our
generalizations, we derive mean-type extensions of inequalities (5) and (6) and also obtain a generalization
of the first inequality in (1), for arbitrary unitarily invariant norm. Moreover, we show that the methods
developed in this paper can be effectively employed to derive a range of new numerical radius inequalities.
Finally, we establish bounds for the unitarily invariant norm of the Hadamard product A ◦ B, under the
assumption that B is a matrix with numerical radius at most one.

2. Main Results

To achieve our goal we need to recall the following lemma. This lemma presents the generalized version
of the Von Neumann trace inequality and has been proved in [11].

Lemma 2.1. Let A1,A2, . . . ,Ap be n × n complex matrices. Then

∣∣∣tr(A1A2 · · ·Ap)
∣∣∣ ≤ n∑

i=1

σi(A1)σi(A2) · · · σi(Ap),

where σi(A j) denotes the i-th singular value of A j, for all j ∈ {1, 2, . . . , p} and i ∈ {1, 2, . . . ,n}.

As an application of a version of the Von Neumann trace inequality for rectangular matrices[12], we
establish the following lemma, which will be useful in the proofs of several theorems presented in this
article.

Lemma 2.2. For an arbitrary matrix A ∈ Mn×m(C),

∥A∥k = max{|tr(AX)| : X ∈ Mm×n(C) satisfies ∥X∥ ≤ 1 and ρ(X) ≤ k}.

Proof. Let A ∈ Mn×n(C) admit a singular value decomposition of the form A =W∗

1ΣW2, where Σ ∈ Mn×m(C)
is a rectangular diagonal matrix whose diagonal entries are the singular values of A, arranged in non-
increasing order: σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{n,m}(A), and the matrices W1 ∈ U(n) and W2 ∈ U(m) are unitary.
Define ∆ ∈ Mm×n(C) to be the rectangular diagonal matrix whose first k diagonal entries are equal to 1, with
all remaining entries equal to zero. Then the matrix Yk =W∗

2∆W1 is a partial isometry of rank k. We have

tr(AYk) = tr(W∗

1Σ∆W1) =
k∑

i=1

σi(A) = ∥A∥k. (7)

Also, by rectangular version of Von Neumann trace inequality, we can deduce that

max{|tr(AX)| : ∥X∥ ≤ 1, ρ(X) ≤ k} ≤
k∑

i=1

σi(A) = ∥A∥k. (8)

Inequalities (7) and (8) complete the proof.

Remark 2.3. By Lemma 2.1 and Lemma 2.2, it can be deduced that for 1 ≤ k ≤ n,

∥A1A2 · · ·Ap∥k ≤

k∑
i=1

σi(A1)σi(A2) · · · σi(Ap). (9)
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Next, as an application of Theorem 1.1, we present an alternative necessary and sufficient condition for
a matrix to be a numerical contraction, which will be useful in proving main results of this article. Before
proceeding, we recall some relevant terminology from the functional calculus of matrices.

Let C ∈ Mn×n(C) be a Hermitian matrix, and let f : σ(C) ⊆ I → R be a continuous function, where
σ(C) denotes the spectrum of C and I ⊆ R is an interval containing σ(C). If C = U∗∆U is the spectral
decomposition of C, then

f (C) = U∗ f (∆)U,

where f (∆) denotes the diagonal matrix obtained by applying f to each diagonal entry of ∆.

Lemma 2.4. For an arbitrary matrix A ∈ Mn×m(C), the following statements are equivalent:

(i) ω(A) ≤ 1.
(ii) There exists a Hermitian matrix C ∈ Mn×m(C) and a unitary matrix W ∈ Mn×n(C) such that A admits a

factorization of the form

A = 2cos(C)Wsin(C).

