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Abstract. In this paper, we introduce a novel class of degenerate Krawtchouk polynomials associated with
degenerate Pascal random variables characterized by parameters r > 0 and q ∈ (0, 1). We derive a variety
of new identities involving these polynomials, particularly focusing on combinatorial identities linked to
the n-th moments of the degenerate Pascal distribution, as well as their connections to special numbers
and polynomials. Furthermore, we extend our framework to define and investigate a two-parameter gen-
eralization, referred to as the two-variable degenerate Krawtchouk polynomials, arising from degenerate
Pascal random variables with parameters q and α. We explore the algebraic and analytic properties of these
polynomials and establish their relationships with the central moments of the associated distributions, as
well as with various classes of special numbers and polynomials.

1. Introduction

Special polynomials and their extensions have been extensively studied by mathematicians and physi-
cists due to their significant roles in diverse scientific disciplines, including physics, applied mathematics,
engineering, and related research fields. These polynomials arise in areas such as differential equations,
number theory, functional analysis, quantum mechanics, and mathematical physics, often providing pow-
erful analytical tools for solving complex problems. Among these, degenerate versions of special polyno-
mials have emerged as an active area of research, yielding numerous arithmetic and combinatorial results.
Notably, symmetric identities for degenerate polynomials have been widely investigated.

The study of degenerate polynomials was pioneered by Carlitz [4], who introduced degenerate Stirling,
Bernoulli, and Euler polynomials by replacing the exponential function ez with (1+λz)1/λ in their generating
functions. This approach recovers the classical polynomials in the limit as λ→ 0. In recent years, research
has expanded to explore various degenerate forms of special polynomials and numbers, including degen-
erate Stirling numbers (first and second kind), degenerate Bernstein polynomials, degenerate Bell numbers
and polynomials, degenerate poly-Genocchi polynomials, degenerate Euler and Bernoulli polynomials,
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degenerate gamma random variables, and degenerate Laplace transforms (see [10, 12, 13, 15–17, 20–22, 25]
and references therein). Building upon these developments, Haroon and Khan [9] investigated degenerate
Hermite-Bernoulli polynomials using p-adic fermionic integrals, leading to new identities that establish
connections with Daehee polynomials in a unified and generalized framework. Duran and Acikgoz [5, 6]
introduced generalized degenerate Gould-Hopper-based Stirling polynomials of the second kind and the
the degenerate Poisson distribution as well as is related to degenerate Bell polynomials such that the mo-
ment generating function of the familiar Poisson distribution coincides with the generating function of
the usual Bell polynomials. They provided several novel representations of these polynomials not only in
terms of classical fully degenerate Bell polynomials but also via generalized degenerate Gould-Hopper-
based Bernoulli, Euler, Genocchi polynomials and the connection for these polynomials related to the
unsigned Stirling numbers of the first kind. In a related direction, Further contributions include the work
of Araci [1] and [2], who studied a new class of generating functions for type 2 Bernoulli polynomials
and a new family of Daehee polynomials called degenerate q-Daehee polynomials with weight α, deriving
several identities involving type 2 Euler polynomials and Stirling numbers of the second kind. Gomaa and
Magar [8] explored generalized Fubini-type polynomials, utilizing generating functions to derive various
combinatorial identities, relations, and probabilistic applications. Frontczak and Tomovski [7] provided
probabilistic interpretations for summation formulas involving generalized Bernoulli and Euler-Genocchi
polynomials of order (r,m), enriching the analytical framework of these polynomial families. Recent work
by Kim and Kim [18] introduced probabilistic variants of degenerate Stirling numbers of the second kind
and degenerate Bell polynomials, grounded in random variables that satisfy certain moment conditions.
Luo et al. [23] developed probabilistic extensions of degenerate Bernoulli and Euler polynomials, leading
to the formulation of probabilistic degenerate r-Stirling numbers of the second kind and two-variable prob-
abilistic degenerate Fubini polynomials. Most recently, Waseem Ahmad Khan et al. [14] investigated a
probabilistic form of the degenerate Jindalrae and Jindalrae-Stirling polynomials of the second kind. They
developed some new properties and formulas, including explicit expressions, symmetric identity, recur-
rence relations and summations formulas. These advancements continue to deepen the interplay between
combinatorial structures, probabilistic methods, and degenerate special functions, revealing new pathways
for analytical exploration and interdisciplinary applications.

