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Abstract. Quantum discord measures the total non-classical correlations in a composite quantum system.
As a possible resource for the classically non-achievable tasks, amount of quantum discord is crucial for
efficient performance of the quantum technology tasks. Zero discord means the absence of the required
resources. For a wide class of the bipartite open quantum systems, initial nonzero discord is known
practically never goes to zero, except asymptotically. However, if initial discord equals zero, there remains
the possibility to remain zero for the finite time intervals for certain Markovian models of open systems–that
we call Markovian classicality. In this paper we search for the models that allow for Markovian classicality.
We point out a general model that represents a matter-of-principle formal proof, i.e. a sufficient condition for
the, otherwise not obvious, existence of Markovian classicality. Physical relevance of the model is twofold.
First, the model is in intimate relation to the topics of quantum information locality, quantum discord
saturation and quantum decorrelation. Second, the model is of the general physical interest. It pertains to
a specific structure (decomposition into parts/subsystems) of a composite system, not to a special kind of
composite system. Being a characteristic of a structure, by definition, the model of Markovian classicality
is not a model of sudden death of discord. We emphasize wide-range implications of our results.

1. Introduction

”Quantum discord” is a common term for different measures of non-classical correlations in composite
(e.g. bipartite) quantum systems [1–6]. Historically the first and probably the best known is the so-called
”one-way” discord [1, 2]. The closely related ”two-way” discord is even a more stringent criterion for
classicality of the correlations.

Current interest in quantum discord (QD) stems from the basic physics as well as from the fact that
QD is recognized as a resource for performing certain tasks that cannot be efficiently performed on the
classical setup [7–22] (we provide a small sample of some recent literature). That is, the nascent field of
quantum technology directly employs the quantum (non-classical) correlations as the classically unknown
characteristics of the composite (e.g. bipartite) quantum systems. To this end, existence of the quantum
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correlations is critical. That is, the temporary absence or dynamical reduction of the quantum correlations
makes the system essentially classical and the basic resource for performing the tasks is lost.

It is known that ”for almost all states of positive discord, the interaction with any (non-necessarily local)
Markovian bath can never lead either to a sudden, permanent vanishing of discord, nor to one lasting a
finite time-interval” [23]. In effect, not only sudden death of discord cannot be expected, but Markovian
dynamics may only lead to asymptotically close a zero-discord state. From this result one may possibly expect
the Markovian bipartite systems are practically deprived of zero discord states and the quantum resources
are present all the time.

However, the analysis in [23] does not rule out that there can be zero discord for all times. That is, it is not
excluded the possibility that, if a system starts with zero discord, it could have zero discord for all times.
Thus, complementary to Ferraro et al [23], Markovian dynamics may probably provide non-asymptotic zero-
discord for a bipartite system in a long time interval, that we call ”Markovian classicality” due to the absence
of the quantum correlations in a bipartite system; for an up-to-date analysis of quantum Markovianity see
[24].

In this paper, our task is twofold. First, we are interested in answering the following questions: Which
kind, if any, of the zero-discord states can provide Markovian classicality (MC)? Given an answer (or a
guess) to the first question: is there a physical model that can justify such zero-discord states dynamics?
What are the physical characteristics of such model(s)? Second, we are interested in linking such model(s)
to the realistic physical systems and situations. While the first task bases itself on the existing knowledge
about the discord dynamics, the second one welcomes a change in perspective to the composite quantum
systems.

Regarding the first task: As two-way discord tends to be larger than one-way discord [25], we consider
the zero two-way-discord, which applies only to the so-called classical-classical (the CC) quantum states [5].
Accordingly, Markovian classicality is defined by zero-discord as a constant of motion, that is by the open
system’s dynamics as a dynamical map from one to another CC state (cf. Definition 2.1, Section 2). Then
we construct, not deduce, such a model; the model satisfies both the C- and the P-criterion for classicality
[26]. Our approach is a formal mathematical analysis that leads us to the simplest possible model of
tensor-product state for the open system. Interestingly enough, we were not able to find any alternative to the
model. The model reveals a number of physically interesting observations such as relations to the quantum
information locality [27–29], quantum discord saturation [30] and quantum decorrelation [31, 32] topics
(Section 3.1).

In regard of the second task, we emphasize importance of ”structure” (decomposition into parts/sub-
systems) of a composite system [33, 34]. We emphasize (Section 3.2) the model of Markovian classicality
is a matter of a special structure of a composite system. The composite systems not describable by such
structure may be deprived of zero discord states. So, being a matter of structure, the model is of the
general physical relevance. The following example will turn out to be paradigmatic for MC. Consider a
three-qubit system, C = 1 + 2 + 3, and its bipartite structures, 1 + S1 and S2 + 3, where the bipartite systems
S1 = 2 + 3 and S2 = 1 + 2. As it is well known from quantum teleportation [35], the C’s state |ϕ⟩1|Φ+⟩S1 ,
where |Φ+⟩S1 = (|0⟩2|0⟩3 + |1⟩2|1⟩3)/2−1/2, can be re-written as

∑
i |χi⟩S2 |i⟩3/2, where the S2’s states represent

the Bell states [36] for the pair 1+ 2. The point is that for the 1+ S1 structure, the state is tensor-product and
therefore not carrying any correlations between the 1 and S1 systems, while there is entanglement in the
same state in regard of the S2+3 structure. So, for the closed C system, the structure 1+S1 bears Markovian
classicality, which is not the case for the S2 + 3 structure. Practically, operating with the local observables of
the 1 and/or S1 subsystems cannot give any ”quantum advantage” via the use of the quantum correlations.
Being a characteristic of a structure, the Markovian classicality model is not a model of sudden death of
discord.