Proof. (i) =⇒ (ii) Suppose ω(A) ≤ 1. Then by Theorem 1.1, there exists matrices X ∈ Mm×n(C), and
Y ∈ Mn×m(C) such that

A = 2X∗Y, where X∗X + Y∗Y = In. (10)

Let X = U∗ΣV be the singular value decomposition of the matrix X. Then, there exists a diagonal matrix
∆ such that

Y∗Y = In − X∗X

= V∗(In − Σ
2)V

= V∗sin2(∆)V ( since σ(In − Σ
2) ⊆ [0, 1]). (11)

Equation (11) yields that there exists an unitary matrix U1 ∈ U(n) such that Y = U1sin(∆)V. Moreover,
since sin2(∆) = In − Σ

2, X = U∗ΣV = U∗cos(∆)V. Substituting these factorizations of X and Y into equation
(10), we obtain

A = 2X∗Y
= 2V∗cos(∆)V · (V∗UU1V) · V∗sin(∆)V. (12)

Consider the Hermitian matrix C = V∗∆V. Then, equation (12) implies that

A = 2cos(C)Wsin(C),

where W = V∗UU1V is an unitary matrix.
Conversely, suppose that there exists a Hermitian matrix C ∈ Mn×m(C) and a unitary matrix W ∈ Mn×n(C)

such that

A = 2cos(C)Wsin(C). (13)

Let X = cos(C) and Y = Wsin(C). Then, by equation (13), we have A = 2X∗Y and X∗X + Y∗Y =
cos2(C) + sin2(C) = In. Therefore, by Theorem 1.1, we can conclude that A is a numerical contraction.

We are now in a position to present the first main result of this section. By a normalized unitarily invariant
norm, we mean a unitarily invariant norm ∥ · ∥u satisfying ∥E11∥u = 1, where E11 ∈ Mn×n(C) denotes the
matrix with entry 1 in the (1, 1)-position and zeros elsewhere.
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Proposition 2.5. Let A ∈ Mn×n(C). Then there exists a matrix A0 ∈ Mn×n(C) with ω(A0) = 1 such that, for any
normalized unitarily invariant norm onMn×n(C), the following inequality holds:

∥A∥u ≤ ∥A0∥u · ω(A).

Proof. Suppose A ∈ Mn×n(C) is an arbitrary matrix satisfying ω(A) ≤ 1. Then, by Lemma 2.4, there exists
an unitary matrix W and a Hermitian matrix C such that A = 2 cos(C)W sin(C). For 1 ≤ k ≤ n, we have

∥A∥k ≤ 2 max{∥cos(C)Wsin(C)∥k : C∗ = C, W ∈ U(n)}

= 2 max{∥U∗ΣUWU∗
√

I − Σ2U∥k : O ≤ Σ ≤ I, U ∈ U(n), W ∈ U(n)}
( by using spectral decomposition theorem for Hermitian matrix cos(C) )

= 2 max{∥ΣW
√

I − Σ2W∗
∥k : O ≤ Σ ≤ I, W ∈ U(n)}. (14)

Let Pn ∈ Mn×n(C) denote a permutation matrix such that diagonal entries of matrix P∗n
√

(I − Σ2)Pn are
arranged in increasing order. Then, using inequality (9) and inequality (14), we obtain

∥A∥k ≤ 2 max{∥ΣPn

√

I − Σ2P∗n∥k : O ≤ Σ ≤ I}

= 2 max

 k∑
i=1

σi

√
(1 − σ2

n+1−i) : 0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σn ≤ 1


=

2k : k ≤ n/2,
n : else.

(15)

Consider matrix A0 defined as,

A0 =

2(E1,2l + E2,2l−1 + · · · + El,l+1) : n = 2l
2(E1,2l + E2,2l−1 + · · · + El,l+1) + E2l+1,2l+1 : n = 2l + 1

, (16)

where Ei, j denote the n× n matrix with a 1 in the (i, j)-th position and zeros elsewhere. It is straightforward
to verify that ω(A0) = 1, and the singular values of A0 are as follows: if n = 2l, then the singular values are
0 and 1, each with multiplicity l; if n = 2l+ 1, then the singular values are 0, 1, and 2, with multiplicities l, 1,
and l, respectively. Therefore, by equation (15), it follows that ∥A∥k ≤ ∥A0∥k. The result now follows using
the Ky Fan dominance theorem[12].

In view of Proposition 2.5, it follows that A0 is a numerical contraction attaining the maximal value with
respect to any normalized unitarily invariant norm.

The following result gives a convex functional application of Proposition 2.5.