During last years, one witnesses the growth of interest to the study of compound Poisson process
and application of these to different problems of probability theory, stochastic analysis and mathemati-
cal physics. The Pascal process is an important example of compound Poisson processes. Krawtchouk
polynomials, originally introduced by Mikhail Kravchuk (Krawtchouk), represent a foundational class of
orthogonal polynomials with deep connections to combinatorics and probability theory. A comprehensive
overview of Kravchuk’s contributions and the historical development of these polynomials up to 2004 is
available in [27]. These polynomials possess intrinsic mathematical richness and have found widespread
applications across diverse scientific fields, including quantum probability, coding theory, electromagnetic
wave propagation, and image processing (see [24] about the notion of its Darboux transformations and
[28] for applications in image analysis). Motivated by the extensive literature on degenerate polynomials
and their probabilistic interpretations, we investigate a new family of degenerate Krawtchouk polynomials
associated with the degenerate Pascal random variables, parameterized by r > 0 and 0 < q < 1. In this
work, we derive novel explicit expressions, establish a variety of recurrence relations, and uncover intricate
identities that connect these polynomials with classical and degenerate combinatorial quantities such as the
Stirling numbers of the first kind, degenerate Stirling numbers of the second kind, degenerate derangement
numbers, and degenerate Frobenius-Euler polynomials.

This study not only expands the framework of degenerate orthogonal polynomials but also opens
avenues for further exploration. Potential directions include applications in probability theory, the study
of differential equations, and the derivation of symmetric identities. Although the translation of these
theoretical results into applied domains such as physics or engineering remains a challenge, it holds
promising potential. Future research will aim to bridge this gap and uncover concrete applications of
degenerate Krawtchouk polynomials in computational and applied sciences.

The structure of the paper is as follows. In Section 2, we introduce a novel class of degenerate Krawtchouk
polynomials defined in terms of the degenerate Pascal random variable with parameters r > 0 and 0 < q < 1.
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We explore their probabilistic foundations by expressing these polynomials through the n-th moments of the
corresponding degenerate Pascal distribution. Several identities and recurrence relations are derived, high-
lighting their combinatorial significance and analytical properties. In Section 3, we extend this framework
by defining a two-parameter family of degenerate Krawtchouk polynomials associated with degenerate
Pascal random variables characterized by parameters 0 < q < 1 and 0 < α < 1. We demonstrate that these
polynomials correspond to degenerate central moments of the underlying distribution and establish new
explicit formulas and relationships that enrich their theoretical structure and potential applicability.

We begin by recalling essential definitions and notations that will be used throughout this work. The
symbols C,R,N, and N∗ denote the sets of complex numbers, real numbers, natural numbers (positive
integers), and non-negative integers, respectively.

A Pascal random variable (also known as a negative binomial random variable) models the number of
failures before achieving r successes in a sequence of independent Bernoulli trials, where each trial results
in a success with probability p ∈ (0, 1). The probability mass function (pmf) of such a random variable X,
taking values inN∗, is given by

Pr([X = k]) := NBp,r({k}) = pr
(
−r
k

)
(−q)k, where q := 1 − p,

and for γ ∈ R, k ∈N∗, the generalized binomial coefficient is defined by(
γ

k

)
=
γ(γ − 1) · · · (γ − k + 1)

k!
.