This paper is organized as follows. In Section 2, we give a precise formulation of the task and design
the model supporting Markovian classicality. Information theoretic analysis of the model in Section 3 gives
rise to a need to relax the definition of classicality. In Section 4, we introduce approximate classicality and
recognize a model implementing such approximate classicality. Section 5 is discussion where we emphasize
wide-range implications of our results. Section 6 is Conclusion.
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2. The model

One-way quantum discord for the S + S′ system, D←(S|S′) = I(S : S′) − J←(S|S′) ≥ 0, and von Neumann
entropy of a state ρ, S = −trρ lnρ. Both the total mutual information, I(S : S′) = S(S) +S(S′) − S(S,S′), and
the classical correlations, J←(S|S′) = S(S) − inf{ΠS′ i}

∑
i |ci|

2
S(ρS|ΠS′ i )–where ρS|ΠS′ i = IS ⊗ΠS′iρIS ⊗ΠS′i is the

state remaining after a selective quantum measurement defined by the orthogonal projectorsΠS′i–are non-
negative. The CC states are the only states fulfilling the condition D←(S|S′) = 0 = D→(S|S′)⇔ D↔(S|S′) = 0.

Definition 2.1. An open quantum system, C, consisting of two subsystems, S and S′, is said to bear Markovian
classicality if and only if it can be described by a classical-classical (CC) state in long time-interval. A CC state is of
the form

∑
m,n ωmnPSm ⊗ΠS′n, where the real numbers ωmn ≥ 0 and

∑
m,n ωmntrSPSmtrS′ΠS′n = 1 for the orthogonal

projectors PSm and ΠS′n on the respective Hilbert spaces.

For separable ωmn = pmqn,∀m,n, such that
∑

m pmtrSPSm = 1 =
∑

n qntrS′ΠS′n, one obtains the tensor-product
states, ρS ⊗ ρS′ , as a special kind of CC states. Physically, the composite system Cmay be e.g. a pair ”object
of measurement + apparatus” or ”the internal + the center-of-mass” degrees of freedom of the Brownian
particle [37].

As typical of open systems, we assume a coarse-grained time scale for the open system’s dynamics [37].
On the other hand, the time scale characteristic for Markovian dynamics we are exclusively interested in is
bounded also from the above [37]–zero discord is not required for arbitrary long time-interval either. This
way understood classicality does both: permits non-classicality for the time intervals shorter than e.g. the
”decoherence time”, τD, for the open system, C, and still assumes the long time intervals for the possible
thermal relaxation of the open system, as well as for the ”recurrence time” regarding the closed system,
C + E, where E is the C’s environment [37].

Definition 2.1 directly sets the following constraint on constructing a Markovian classicality model:
Classicality Constraint: Two-way quantum discord is exactly zero in every instant in time before eventual thermal-
ization of the open system.

Getting into details, we detect the following obstacles to construct a model fulfilling the Classicality
Constraint. First, initial non-zero discord in S+ S′ system; Second, interaction between S and S′; Third, the
common environment, E, for S and S′; Fourth, non-completely positive dynamics for the S′ system; Fifth,
the initial non-tensor-product state for C and E; Sixth, arbitrary initial zero-discord state for C.

The origin of these obstacles is respectively as follows: First, an initial non-zero discord state cannot
fulfil the classicality condition. e.g. The dynamic transition∑

i

λiρSi ⊗ ρS′i →
∑
m,n

ωmn|m⟩S⟨m| ⊗ |n⟩S′⟨n| (1)

is not allowed as long as the rhs of (1) refers to a continuous time interval. There are at least three ways for
dynamically obtaining a non-zero-discord state: Interaction between S and S′, the common environment for
S and S′, and non-completely positive dynamics for the open system S′. Markovian dynamics requires the
tensor product initial state ρC⊗ρE [37]. Finally, in general, the external (e.g. experimentally uncontrollable)
local influence can raise the initially zero discord [3, 38–40]. The local operations exerted on S and/or on
S′, the rhs of (1), can give rise to non-zero-discord final state. The only state immune to this (yet for the
completely positive dynamics) is actually the tensor-product state, ρS ⊗ ρS′ .

Bearing all this in mind, the only option we offer is the following model:

S + (S′ + E) (2)

where the subsystem S does not interact with any other subsystem (S′ and E) while assuming Markovian
and completely positive dynamics for the open system, S′, and the tensor-product initial state ρS ⊗ ρS′ ⊗ ρE
for the total system, see Fig. 1. In principle, both S and S′ can be composite systems themselves. Since the
S system is isolated and S′ Markovian, the total open system C = S + S′ is also Markovian.
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Figure 1: Schematic illustration of the model (2). The composite system C = S + S′ is distinguished by the elliptic line. The gray
area designates the environment E in interaction with S′. The S system does not interact with both S′ and E. Physically, the S and S′
systems can represent respectively e.g. the ”relative (internal)”- and the center-of-mass-degrees of freedom of the Brownian particle
C. The pair S + S′ is described by (5) and by the zero two-way discord, D←(S|S′) = 0 = D←(S′|S), in every instant in time.