Corollary 2.6. Let A ∈ Mn×n(C) be a numerical contraction satisfying tr(|A|) = tr(|A0|), and let ∥ · ∥u denote a
normalized unitarily invariant norm onMn×n(C). Then, for any convex function ϕ on [0,∞), we have

tr(ϕ(|A|)) ≤ tr(ϕ(|A0|)), (17)

and if ϕ is strictly convex function, then equality holds in (17) if and only if σi(A) = σi(A0), for all 1 ≤ i ≤ n.

Proof. Since A is a numerical contraction, by Proposition 2.5, we have

k∑
i=1

σi(A) ≤
k∑

i=1

σi(A0) ∀ 1 ≤ k ≤ n − 1 (18)



A. Kumar et al. / Filomat 39:26 (2025), 9235–9247 9240

and so tr(|A|) = tr(|A0|) implies that

n∑
i=1

σi(A) =
n∑

i=1

σi(A0). (19)

By equations (18) and (19), singular value tuple (σ1(A), σ2(A), . . . , σn(A)) is majorized by (σ1(A0), σ2(A0),
. . . , σn(A0)). Now the conclusion follows directly from an application of Karamata’s inequality[13].

Remark 2.7. (i) Observe that the largest singular value of A0 is 2. Consequently, by Proposition 2.5, we have
∥A∥ ≤ 2ω(A). Thus, Proposition 2.5 provides a generalization of the first inequality in equation (1) for unitarily
invariant norms.

(ii) Since ω(A0) = 1, it follows that for any normalized unitarily invariant norm, the upper bound ∥A0∥u in the
inequality is optimal.

(iii) The proof of Proposition 2.5 can be refined to establish that for arbitrary matrix B ∈ Mn×n(C) and normalized
unitarily invariant norm ∥.∥u, following inequality holds,

max
ω(A)≤1

∥AB∥u ≤ ∥Diag(σ1(A0)σ1(B), σ2(A0)σ2(B), . . . , σn(A0)σn(B))∥u. (20)

The corresponding version of this inequality for the Hadamard product A ◦ B will be discussed at the end of this
section.

The following result provides a generalization of the first inequality in (2), analogues to inequality (4).

Theorem 2.8. Let A ∈ Mn×n(C), and let m ∈N, α ∈ [0, 1]. Suppose A0 ∈ Mn×n(C) is the matrix as defined in (16).
Then the following inequality holds:

∥α|A|2m + (1 − α)|A∗|2m
∥ ≤ ∥α|A0|

2m + (1 − α)|A∗0|
2m
∥ ω2m(A). (21)

Proof. Suppose that ω(A) ≤ 1. Then, by Lemma 2.4, there exists a Hermitian matrix C and a unitary matrix
W such that

A = 2cos(C)Wsin(C). (22)

Let X =Wsin2(C)W∗cos2(C). Note that X is a contraction. For m ∈N, we have

(AA∗)m = 4mcos(C)Xm−1Wsin2(C)W∗cos(C)

and similarly

(A∗A)m = 4msin(C)Ym−1W∗cos2(C)Wsin(C),

for some contraction Y. The operator matrix
[
α(AA∗)m (1 − α)(A∗A)m

]
can be factorized as the product of

contractions as

4m
[
cos(C) sin(C)

] [αXm−1Wsin2(C)W∗ O
O (1 − α)Ym−1W∗cos2(C)W

] [
cos(C) O

O sin(C)

]
. (23)

Since Xm−1Wsin2(C)W∗ and Ym−1W∗cos2(C)W are also contractions, from equation (23), one can conclude
that

∥

[
α(A∗A)m (1 − α)(AA∗)m

]
∥ ≤ 4mmax{α, 1 − α}.

Therefore, for m ≥ 2, we have

∥α|A|2m + (1 − α)|A∗|2m
∥ ≤ ∥

[
α(A∗A)m−1 (1 − α)(AA∗)m−1

]
∥

∥∥∥∥∥∥
[
A∗A
AA∗

]∥∥∥∥∥∥
≤ 4m max{α, (1 − α)}. (24)
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Next we prove inequality (24), for m = 1. Using equation (22), the operator matrix
[
αA∗ (1 − α)A

]
can

be factorized as the product of contractions as

2
[
sin(C) cos(C)

] [αW∗ O
O (1 − α)W

] [
sin(C) O

O cos(C)

]
.