It is clear that the moment generating function of the measureNBp,r is given by

E(etX) = pr
∞∑

k=0

(
−r
k

)
(−qet)k =

( p
1 − qet

)r
=: Ψ(t, q), (1)

where E(w) indicates the expectation value of the random variable w. Multiplicative renormalization
framework [3] says that the multiplicative renormalizationΨ(t, q) associated with the Pascal measureNBp,r

can be considered as a generating function of the so-called classical Krawtchouk polynomialsK (r)
n (q), i.e.,

Ψ(t, q) =
∞∑

n=0

tn

n!
K

(r)
n (q). (2)

For completeness, we recall the definition of the Stirling numbers of the second kind, denoted S2(n, k),
which satisfy the identity

xn =

n∑
k=0

S2(n, k)(x)k, (n ≥ 0),

where

(x)k :=

1 if k = 0
x(x − 1) · · · (x − k + 1) if k ∈N∗,

and it is well known that [4, 16]

1
k!

(et
− 1)k =

∞∑
n=k

S2(n, k)
tn

n!
, (k ≥ 0). (3)
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Apply the binomial series expansion and using Eq. (3) to show that

∞∑
n=0

K
(r)
n (q)

tn

n!
= pr(1 − qet)−r

= pr
(
1 − q − q(et

− 1)
)−r
,

= pr
[
(1 − q)

(
1 −

q
1 − q

(et
− 1)

)]−r

=
pr

(1 − q)r

[
1 −

q
1 − q

(et
− 1)

]−r

=

∞∑
k=0

(−1)k
(
−r
k

)(q
p

)k
k!

(et
− 1)k

k!

=

∞∑
k=0

(−1)k
(
−r
k

)(q
p

)k
k!
∞∑

n=k

S2(n, k)
tn

n!

=

∞∑
n=0

( n∑
k=0

(−1)k
(
−r
k

)(q
p

)k
k!S2(n, k)

) tn

n!

=

∞∑
n=0

( n∑
k=0

(−1)k(−r)k

(q
p

)k
S2(n, k)

) tn

n!
.

Thus we conclude that classical Krawtchouk polynomials possess the following form

K
(r)
n (q) =

n∑
k=0

(−1)k(−r)k

(q
p

)k
S2(n, k). (4)

To define degenerate extensions of classical functions and polynomials, we introduce the degenerate
exponential function. For any λ ∈ R and z ∈ C, the degenerate exponential function is defined as

ex
λ(z) = (1 + λz)

x
λ =

∞∑
n=0

(x)n,λ
zn

n!
, eλ(z) := e1

λ(z) = (1 + λz)
1
λ , (5)

where (x)n,λ is the degenerate falling factorial defined by

(x)n,λ :=

1, if n = 0,
x(x − λ)(x − 2λ) · · · (x − (n − 1)λ), if n ∈N∗,

with the convention (0)n,λ := 1. In [11], T. Kim introduced the degenerate Stirling numbers of the second kind,
denoted by S2,λ(n, k), as a generalization of the classical Stirling numbers of the second kind. These numbers
appear in the expansion of the degenerate falling factorial (x)n,λ in terms of the classical falling factorials
(x)k, and are defined by the identity

(x)n,λ =

n∑
k=0

S2,λ(n, k)(x)k, for n ≥ 0.

The generating function for the degenerate Stirling numbers of the second kind is given by

1
k!

(eλ(t) − 1)k =

∞∑
k=n

S2,λ(n, k)
tn

n!
, (k ≥ 0). (6)
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2. Degenerate Krawtchouk polynomials associated with degenerate Pascal random variables

Definition 2.1. For λ ∈ R, X is the degenerate Pascal random variable with parameters r > 0 and 0 < q < 1 if its
probability mass function is given by

Pr([X = k]) := NB(λ)
p,r ({k}) = pr (−r)k,λ

k!
(−q)k. (7)

The moment generating function of the degenerate Pascal distributionNB(λ)
p,r is as follows:

E[eX
λ (t)] =

∞∑
k=0

pr (−r)k,λ

k!
(−qeλ(t))k = pr

(
1 − λqeλ(t)

)− r
λ
= pre−r

λ (−qeλ(t)). (8)

Accordingly, we introduce a new family of polynomials, referred to as degenerate Krawtchouk polynomials,
given by

pre−r
λ (−qeλ(t)) =

∞∑
n=0

K
(r)
n,λ(q)

tn

n!
. (9)

We next aim to derive a serval of combinatorial identities involving these polynomials.