Formally, the model (2) is defined by the Hilbert state space for the total systemH = HS ⊗HS′ ⊗HE and
by the Hamiltonian of the total system:

H = HS +HS′ +HE +HS′E (3)

where the last term on the rhs of (3) represents interaction between S′ and E. Then the unitary operator for
the total system separates as:

U(t) = US(t) ⊗US′+E(t) = exp{−ıtHS/ℏ} ⊗ exp[−ıt(HS′ +HE +HS′E)/ℏ], (4)

and provides unitary (the Schrödinger) dynamics for both the S system as well as for the S′ + E system.
Markovian and completely positive dynamics of S′ does not introduce any additional correlation for S and
S′. Then for the model Eq. (2), one can write for the open system’s state:

ρS(t) ⊗ ρS′ (t) (5)

in every instant in time, where ρS(t) = US(t)ρS(0)U†S(t) and ρS′ (t) is a solution to a Markovian-type master
equation. The proof of (5) obviously follows from (4).

From Eq. (5) it easily follows: S(S,S′) = S(S)+S(S′) and therefore the equalities D←(S|S′) = 0 = D→(S|S′)
in every instant in time. So, we can say we have designed a model that fulfills the very tight conditions for non-
asymptotic zero-discord classicality of a Markovian bipartite system, Definition 2.1: (i) the model Eq. (2)-(5) is
distinguished, and (ii) the open system’s dynamics is a completely positive map.

3. Analysis of the model

The model Eqs. (2)-(5) is designed so as to fulfill the Classicality Constraint, Section 2. For the tensor-
product initial state, ρS⊗ρS′ , the subsystems S and S′ remain mutually exactly uncorrelated in every instant
in time, (5). In the terms of [23]: the composite system’s state remains in the Ω◦ set of zero-discord states,
all the time. As [ρS ⊗ IS′ , ρS+S′ ] = 0 = [IS ⊗ ρS′ , ρS+S′ ],∀t, the state ρS+S′ (5) is a ”doubly” lazy state [41].
Thus, we point out a ’niche’ for the bipartite system’s Markovian classicality. Some proofs of the presented
statements are direct corollaries of the material provided in the Appendices section.

3.1. Quantum Information Locality and Classicality
If one assumes the pure initial states for both S′ andE, then Eqs. (2)-(4) directly give for the total system’s

instantaneous state:

ρS ⊗ |Ψ⟩S′+E⟨Ψ| (6)
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and vice versa–given the above assumptions, Eq. (6) implies Eqs. (2)-(4). In (6), the S′ and E systems are in
entangled pure state; for ρ2

S = ρS, the ρS state is also pure. The entanglement is due to the interaction HS′E,
(3), i.e. due to the fact that the environment effectively monitors and purifies the S′ system.

As we show next, the state (6) is in intimate relation to quantum information localization measured
by ”locally inaccessible information (LII)” flow [27], as well as with quantum discord saturation [30] and
quantum decorrelation [4, 32].

Lemma 3.1. The following are mutually equivalent statements: (i) the system S + S′ + E is in the state (6), (ii)
quantum discord D←(S + S′|E) = S(E) is saturated (maximal), (iii) there is total decorrelation of the S system from
the system S′ and (iv) there is quantum information localization in the S′ + E system.

We prove this lemma in a way supporting some intuition about the zero-discord classicality. The more
formal and more simple proofs will be provided elsewhere.

Proof. Bearing in mind (i) is equivalent to (ii) (cf. Theorem 1 in [32]), the proof can be given by proving (i)
is equivalent to (iii) and to (iv). That (i) implies (iv) is easy obtained. The ”locally inaccessible information”
flow [27], L↔ = D↔(S′|S)+D↔(E|S′)+D↔(S|E) = D↔(E|S′); there is only information flow in S′ +E system.
Now we prove the inverse to this implication. Due to non-negativity of discord, the above equality for L↔

directly implies D↔(S|S′) = 0 = D↔(S|E). As we know D↔(S′|E) , 0, the condition D↔(S|S′) = 0 = D↔(S|E)
can be satisfied only by the state (6); e.g., the alternative tripartite state,

∑
i ci|i⟩S|i⟩S′ |i⟩E, that satisfies

D↔(S|S′) = 0 = D↔(S|E), does not satisfy D↔(S′|E) , 0. Here (without loss of generality) we assume the
total system S+S′ +E is subject to the Schrödinger law, cf. (4), and that the initial states of both S′ and E are
pure–thus the alternative mixed states are of no interest here. Finally, we prove equivalence of (i) and (iii).
The decorrelation is defined [4, 32] as a difference of the two total correlations in the initial and the final state,
Iinitial(S : S′) − I f inal(S : S′). For every initial state, decorrelation is maximal if I f inal(S : S′) = 0. So, we prove
that I f inal(S : S′) = 0 is equivalent to (6). From (6) it directly follows: I(S : S′) = S(S) + S(S′) − S(S,S′) = 0.
The inverse is easily proved, as from I(S : S′) = 0 follows S(S,S′) = S(S) + S(S′), which, in turn, is fulfilled
only for the product states, (5). By purifying the product state, (5), one obtains the state (6).