This implies that

∥

[
αA∗ (1 − α)A

]
∥ ≤ 2 max{α, 1 − α}. (25)

We obtain,

∥αA∗A + (1 − α)AA∗∥ ≤ ∥
[
αA∗ (1 − α)A

]
∥

∥∥∥∥∥∥
[

A
A∗

]∥∥∥∥∥∥
≤ 4 max{α, 1 − α}. (26)

Let Ei, j denote the n × n matrix with a 1 in the (i, j)-th position and zeros elsewhere. Then

A0A∗0 =


4

l∑
k=1

Ek,k, if n = 2l,

4
l∑

k=1

Ek,k + E2l+1,2l+1, if n = 2l + 1,

(27)

and

A∗0A0 =


4

2l∑
k=l+1

Ek,k, if n = 2l,

4
l∑

k=1

El+k,l+k + E2l+1,2l+1, if n = 2l + 1.

(28)

From equations (27) and (28), it can be concluded that,

∥α|A0|
2m + (1 − α)|A∗0|

2m
∥ = 4m max{α, (1 − α)}. (29)

Equation (29), with inequalities (24) and (26) completes the proof.

Substituting α = 1 and m = 1 into inequality (21), we obtain

∥|A|2∥ ≤ ∥|A0|
2
∥ω2(A).

Since ∥|A|∥2 = ∥A∥2 and ∥A0∥ = 2, it follows that

∥A∥ ≤ 2ω(A),

which coincides with the first inequality in (1).
Similarly, setting α = 1

2 and m = 1 in inequality (21), we deduce that

∥AA∗ + A∗A|| ≤ ∥A0A∗0 + A∗0A0||ω
2(A) = 4ω2(A),

thus recovering the first inequality in (2).
Hence, inequality (21) serves as a unifying generalization of the first inequalities in both (1) and (2).

Moreover, Proposition 2.5 extends the first inequality in (1) to the broader class of normalized unitarily
invariant norms. This naturally raises the question: can inequality (21) be similarly generalized to all
unitarily invariant norms?

The following result discusses the versions of inequality (21) for some special unitarily invariant norms.
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Corollary 2.9. Let A ∈ Mn×n(C). Suppose m ∈ N, α ∈ [0, 1], and r ≥ 1
2 . Also, let A0 ∈ Mn×n(C) be the matrix as

defined in (16). Then, the following holds

(i) For the Ky Fan n−norm,

∥α|A|2r + (1 − α)|A∗|2r
∥n ≤ ∥α|A0|

2r + (1 − α)|A∗0|
2r
∥n ω

2r(A). (30)

(ii) For any normalized unitarily invariant norm,

∥|A|2m + |A∗|2m
∥u ≤ ∥|A0|

2m + |A∗0|
2m
∥u ω

2m(A). (31)

Proof. (i) Suppose A is a numerical contraction. It follows from Proposition 2.5, that

k∑
i=1

σi(A) ≤
k∑

i=1

σi(A0) ∀ 1 ≤ k ≤ n.

Given that t2r is a monotonically increasing and convex function on [0,∞) for all r ≥ 1
2 , using Exercise

II.3.2 in [4], we deduce that

∥|A|2r
∥n ≤ ∥|A0|

2r
∥n.

Now observation that ∥|A|2r
∥n = tr(|A|2r) = ∥α|A|2r + (1−α)|A∗|2r

∥n, holds for arbitrary matrices A ∈ Mn×n(C).
This completes the proof.

(ii) For m ∈N, using equations (27) and (28), we obtain

|A|2m + |A∗|2m =

4mIn, if n is even,
4mIn−1 ⊕ 2I1, if n is odd.