Theorem 2.2. Let X be a degenerate Pascal random variables with parameters r > 0 and 0 < q < 1, we have

K
(r)
n,λ(q) = E[(X)n,λ]. (10)

Proof. Firstly, we observe that

E[(X)n,λ] = E
[
X(X − λ) · · · (X − (n − 1)λ)

]
= pr

∞∑
k=0

(−r)k,λ

k!
(−q)k(k)n,λ. (11)

On the other hand, from (5) and (11), we have

∞∑
n=0

K
(r)
n,λ(q)

tn

n!
= pr

∞∑
k=0

(−r)k,λ

k!
(−q)kek

λ(t)

= pr
∞∑

k=0

(−r)k,λ

k!
(−q)k

( ∞∑
n=0

(k)n,λ
tn

n!

)
=

∞∑
n=0

(
pr
∞∑

k=0

(−r)k,λ

k!
(−q)k(k)n,λ

) tn

n!

=

∞∑
n=0

E[(X)n,λ]
tn

n!
. (12)

A term-by-term comparison of equation (12) completes the proof.

Theorem 2.3. For n ∈N, we have

K
(r)
n,λ(q) =

pr

er
λ(−q)

n∑
k=0

( q
1 − λq

)k
(r)k,−λS2,λ(n, k). (13)
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Proof. From (5) and (6), and using the fact that (−r)k,λ = (−1)k(r)k,−λ we have

∞∑
n=0

K
(r)
n,λ(q)

tn

n!
= pre−r

λ (−qeλ(t)) = pr(1 − λqeλ(t))−
r
λ

= pr
(
1 + λq′ + λq′(eλ(t) − 1)

)− r
λ , q′ = −q

= pr
[
(1 + λq′)

(
1 +

λq′

1 + λq′
(eλ(t) − 1)

)]− r
λ

=
pr

(1 + λq′)
r
λ

[
1 +

λq′

1 + λq′
(eλ(t) − 1)

]− r
λ

=
pr

(1 + λq′)
r
λ

∞∑
k=0

(−r)k,λ

( q′

1 + λq′
)k (eλ(t) − 1)k

k!

=
pr

(1 + λq′)
r
λ

∞∑
k=0

(−r)k,λ

( q′

1 + λq′
)k ∞∑

n=k

S2,λ(n, k)
tn

n!

=
pr

(1 − λq)
r
λ

∞∑
n=0

( n∑
k=0

(−r)k,λ

( −q
1 − λq

)k
S2,λ(n, k)

) tn

n!

=
pr

er
λ(−q)

∞∑
n=0

( n∑
k=0

(r)k,−λ

( q
1 − λq

)k
S2,λ(n, k)

) tn

n!
. (14)

A straightforward comparison of coefficients in equation (14) establishes the required identity.

Theorem 2.4. For n ∈N, we have

K
(r)
n,λ(q) =

∞∑
l=0

( l∑
k=0

l−k∑
j=0

(−1)l
(
l
k

)
r jS1(l − k, j)(−r)k,λ(k)n,λ

)ql

l!
. (15)

Proof. For n ≥ 0, the Stirling numbers of the first kind are defined as

(x)n =

n∑
k=0

S1(n, k)xk.

Then for k ≥ 0, it is well known that (see [26])

1
k!

(log(1 + t))k =

∞∑
k=n

S1(n, k)
tn

n!
. (16)

From (16), we observe

em
λ (x) = e

m
λ log(1+λx) =

m∑
k=0

(m
λ

)k (log(1 + λx))k

k!