The proof of Lemma 3.1 distinguishes the physical relevance of the model (2). Saturation of quantum
discord (in S′ + E) is equivalent to locking information locally (in S′ + E), i.e. to decorrelation of the rest
(S) of the composite system. So, Markovian classicality of S + S′ coincides with quantumness of S′ + E. Of
course, external influence on S′ + E leads to the loss of maximum discord. Bearing in mind the result of
Ferraro et al [23], cf. Introduction, Lemma 3.1 suggests the locking of information [27] , discord saturation
[30] and quantum decorrelation [4, 32] are dynamically feasible only asymptotically.

The model Eqs. (2)-(5) is in accordance with the following logic of the decoherence theory [37, 42]: only
certain degrees of freedom (S′) of a composite system are subject to decoherence. The remaining degrees
of freedom (the S system) can exhibit quantum mechanical behavior.

On the other hand, the total system, S+S′+E, is not allowed to correlate with any outer system, denoted
by W. This is a direct consequence of the discord saturation, D↔(S + S′|E) = S(E), the point (ii) of Lemma
3.1. The discord saturation implies non-correlation of E with W [30]. Furthermore, both the S system and
the S′ system are uncorrelated with the outer W system, in every instant in time. This conclusion follows
from the very construction of the model (2). Namely, the S system is closed, while interaction of the S’
system with the W system would correlate E and W, in contradiction with the saturation of D←(C|E). Of
course, isolation of S + S′ + E from the rest of the world, W, is physically crude and naive.

3.2. Quantum Structures
The following objection is in order: for the realistic particles that mutually interact, one can hardly

expect isolation as presented by the S system. To answer, we need a switch in perspective to describing the
composite systems.

Definition 3.2. A set of subsystems of a composite system, C, is called a structure of C. Different structures are
mutually related by the proper canonical transformations (CTs), which provide the different tensor-product forms for
the system’s Hilbert space.
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The CTs induce a change in both the composite system’s Hilbert-space tensor-product form as well as in
the system’s Hamiltonian form [33, 34]. Regarding Figs. 1 and 2, for the Hilbert state space of the composite
system, H , one can write: H1 ⊗ H2 = H = HS ⊗ HS′ . The Hamiltonian, H, takes the different forms for
the different structures, H1 +H2 +H12 = H = HS +HS′ ; H12 is interaction term, while the analogous term is
absent for S + S′ structure–compare to the three-qubit example for teleportation in Introduction.

While the composite system’s Hilbert state-space, the Hamiltonian and quantum state is unique (in
every instant in time), the correlations (for isolated or open system) are not. This correlations relativity
formally means [43] (which has recently been rediscovered [18]): correlations (quantum or classical, for
isolated or open system) are in general not invariants of the CTs. In other words: the amount of correlations
in instantaneous state of C is not a matter of a composite system itself, but a matter of the composite system’s
structure. What can be told about the system depends on the choice of the measurements and other actions
performed on the system.

Grouping subsystems (the ”coarse graining” the composite system’s structure) is formally a trivial kind
of CTs. Entanglement swapping (see Introduction) is typical of this kind of CTs that the initially tensor-
product form of a state transforms into entangled form of the state, for the same instant in time. Regarding
the model (2), for instantaneous state (6), the two bipartite structures, (S+ S′)+E and S+ (S′ +E), also bear
the different discords, D←(S + S′|E) = S(E) , 0 and D←(S|S′ + E) = 0, respectively.

Quantum correlations relativity is also implicit e.g. in the ”entanglement renormalization” methods
for the finite-dimensional many-body systems [44] (and the references therein). A specific decoupling
(variables separation) procedure provides a bipartite structure for the system of interacting spins. The
original ’microscopic’ degrees of freedom are transformed to introduce a pair of noninteracting systems.
Then the ground energy (pure) state, that carries entanglement for the ’microscopic’ structure, obtains the
tensor-product form. From the operational perspective, dealing with the observables of the S and S′ systems
cannot, in principle, utilize quantum correlations. However, dealing with observables of some alternative
structure of the composite system C (C = S+S′), typically allows for the operational use of certain quantum
correlations [33, 34].

Figure 2: Schematic illustration of the 1 + 2 structure of the composite system, C, is distinguished by the elliptic line. The gray area
designates the environment E that is not in interaction with all the C’s degrees of freedom. The realistic particles, 1 + 2, degrees of
freedom are linked with the degrees of freedom of S + S′ (cf. Fig. 1) via the proper canonical transformations; 1 + 2 = C = S + S′. As
distinct from the S + S′ structure, the 1 + 2 structure may be expected of non-zero discord.
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For the continuous variable (CV) systems, the variables separation procedure is an open issue in intimate
relation to the issue of (quantum) integrability. To this end, paradigmatic are the composite system’s center-
of mass (CM) and the ”relative (internal)” degrees of freedom, cf. Figs. 1 and 2. Regarding the CV Gaussian
states, the important results in [45] strongly support the model (2). As the only zero-discord Gaussian states
are tensor product [45], the only Gaussian states dynamically supporting Markovian classicality–are of the
form (5). Of course, for non-Gaussian states the things may generally look different.