. (32)

If n is even, then applying inequalities (24), (26), and (32), we deduce that for all 1 ≤ k ≤ n,∥∥∥|A|2m + |A∗|2m
∥∥∥

k ≤ 4mkω2m(A) =
∥∥∥|A0|

2m + |A∗0|
2m
∥∥∥

k ω
2m(A). (33)

Similarly, if n is odd, then for all 1 ≤ k ≤ n − 1,∥∥∥|A|2m + |A∗|2m
∥∥∥

k ≤ 4mkω2m(A) =
∥∥∥|A0|

2m + |A∗0|
2m
∥∥∥

k ω
2m(A). (34)

By inequalities (30), (33) and (34), we deduce that for any n ∈N, and 1 ≤ k ≤ n,∥∥∥|A|2m + |A∗|2m
∥∥∥

k ≤
∥∥∥|A0|

2m + |A∗0|
2m
∥∥∥

k ω
2m(A).

Now, Ky Fan dominance principle completes the proof.

Remark 2.10. (i) When m = 1 and ∥ · ∥u = ∥ · ∥, inequality (31) reduces to

∥AA∗ + A∗A∥ ≤ ∥A0A∗0 + A∗0A0∥ω(A) = 4ω(A),

which coincides with the first inequality in (2). Consequently, inequality (31) may be regarded as an extension
of the first inequality in (2) to the broader class of unitarily invariant norms.

(ii) By the power inequality for the numerical radius, namely ω(A2) ≤ ω2(A), and applying the first inequality in
(2), we obtain

∥A2
∥ ≤ 2ω2(A). (35)

Note that A2
0 = O. Thus, in contrast to Proposition 2.5 and inequalities (21), (30), and (31), the bound in this

inequality (35) is not attained at A0.



A. Kumar et al. / Filomat 39:26 (2025), 9235–9247 9243

Next, we demonstrate how the techniques employed in the proof of Theorem 2.8 can be further used to
obtain generalizations of inequalities (5) and (6).

Note that∥∥∥∥[B B∗
]∥∥∥∥ ≤ √2∥B∥.

So, we can deduce from inequality (25) that

∥AB + A∗B∗∥ ≤ 2
√

2ω(A) ∥B∥.

In case A and B commute, this inequality reduces to

∥Re(AB)∥ ≤
√

2ω(A) ∥B∥. (36)

Moreover, by substituting B with eιθB in inequality (36), we obtain

ω(AB) = sup
θ∈R
∥Re(eιθAB)∥ ≤

√

2ω(A) ∥B∥.

Halbrook and Fong [7] derived this inequality as a special case of a more general result:

ω(AB + BA) ≤ 2
√

2ω(A) ∥B∥. (37)

The proof of above inequality (37) uses the fact that for any A ∈ Mn×n(C) with ω(A) ≤ 1, one has

∥A∗x∥2 + ∥Ax∥2 ≤ 4∥x∥2,

which is a result appearing in the work of T. Ando [1].
Suppose α, β ∈ R. If ω(A) ≤ 1, then for any unit vector x ∈ Cn, by Cauchy-Schwarz inequality, we have

α2
∥A∗x∥2 + β2

∥Ax∥2 = ⟨(α2AA∗ + β2A∗A)x, x⟩ ≤ ∥α2AA∗ + β2A∗A∥. (38)

Using a slight generalization of inequality (25), we further have

∥α2AA∗ + β2A∗A∥ ≤ ∥
[
αA βA∗

]
∥ ·

∥∥∥∥∥∥
[
αA∗

βA

]∥∥∥∥∥∥ ≤ 4 max{α2, β2
}.

Combining this inequality with (38), we obtain

α2
∥A∗x∥2 + β2

∥Ax∥2 ≤ 4 max{α2, β2
}.

Consequently, for any numerical contraction A and unit vector x ∈ Cn, we have

α∥A∗x∥ + β∥Ax∥ ≤ 2
√

2 max{|α|, |β|}. (39)

Thus, for any contraction matrix B ∈ Mn×n(C), we have

|⟨αAB + βBAx, x⟩| ≤ |α|∥Bx∥∥A∗x∥ + |β|∥Ax∥∥B∗x∥
≤ |α|∥A∗x∥ + |β|∥Ax∥

≤ 2
√

2 max{|α|, |β|}∥x∥.