=

∞∑
k=0

mkλ−k
∞∑

n=k

S1(n, k)
λnxn

n!

=

∞∑
n=0

( n∑
k=0

mkλn−kS1(n, k)
)xn

n!
. (17)
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Then one can see that

pr =
(
1 − λ

q
λ

) rλ
λ
= e−rλ
−λ

( q
λ

)
=

∞∑
n=0

( n∑
k=0

(−rλ)k(−λ)n−kS1(n, k)
) qn

λnn!

=

∞∑
n=0

( n∑
k=0

(−1)nrkS1(n, k)
)qn

n!
.

Hence by using Theorem 2.2 we get

K
(r)
n,λ(q) = E[(X)n,λ]

=

∞∑
m=0

( m∑
j=0

(−1)mr jS1(m, j)
)qm

m!

∞∑
k=0

(−r)k,λ

k!
(−q)k(k)n,λ

=

∞∑
l=0

( l∑
k=0

l−k∑
j=0

(−1)l−kr jS1(l − k, j)
(−r)k,λ

k!
(−q)k(k)n,λ

ql−k

(l − k)!

=

∞∑
l=0

( l∑
k=0

l−k∑
j=0

(−1)l
(
l
k

)
r jS1(l − k, j)(−r)k,λ(k)n,λ

)ql

l!
.

Thus, the statement is established.

Theorem 2.5. For n ∈N, we have

K
(r)
n,λ(q) =

∞∑
l=0

l∑
n1=0

l−n1∑
k2=0

n1∑
k1=0

n∑
k=0

(
l

n1

)
(−1)l+k1 rk1+k2 nk

1λ
n+n1−k1−kql

l!
S1(l − n1, k2)S1(n1, k1)S1(n, k).

Proof. By using (17) we have

e−rλ
−λ

( q
λ

)
=

∞∑
n2=0

( n2∑
k2=0

(−rλ)k2 (−λ)n2−k2 S1(n2, k2)
) qn2

λn2 n2!

and

e−r
λ (−qeλ(t)) =

∞∑
n1=0

( n1∑
k1=0

(−r)k1λn1−k1 S1(n1, k1)
) (−q)n1

n1!
en1
λ (t).

Hence we get

∞∑
n=0

K
(r)
n,λ(q)

tn

n!

= e−rλ
−λ

( q
λ

)
e−r
λ (−qeλ(t))

=

∞∑
l=0

l∑
n1=0

l−n1∑
k2=0

(−rλ)k2 (−λ)l−n1−k2 S1(l − n1, k2)
ql−n1

λl−n1 (l − n1)!
n∑

k1=0

(−r)k1λn1−k1 S1(n1, k1)
(−q)n1

n1!

∞∑
n=0

( n∑
k=0

nk
1λ

n−kS1(n, k)
) tn

n!

=

∞∑
l=0

( l∑
n1=0

l−n1∑
k2=0

n1∑
k1=0

(
l

n1

)
(−1)l+k1 rk1+k2λn1−k1 S1(l − n1, k2)S1,λ(n1, k1)

)ql

l!

∞∑
n=0

( n∑
k=0

nk
1λ

n−kS1(n, k)
) tn

n!

=

∞∑
n=0

[ ∞∑
l=0

l∑
n1=0

l−n1∑
k2=0

n1∑
k1=0

n∑
k=0

(
l

n1

)
(−1)l+k1 rk1+k2 nk

1λ
n+n1−k1−kql

l!
S1(l − n1, k2)S1(n1, k1)S1(n, k)

] tn

n!
.
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The result follows immediately from a direct comparison of coefficients on both sides in the above equation
and the proof is completed.