So the physical relevance of the model S + S′, (2), follows also from its universal applicability–just
transform the ”original” structure 1+2 into a structure formally presented by (2). The systems S and S′, Fig.
1, can represent respectively the ”relative (internal)” (R) and the center-of-mass (CM) degrees of freedom
for the pair 1 + 2, Fig. 2, or the original spin-chain and a pair of noninteracting blocks [44]. The composite
systems not describable by the structure (2) are practically deprived [23] of the zero discord states.

3.3. Summary
In support of the model, we distinguish: a. the model is in accordance with the general logic that only

a subset of the open-system’s degrees of freedom (S′) is subject to decoherence; b. S + S′ resembles the
classical-mechanics model-structure in the general use, CM + R, Section 3.2; c. regarding the Gaussian
states, the results in [45] strongly support the model.

On the other hand, the model can be considered too crude and idealized, as: d. exact separation of the S
system from the rest in (2) does not seem very realistic; e. in disagreement with the general logic of the open
system and decoherence theory, the model does not allow approximate isolation of (i.e. the information
flow from and to) the total system S + S′ + E.

In conclusion of this section we define a new task that is a subject of the next section: to search for a
variation, i.e. approximation, of the model in order to avoid the objections ’d’ and ’e’, while saving its
virtues, the above points ’a-c’.

4. Approximate Markovian Classicality

Definition 4.1. An open quantum system, C, consisting of two subsystems, S and S′, is said to bear approximate
Markovian classicality if and only if it can be described by a approximate classical-classical (CC) state in a sufficiently
long time interval.

”Approximate CC state” is a state that can be approximated by an CC state, Definition 2.1. ”Sufficiently
long time” emphasizes the time interval for validity of the approximate Markovian classicality (AMC) is
long compared to the time intervals characteristic for certain physical processes of interest, but shorter than
the open system’s relaxation time, if it is defined for the model. Now we formulate:
Approximate Classicality Constraint: Two-way quantum discord is approximately zero in a sufficiently long time
interval before eventual thermalization of the open system.

Prima facie, one could expect that nonzero discord will dynamically quickly become non-negligible
[23, 38–40]. On the other hand, having in mind the obstacles emphasized in Section 2, it is not obvious
where, and which kind of approximations can be made in order to provide AMC. Nevertheless, below
we emphasize that a model of the quantum information locality [30] implements also the approximate
Markovian classicality.

The dynamic model in [30] is formally a variant of the model Eq. (2): In a tripartite system, S,S′,E, the
interaction between S′ and E dominates the composite system’s dynamics. The S system interacts with S′

but not with the environment E. For a special initial state, |p⟩S′ , the total system’s state can be presented
(see Appendix Appendix D for some details) in the following simplified form [30, 46]:

|Φp
⟩SS′E = |ψp(t)⟩S ⊗ |p⟩S′ ⊗ |ϕp(t)⟩E + |O(ϵ, p; t)⟩S+S′+E. (7)

In (7): ϵ ≡ c/C≪ 1, where c is the strength of interaction between S and S′, and C is the interaction strength
for S′ and E. The first term in (7) is totally-tensor-product state in the time interval τ ∼ ϵ−1. In the limit
ϵ→ 0, Eq. (7) becomes a variant of (6).
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Physically, the state (7) provides approximate separation of all subsystems and therefore very small
discord for the open system C = S + S′ in the time interval τ ∼ C/c. This is a direct consequence of the
following lemma.

Lemma 4.2. Von Neumann entropy of every subsystem in (7) is proportional to ϵ, in the time interval τ ∼ C/c.

Proof. The tripartite system can be decomposed as a bipartite system by grouping, e.g. (S + S′) + E.
Then the (normalized) state (7) takes the form

√
1 − ϵ|ϕ⟩SS′ |χ⟩E +

√
ϵ
∑

i
√

pi|i⟩SS′ |i⟩E,
∑

i pi = 1,∀t. For
ρSS′ = trE|Φ⟩SS′E⟨Φ|, the S+S′ entropy,S(S+S′) = −(1−ϵ) ln(1−ϵ)−

∑
i ϵpi ln(ϵpi) ∼ ϵ(1− ln ϵ−

∑
i pi ln pi) ≤ κϵ,

κ ≡ 1 − ln ϵ − ln pmax, where pmax = max{pi}. As S(E) = S(S + S′) and the analogous result follows for the
other bipartite decompositions, S + (S′ + E) and S′ + (S + E), Lemma 4.1 is proved.

Now it is straightforward to see the total mutual information in the S + S′ system, I(S : S′) = S(S) +
S(S′) − S(S,S′), is proportional to ϵ. Due to nonnegativity of the discord and of the classical correlations
(cf. Section 2), it is clear that the discord is also proportional to ϵ and is very small. The only exception is

the case of the maximum entanglement in the small term in |Φp
⟩SS′E. i.e. For |O(ϵ, p; t)⟩S+S′+E =

N∑
i=1

pi|i⟩S+S′ |i⟩E

and for pi = N−1,∀i, one obtains S(S + S′) ≈ ϵ ln N [47], when, in principle, for given ϵ there may exist
N such that ϵ ln N ∼ 1. The ”locally inaccessible information (LII)” flow [27] is also negligible, L↔ =
D↔(S′|S) +D↔(E|S′) +D↔(S|E) ∝ ϵ. Like in Ref. [39], we can hope that the model (7) may provide both the
discord and the LII flow are zero for some practical purposes (even though not rigorously null), not only for
the already known purposes of combating decoherence [46, 48] and providing identity of micro-particles
in a solution [49].