Hence

ω(αAB + βBA) ≤ 2
√

2 max{|α|, |β|}ω(A)∥B∥,

which is a slight generalization of inequality (6).
Next, we provide corresponding generalization of inequality (5).
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Corollary 2.11. Suppose A,B ∈ Mn×n(C) and α, β ∈ R. Then, following inequality holds

ω(αAB + βB∗A) ≤ 2 max{|α|, |β|}ω(A)∥B∥,

Proof. Suppose A = 2cos(C)Wsin(C), for some unitary matrix W and Hermitian matrix C. Then, for unit
vector x ∈ Cn, as an application of Cauchy Schwarz inequality, we have

|⟨(αAB + βB∗A)x, x⟩| ≤ |⟨αABx, x⟩| + |⟨βB∗Ax, x⟩|
≤ 2|α|∥sin(C)Bx∥ · ∥W∗cos(C)x∥ + 2|β|∥Wsin(C)x∥ · ∥cos(C)Bx∥

≤ ∥B∥⟨(4|α|2cos(C)WW∗cos(C) + 4|β|2sin(C)W∗Wsin(C))x, x⟩1/2

≤ 2∥B∥ · ∥|α|2cos2(C) + |β|2sin2(C)∥1/2, (40)

and since matrix |α|2cos2(C) + |β|2sin2(C) can be factorized as[
cos(C) sin(C)

] [|α|2 O
O |β|2

] [
cos(C)
sin(C)

]
,

we have,

∥|α|2cos(C)WW∗cos(C) + |β|2sin(C)WW∗sin(C)∥ ≤

∥∥∥∥∥∥
[
|α|2 O
O |β|2

]∥∥∥∥∥∥ ≤ max{|α|2, |β|2}. (41)

Hence, inequalities (40) and (41) complete the proof.

Next, we demonstrate that the techniques used in the proof of Theorem 2.8 can be effectively applied to
obtain some new numerical radius inequalities.

Suppose A,B ∈ Mn×n(C). Then, using inequality (25), we have

∥A∗B + AB∗∥ ≤ ∥
[
A∗ A

]
∥ ·

∥∥∥∥∥∥
[

B
B∗

]∥∥∥∥∥∥ ≤ 4 ω(A) · ω(B). (42)

Inequality (42) generalizes first inequality in (2) in the sense that it reduces to it in case A = B and hence
4 is best possible constant in this case.

Now substituting, A = Al and B = Am in inequality (42), and using power inequality for numerical
radius, we deduce the following inequality

∥A∗lAm + AlA∗m∥ ≤ 4 ωl+m(A).

Next, we show that a variant of this inequality also hold.

Corollary 2.12. Suppose A ∈ Mn×n(C). Then, the following inequality hold,

∥A∗lAm + AmA∗l∥ ≤ 4 ωl+m(A). (43)

Proof. Using similar ideas as used in Theorem 2.8 and Corollary 2.11, it can be proved that if ω(A) ≤ 1, then
for l,m ∈N,

∥

[
A∗l Am

]
∥ ≤ 2. (44)

So, the required inequality follows easily.

Note that for l = m = 1 inequality (43), reduces to the first inequality in (2). Thus, it presents another
new generalization of the first inequality in (2).

The next result presents variants of the following inequality from [7],

ω(A∗BA) ≤ ∥A∥2ω(B).
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Corollary 2.13. Suppose A ∈ Mn×n(C) and n ≥ 3. Then, for all l,m ∈N the following inequalities hold,

ω(AlBAm) ≤ 2 ωm+l(A)∥B∥,

and

ω(AlBA∗m) ≤ 4 ωm+l(A)∥B∥.

Proof. We prove only the first inequality as the second inequality can be proved similarly. For θ ∈ R, the
matrix Re(eιθAlBAm) can be factorized as

1
2

[
Al A∗m

] [eιθB O
O e−ιθB∗

] [
Am

A∗l

]
.

Now the proof follows by using inequality (44).

Our next objective is to establish an inequality analogous to inequality (20), for the case when the
conventional matrix product is replaced by the Hadamard product of matrices. Recall that the Hadamard
product of matrices A = [ai j] and B = [bi j] inMn×m(C) is a matrix C = [ci j] inMn×m(C) such that ci j = ai jbi j. It
represents the element-wise product of matrices. To achieve our goal, we need to recall the following result
from [2].