From [15], Kim et al. naturally considered the degenerate derangement polynomials and degenerate
Frobenius-Euler polynomials, respectively, which are given by

1
1 − t

e−1
λ (t)ex

λ(t) =
∞∑

n=0

dn,λ(x)
tn

n!
=

1
1 − t

ex−1
λ (t) (18)

and

1 − s
eλ(t) − s

ex
λ(t) =

∞∑
n=0

hn,λ(x|s)
tn

n!
. (19)

When x = 0, h∗n,λ(u) := hn,λ(0|u) are called the degenerate Frobenius-Euler numbers and we obtain

1 − s
eλ(t) − s

=

∞∑
n=0

h∗n,λ(s)
tn

n!
. (20)

Theorem 2.6. For n ∈N, we have

1
1 + q

n∑
l=0

(
n
l

)
h∗l,λ(−q−1)K (r)

n−l,λ(q) = prλn
n∑

k=0

∞∑
l=0

(−q)l

l!
dl,λ(1 − r)lkλ−kS1(n, k). (21)

Proof. By using (17) and (18) we have

1
1 + qeλ(t)

e−r
λ (−qeλ(t)) =

∞∑
n=0

dn,λ(1 − r)
(−qeλ(t))n

n!
.

Thus we obtain

1
1 + qeλ(t)

∞∑
n=0

K
(r)
n,λ(q)

tn

n!
=

1
1 + qeλ(t)

pre−r
λ (−qeλ(t))

=

∞∑
l=0

prdl,λ(1 − r)
(−qeλ(t))l

l!

=

∞∑
l=0

prdl,λ(1 − r)
(−q)l

l!

∞∑
n=0

( ∞∑
k=0

lkλn−kS1(n, k)
) tn

n!

=

∞∑
n=0

( n∑
k=0

∞∑
l=0

prdl,λ(1 − r)
(−q)l

l!
lkλn−kS1(n, k)

) tn

n!
. (22)

On the other hand by using (20) we get

1
1 + qeλ(t)

∞∑
n=0

K
(r)
n,λ(q)

tn

n!
=

q−1

eλ(t) + q−1

∞∑
n=0

K
(r)
n,λ(q)

tn

n!

=
q−1

1 + q−1

1 − (−q−1)
eλ(t) − (−q−1)

∞∑
n=0

K
(r)
n,λ(q)

tn

n!

=
1

1 + q

∞∑
l=0

h∗l,λ(−q−1)
tl

l!

∞∑
n=0

K
(r)
n,λ(q)

tn

n!

=
1

1 + q

∞∑
n=0

( n∑
l=0

(
n
l

)
h∗l,λ(−q−1)K (r)

n−l,λ(q)
) tn

n!
. (23)
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Thus, from (22) and (23) we have

1
1 + q

n∑
l=0

(
n
l

)
h∗l,λ(−q−1)K (r)

n−l,λ(q) = prλn
n∑

k=0

∞∑
l=0

(−q)l

l!
dl,λ(1 − r)lkλ−kS1(n, k).

Theorem 2.7. For n ∈N, we have

d
dq
K

(r)
n,λ(q) =

r
1 − λq

n∑
l=0

(
n
l

)
hl,λ(1|λ−1q−1)K (r)

n−l,λ(q) −
r
p
K

(r)
n,λ(q). (24)

Proof. First we note that

d
dt

ex
λ(t) = xex−λ

λ (t). (25)

By using (19) and (25), we get

d
dq

( ∞∑
n=0

K
(r)
n,λ(q)

tn

n!

)
=

d
dq

(
(1 − q)re−r

λ (−qeλ(t))
)

= −r(1 − q)r−1e−r
λ (−qeλ(t)) + r(1 − q)reλ(t)e−r−λ

λ (−qeλ(t))

=
[
reλ(t)e−λλ (−qeλ(t)) −

r
1 − q

]
(1 − q)re−r

λ (−qeλ(t))

=
[
r

eλ(t)
1 − λqeλ(t)

−
r

1 − q

] ∞∑
m=0

K
(r)
m,λ(q)

tm

m!

= r
[ (−λq)−1

1 − (λq)−1

1 − (λq)−1

eλ(t) − (λq)−1 eλ(t) −
1
p

] ∞∑
m=0

K
(r)
m,λ(q)

tm

m!