While respecting the points ’a-c’, Section 3.3, the following are the virtues of the model (7): 1. the model
does not require yet supports Markovian environment E; 2. the model is generally applicable–it equally
targets the finite dimensional as well as the continuous variable systems; 3. the model allows interaction
between S and S′, (2). This way the model resolves the above point ’d’, Section 3.3; 4. Due to the non-zero
second term in (7), the discord D←(C|E) is not saturated (cf. Theorem 1 in Ref. [32]). Therefore the above
point ’e’, Section 3.3, is also resolved: the environment E is allowed to correlate with the external system
W.

5. Discussion

We are not aware of any constraints on discord dynamics for the non-Markovian open systems. In
principle, every subsystem (1, 2,S,S′) in the model (2) may be a composite system itself. Related multi-
partitions of the total system C require separate analysis to be presented elsewhere.

Essential for our model of Markovian classicality are the assumptions on the special initial state (the
tensor-product state) and the completely positive dynamics of the open system. Regarding the initial state,
our assumption is of general use for noninteracting systems–from the hydrogen atom and the ”ideal gas”
to the macroscopic bodies typically modelled by their center of mass and the internal degrees of freedom
(the CM + R structure).

The model (2) is already in use. An ancilla qubit, appearing in a number of the quantum information
protocols and algorithms, is easily recognized as the S system in the model (2), which, in turn, has been
proposed as a testbed for investigating non-Markovian dynamics of open systems [50]. ”Entanglement
renormalization” provides decoupling (the variables separation) for a spin-chain system [44]. In general,
nonexistence of the model (2) for a concrete physical system suggests the composite system is practically
deprived of the zero discord states [23]. To this end, existence of an alternative to the model Eq. (2) may
vary the conclusions. However, bearing in mind the tight conditions for Markovian classicality, Section 2,
we are free to conjecture nonexistence of alternate model that would rigorously provide Markovian classicality.
Nevertheless, alternate models of approximate Markovian classicality can be expected.

The approximate Markovian classicality model, Section 4, suggests physically there is not ideal Marko-
vian classicality. Worse, approximate Markovian classicality can last for only a finite time interval. To this
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end, the details are case sensitive and establishing approximate Markovian classicality for some practical
purposes can hardly be formulated in full generality.

Our results have wide-range implications. First, from a fundamental perspective, they imply that only-
classically correlated states are a matter of the open system’s structure. Bearing in mind Lemma 3.1, we
realize that non-asymptotic information locality [23], discord saturation [30] and quantum decorrelation
[4, 32] are also a matter of the composite system’s structure. Second, completely positive dynamics is a
necessary condition for the models (6), (7). So, a change in structure of the composite system removes the
conflict [23] between the completely positive map and the rarity of zero discord states. Third, by Definition
3.1 (Definition 4.1) the model (6) ((7)) is not a model of the sudden death of discord–discord is zero (or
approximately zero) in a long time interval without the sudden change or sudden death. Fourth, the model
(6) directly sets a basis for the task of ”local broadcasting” [51].

A final comment about experimental implications. Very much like the classical systems, the structure
S + S′ described by the model (6), or (7), is not capable of performing a useful quantum information
processing. So, instead of experimentally testing discord (that is not feasible [23] yet), one can try to
perform quantum information processing. The failure of every possible quantum protocol, e.g. of the
discord-based quantum computation [5, 6] (and the references therein), reveals, at least approximate,
Markovian classicality of the composite system’s structure. Thereby, avoiding Markovian classicality now
appears basic to performing efficient information processing on bipartitions of the quantum information
hardware: just avoid operations and manipulations of the observables of the subsystems that support
Markovian classicality (as it is the case in the general model Eq. (2)).

6. Conclusion

Complementary to Ferraro et al [23], we construct a model of a Markovian bipartite system that provides
zero two-way discord in a long time interval (that we name ’Markovian classicality’). The model is a
sufficient condition for Markovian classicality and is in close relation to the topics of quantum information
locality, discord saturation and quantum decorrelation. We emphasize Markovian classicality is not a
matter of the open system itself, but of the open system’s structure (decomposition into parts/subsystems).
Bearing this in mind, the model is of general interest and is not a model of quantum discord sudden death.
We finally conjecture about the absence of alternate model, which would rigorously meet the criteria for
Markovian classicality.

Appendix A. Calculating discord for different structures

We are concerned with the two possible decompositions of the total system, S+ S′ +E. We calculate the
states, their entropies and the related quantum discords for both structures separately. For simplicity, by
S(A) we denote von Neumann entropy of the A system’s state, ρA, S(A) ≡ S(ρA).