Lemma 2.14. Every matrix A ∈ Mn×n(C) with singular values σ1(A) ≥ σ1(A) ≥ · · · ≥ σn(A) can be written as sum

A =
n∑

i=1

αiKi,

where Ki is partial isometry of rank i and αi ≥ 0 are non negative real numbers such that

σ j(A) =
n∑

i= j

αi.

Using Lemma 2.2, we derive the following result.

Lemma 2.15. For any matrix A ∈ Mn×n(C)

max{|tr[(A ◦ X)Y]| : ∥X∥ ≤ 1, ∥Y∥ ≤ 1, ρ(X) = k, ρ(Y) = l} = ∥A∥min{k,l}.

Proof. Suppose Y is a contraction matrix having rank l. Then, by Lemma 2.2, and inequality (1) in [5], we
have

|tr[(A ◦ X)Y]| ≤ ∥A ◦ X∥l ≤
l∑

i=1

σi(A)σi(X) ≤
min{l,k}∑

i=1

σi(A) = ∥A∥min{k,l}.

Finally, we are ready to present our main result.

Theorem 2.16. Suppose A ∈ Mn×n(C) be an arbitrary matrix and ∥.∥u be any unitarily invariant norm. Then

max{∥A ◦ B∥u : ω(B) ≤ 1} ≤ ∥Diag(σ1(A0)σ1(B), σ2(A0)σ2(B), . . . , σn(A0)σn(B))∥u.
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Proof. The initial steps of this proof are inspired from the proof of Theorem 2.8 in [2]. Let A ∈ Mn×n(C) and
1 ≤ k ≤ n be given. Let B ∈ Mn×n(C) be any matrix with ω(B) ≤ 1. Then, by Lemma 2.2, there exists a partial
isometry Ck of rank k such that ∥A ◦ B∥k = tr[(A ◦ B)Ck]. Also, let

A =
n∑

i=1

αiKi, where σ j(A) =
n∑

i= j

αi,

and ρ(Ki) = i, be the decomposition of A given by Lemma 2.14. Then

∥A ◦ B∥k = tr[(A ◦ B)Ck]

=

n∑
i=1

αitr[(B ◦ Ki)Ck]

≤

n∑
i=1

αi|tr[(B ◦ Ki)Ck]|

≤

n∑
i=1

αi max{|tr[(B ◦ Ki)Ck]| : ∥Ki∥ ≤ 1, ∥Ck∥ ≤ 1, ρ(Ck) ≤ k, ρ(Ki) ≤ i}

=

n∑
i=1

αi∥B∥min{i,k}. (45)

Note that the equation (45) follows from Lemma 2.15. Therefore, by Proposition 2.5 and Lemma 2.15,
we obtain

max{∥A ◦ B∥k : ω(B) ≤ 1} ≤
n∑

i=1

αi max
w(B)≤1

∥B∥min{i,k}.

=


∑k

i=1 2iαi +
∑n

i=k+1 2kαi : k ≤ n
2∑m

i=1 2iαi +
∑2m

i=m+1 2mαi : k > n
2 , n = 2m∑m

i=1 2iαi +
∑2m+1

i=m+1(2m + 1)αi : k > n
2 , n = 2m + 1

=

2
∑m

i=1 σi(A) : n = 2m
σm+1(A) + 2

∑m
i=1 σi(A) : n = 2m + 1

=


∥diag(2σ1(A), 2σ2(A), . . . , 2σm(A), 0, 0, . . . , 0︸     ︷︷     ︸

m

)∥k : n = 2m

∥diag(2σ1(A), 2σ2(A), . . . , 2σm(A), σm+1(A), 0, 0, . . . , 0︸     ︷︷     ︸
m

)∥k : n = 2m + 1

= ∥Diag(σ1(A0)σ1(B), σ2(A0)σ2(B), . . . , σn(A0)σn(B))∥k.

Hence the proof follows using Ky Fan Dominance Theorem.

In particular, Theorem 2.16 yields the following inequality for the operator norm.

Corollary 2.17. For arbitrary matrix A ∈ Mn×n(C), the following inequality holds

∥A ◦ B∥ ≤ 2ω(A)∥B∥.
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