= r
[ 1
1 − λq

∞∑
l=0

hl,λ(1|λ−1q−1)
tl

l!
−

1
p

] ∞∑
m=0

K
(r)
m,λ(q)

tm

m!

=
r

1 − λq

∞∑
n=0

n∑
l=0

(
n
l

)
hl,λ(1|λ−1q−1)K (r)

n−l,λ(q)
tn

n!
−

r
p

∞∑
n=0

K
(r)
n,λ(q)

tn

n!

=

∞∑
n=0

[ r
1 − λq

n∑
l=0

(
n
l

)
hl,λ(1|λ−1q−1)K (r)

n−l,λ(q) −
r
p
K

(r)
n,λ(q)

] tn

n!
. (26)

Thus, by equating the corresponding coefficients in (26), we obtain the desired identity.

Theorem 2.8. For n ∈N, we have

K
(r)
n+1,λ(q) = pr

∞∑
m=1

(r)m,−λ

(m − 1)!
qm(m − λ)n,λ. (27)
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Proof. By using (5) and (25), we get

d
dt

( ∞∑
n=0

K
(r)
n,λ(q)

tn

n!

)
= pr d

dt

(
e−r
λ (−qeλ(t))

)
= pr d

dt

(
1 − λqeλ(t)

)− r
λ

= pr d
dt

[ ∞∑
m=0

(
−r/λ

m

)
(−1)m(λq)mem

λ (t)
]

= pr
∞∑

m=0

(−1)m (−r)m,λ

m!
qmmem−λ

λ (t)

= pr
∞∑

m=1

(−1)m (−r)m,λ

(m − 1)!
qm

∞∑
n=0

(m − λ)n,λ
tn

n!

= pr
∞∑

n=0

( ∞∑
m=1

(r)m,−λ

(m − 1)!
qm(m − λ)n,λ

) tn

n!
. (28)

On the other hand, we have

d
dt

( ∞∑
n=0

K
(r)
n,λ(q)

tn

n!

)
=

∞∑
n=1

K
(r)
n,λ(q)

tn−1

(n − 1)!
=

∞∑
n=0

K
(r)
n+1,λ(q)

tn

n!
. (29)

Therefore, by comparing the coefficients of (28) and (29) we obtain the desired result.

3. The two variables Degenerate Krawtchouk polynomials

In this section, we introduce a new class of two-variable degenerate Krawtchouk polynomials associated
with degenerate Pascal random variables characterized by the parameters 0 < q < 1 and 0 < α < 1.
We proceed to derive some explicit expressions and identities for these polynomials, highlighting their
structural properties and potential connections to known combinatorial constructs.

Definition 3.1. The two-variable degenerate Krawtchouk polynomials are defined via the generating function:
∞∑

n=0

K
(r)
n,λ(q, α)

tn

n!
= pre−r

λ (−qeλ(t))e
α−q
λ (t). (30)

Theorem 3.2. Let X be a degenerate Pascal random variables with two parameters q and α. For n ∈N, we have

K
(r)
n,λ(q, α) = E

[
(X − q + α)n,λ

]
. (31)

Proof. By using (7), we have

E[eX−q+α
λ (t)] =

∞∑
k=0

ek−q+α
λ (t)NB(λ)

p,r ({k})

= eα−q
λ (t)

∞∑
k=0

ek
λ(t)p

r (−r)k,λ

k!
(−q)k

= preα−q
λ (t)

∞∑
k=0

(−r)k,λ

k!
(−qeλ(t))k

= preα−q
λ (t)e−r

λ (−qeλ(t))

=

∞∑
n=0

K
(r)
n,λ(q, α)

tn

n!
. (32)
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On the other hand, we observe that

E
[
eX−q+α
λ (t)

]
= E

[ ∞∑
n=0

(X − q + α)n,λ
tn

n!