Quantum state (6) can be written as:

ρ ≡ ρS ⊗
∑

i, j

cic∗j|i⟩S′⟨ j| ⊗ |i⟩E⟨ j|. (A.1)

1) Structure (S + S′) + E, denoted by C + E, is a bipartite system and the subsystems’ states are:

ρS+S′ = trEρ = ρS ⊗
∑

i

|ci|
2
|i⟩S⟨i|; ρE = trS+S′ρ =

∑
i

|ci|
2
|i⟩E⟨i|

ρS′ = trS+Eρ = trSρS+S′ =
∑

i

|ci|
2
|i⟩S′⟨i|. (A.2)

Then von Neumann entropies, S(S,S′) = S(S)+S(S′) and S(S′) = S(E) =
∑

i |ci|
2 log |ci|

2. From Eq. (A.2)
we directly obtain ρS+S′ |i ≡ IS+S′ ⊗ |i⟩E⟨i|ρIS+S′ ⊗ |i⟩E⟨i| = ρS ⊗ |i⟩S′⟨i|, assuming the measurement in the {|i⟩E}
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basis is performed, as well as S(ρS+S′ |i) = S(S)+S(S′) = S(S). For the total system’s entropy, Eq. (A.1) gives
for, in general, mixed state ρS =

∑
α ωα|α⟩S⟨α|:

S(S,S′,E) = −trS+S′+Eρ lnρ = −trS+S′+E

∑
i, j,α,k,lβ

cic∗jωα[ωβ ln ckc∗l

+ckc∗l lnωβ]|iα⟩S+S′⟨ jα| ⊗ |i⟩E⟨ j| = −
∑
α

ωα lnωα = S(S), (A.3)

where we made use of trS+S′+E = trStrS′ trE and the basis independence of the tracing out operation, while
|iα⟩S+S′ ≡ |i⟩S|α⟩S′ .

Then the total correlations, I(S,S′ : E) = S(S,S′) + S(E) − S(S,S′,E) and the classical correlations
J←(S,S′|E) = S(S,S′) − inf{ΠEi}

∑
i |ci|

2
S(ρS+S′ |ΠEi ). With the use of the above calculated entropies, we ob-

tain for the one-way discord (cf. Section 2):

D←(S,S′|E) = S(S,S′) + S(E) − S(S,S′,E) − S(S,S′) +
∑

i

|ci|
2
S(ρS+S′ |i)

= S(E) − S(S,S′,E) +
∑

i

|ci|
2
S(ρS+S′ |i) = S(E), (A.4)

that is the discord saturation discussed in Section 3.1.
2) Alternative structure S + (S′ + E) is more easy to handle. Then (6) is of direct use and the results follow:

ρS = trS′+Eρ; ρS′+E = trSρ = |Ψ⟩S′+E⟨Ψ|

ρS′ =
∑

i

|ci|
2
|i⟩S′⟨i|;ρE =

∑
i

|ci|
2
|i⟩E⟨i|. (A.5)

From Eq. (A.5) it easily follows: S(S,S′,E) = S(S) + S(S′,E), while S(S′,E) = 0 and S(S′) = S(E) =
−
∑

i |ci|
2 ln |ci|

2.
Then the total correlations, I(S : S′,E) = S(S)+S(S′,E)−S(S,S′,E) = 0. As both quantum discord and the

classical correlations are non-negative, the one-way discord D←(S|S′+E) = 0 as well as D→(S|S′+E) = 0–the
state (6) is a CC state, Definition 2.1 in the main text. The third structure, (S + E) + S′, can be alternatively
managed with the conclusion that D←(S + E|S′) = S(S′) = S(E) , 0.

It is interesting that even the trivial change of structure, by simply grouping the constituent subsystems,
S, S′ and E, exhibits the general notion of quantum correlations relativity [43]: quantum discord is a matter
of structure, and is here zero only for the S + (S′ + E) bipartite structure. The different structures reveal the
different facets of the total system.

Finally, we show that the tensor product state (5), considered as a P-classical state [26], satisfies the C-
criterion for classicality. The generic P-classical state (1) in Ref. [26] reduces to the tensor-product state
(considered in Section 3.2) for the separability condition [in their notation] P(α, β) = P(α)P(β). For this
choice, one obtains for the states considered, (6) in Ref. [23]: ρA ≡ trBρA⊗ρB = ρA, and (after normalization)
ρ◦ ≡ trBρA ⊗ ρB|0⟩B⟨0| = ρA. So, one obtains [ρA, ρ◦] = 0, that is the criterion for the C-classicality, which,
in turn, is already well-known. Our proof is given in terms of P-classical states in order to match the
considerations in Ref. [26].

Appendix B. Constructing the Markovian classicality model

Consider a composite system C consisting of N physical particles, 1, 2, 3, ...,N. Then the set C1 =
{1, 2, 3, ...,N} is a structure describing C as a multiparticle system. The set of the C’s degrees of freedom,
{xiα, i = 1, 2, ...N}, can be transformed to provide a new structure ofC; the index α enumerates the individual
particles degrees of freedom. E.g. by grouping the particles into two sets described by their degrees of
freedom, A = {xiα, i = 1, 2, ...M} and B = {xiα, i = M + 1,M + 2, ...,N}, we obtain a bipartite structure of
C, presented formally as C2 = A + B. This grouping the particles is kind of formally trivial canonical
transformations (CTs). Formally nontrivial kind of the CTs assume non-local symplectic transformations
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that introduce the new degrees of freedom, {ξpβ, p = 1, 2, ...,N}. To this end, paradigmatic are the CTs
introducing the C’s center-of-mass (CM) and the relative positions (R) degrees of freedom. Then C can be
described by another bipartite structure, C3 = CM + R.

Below we briefly discuss the task of constructing the structure S + S′.
In general, the proper canonical transformations convert a bipartite-system’s ’fundamental’ structure

1 + 2 (Fig. 2) into the structure S + S′ (Fig. 1). While the system’s Hamiltonian, HC, is unique, it obtains
different forms for the different structures: H1 +H2 +H12 = HC = HS +HS′ .

The structure S+ S′ follows from the variables separation for the original 1+ 2 structure. This is closely
related to the general mathematical topic of integrability of quantum mechanical models. Regarding the
”mixed” states (described by the density matrix), this is an instance of the task of the Quantum Separability
Problem (QUSEP). QUSEP is investigated in the literature for the finite-dimensional composite systems and
is computationally a ”strongly NP-Hard” problem [52].

On the other hand, separation of variables is not much more easier even for the pure states. The task is
to obtain the equality∑

i

ci|i⟩1|i⟩2 = |Ψ⟩C = |ϕ⟩S|χ⟩S′ (B.1)

for an instantaneous state, |Ψ⟩C, of the composite system C. Physically, Eq. (B.1) assumes there are
interactions and therefore entanglement for the ’fundamental’ structure 1+2 while mutually noninteracting
systems S and S′ are described by a tensor-product state. We believe these easily formulated tasks are largely
intact in the present quantum theory.

Appendix C. In support of the Conjecture

This short appendix is devoted to the Conjecture made in Section 5. Most of the classical physics deals
with the collective variables of the macroscopic bodies, CM and R. ”Classicality” of the macroscopic bodies
is tacitly assumed for this kind of structure of the classical-physics systems. So, the S+ S′ structure, Section
2, naturally resembles the macroscopic-systems structure CM + R.

In addition, we want to emphasize that the model Eqs. (2)-(5) reflects the general experience with
atoms and molecules [53]. Their ”relative positions” degrees of freedom are monitored by the quantum
vacuum fluctuations [37] (and the references therein), while the center-of-mass (CM) degrees of freedom
are typically supposed both decoupled from R as well as possibly subject to the different kinds of the
environment (e.g. to the harmonic bath in quantum Brownian motion [37], and the references therein). In
order to describe this, introducing the S’s environment, V, into the model (2) is straightforward: as long
as the two environments, E andV, are decoupled from each other, nothing changes in our considerations,
except the S system is now described by a proper master equation providing ρS(t) , ρ2

S(t). Finally, as
distinguished above, the tensor-product state (5) satisfies both P- and C-criteria [26] for classicality.

Appendix D. The origin of Equation (7)

Originally, the DISD model [46] is developed for the purposes of combating decoherence in quantum
computation hardware.

It’s a tripartite system of interest, S + S′ + E, defined by the Hamiltonian:

H = HS +HS′ +HE +HSS′ +HS′E, (D.1)

where the double subscript denotes interactions. While not assuming anything about any of the subsystems,
S, S′ and E, the model assumes the interaction HS′E dominates the total system’s dynamics and the system
S′ is in the initial state |p⟩S′ satisfying the ”robustness” condition, HS′E|p⟩S′ |χ⟩E = |p⟩S′ |χp⟩E; the strength of
HS′E is denoted by C while the strength of interaction HSS′ is denoted by c.
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Then the use of the standard perturbation procedure for the (normalized) initial state |Ψp
⟩SS′E =∑

k Ck|k⟩S ⊗ |p⟩S′ ⊗
∑

j β j| j⟩E, one obtains the exact total-system’s state:

|Ψp(t)⟩SS′E =

∑
k

Ck(t) exp(−ıtλ1
kp/ℏ)|k⟩S

 ⊗ exp(−ıtλ/ℏ)|p⟩S′

⊗

∑
j

β′j(t) exp(−ıtλkpj/ℏ)| j⟩E

 + |O(ϵ, t)⟩SS′E. (D.2)

In Eq. (D.2): Ck(t) ≡ Ck exp(−ıtS⟨k|HS|k⟩S/ℏ), λ ≡S′ ⟨p|HS′ |p⟩S′ , β′j(t) ≡ β j exp(−ıt(Cκkj +E ⟨ j|HE| j⟩E)). κpj

represents an eigenvalue of HS′E, λ1
pk =SS′ ⟨pk|HSS′ |pk⟩SS′ is the first-order correction and λkpj is of the order

of the second-order correction to the eigenvalues of HS′E, while ϵ ∼ c/C. Due to λkpj
∼ c/C, after a time

interval τ′ > C/c , the induced correlations of S and E become non-negligible.
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[46] M. Dugić, New strategy for suppressing decoherence in quantum computation, Quantum Computers and Computing 1, 102-111 (2000).
[47] N. Linden, S. Popescu, J. A. Smolin, Entanglement of Superpositions, Phys. Rev. Lett. 97, 100502 (2006),

https://doi.org/10.1103/PhysRevLett.97.100502.
[48] J. Busch, A. Beige, Protecting subspaces by acting on the outside, J. Phys.: Conf. Ser. 254, 012009 (2010), https://doi.org/10.1088/1742-

6596/254/1/012009.
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