]
=

∞∑
n=0

E
[
(X − q + α)n,λ

] tn

n!
. (33)

Therefore, by comparing the coefficients of (32) and (33) we obtain the desired result.

Theorem 3.3. For n ∈N, we have

K
(r)
n,λ(q, α) =

n∑
l=0

(
n
l

)
K

(r)
l,λ(q)(α − q)n−l,λ. (34)

Proof. From (5) and (9), we have
∞∑

n=0

K
(r)
n,λ(q, α)

tn

n!
= pre−r

λ (−qeλ(t))e
α−q
λ (t)

=

∞∑
l=0

K
(r)
l,λ(q)

tl

l!

∞∑
m=0

(α − q)m,λ
tm

m!

=

∞∑
n=0

( n∑
l=0

(
n
l

)
K

(r)
l,λ(q)(α − q)n−l,λ

) tn

n!
. (35)

Therefore, by comparing the coefficients on both sides of (35), we obtain the desired result.

The identity below plays a crucial role in the proof of the next theorem:

(x + y)n,λ =

n∑
k=0

(
n
k

)
(x)k,λ(y)n−k,λ, n ≥ 0.

For more details see [19].

Theorem 3.4. For n ∈N, we have

K
(r)
n,λ(q, α) =

pr

er
λ(−q)

n∑
l=0

l∑
k=0

(
n
l

)
(α − q)n−l,λ

( q
1 − λq

)k
(r)k,−λS2,λ(l, k). (36)

Proof. From Theorem 2.2, Theorem 2.3 and Theorem 3.2, we have

K
(r)
n,λ(q, α) = E

[
(X − q + α)n,λ

]
=

n∑
l=0

(
n
l

)
(α − q)n−l,λE[(X)l,λ]

=

n∑
l=0

(
n
l

)
(α − q)n−l,λK

(r)
l,λ(q)

=

n∑
l=0

(
n
l

)
(α − q)n−l,λ

pr

er
λ(−q)

l∑
k=0

( q
1 − λq

)k
(r)k,−λS2,λ(l, k)

=
pr

er
λ(−q)

n∑
l=0

l∑
k=0

(
n
l

)
(α − q)n−l,λ

( q
1 − λq

)k
(r)k,−λS2,λ(l, k).

Thus, we get the desired result.
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Corollary 3.5. Let X be a degenerate Pascal random variables with parameters r > 0 and 0 < q < 1. For n ≥ 0, we
get the Pascal degenerate central moments of X as follows:

E
[
(X − q)n,λ

]
=

pr

er
λ(−q)

n∑
l=0

l∑
k=0

(
n
l

)( q
1 − λq

)k
(−q)n−l,λ(r)k,−λS2,λ(l, k).

Theorem 3.6. For n ∈N, we have

K
(r)
n,λ(q, α) =

n∑
l=0

l∑
k=0

(
n
l

)
(α − q)kλl−kS1(l, k)K (r)

n−l,λ(q). (37)

Proof. By using (9) and (17), we have
∞∑

n=0

K
(r)
n,λ(q, α)

tn

n!
= pre−r

λ (−qeλ(t))e
α−q
λ (t)

=

∞∑
j=0

K
(r)
j,λ(q)

t j

j!

∞∑
l=0

( l∑
k=0

(α − q)kλl−kS1(l, k)
) tl

l!

=

∞∑
n=0

( n∑
l=0

l∑
k=0

(
n
l

)
(α − q)kλl−kS1(l, k)K (r)

n−l,λ(q)
) tn

n!
. (38)

Consequently, identification of the coefficients on both sides of equation (38) completes the proof.

Theorem 3.7. For n ∈N, we have

1
1 + q

n∑
l=0

(
n
l

)
h∗l,λ(−q−1)K (r)

n−l,λ(q, α) = pr
n∑

k=0

∞∑
l=0

(−q)l

l!
(l + α − q)kλn−kdl,λ(1 − r)S1(n, k). (39)

Proof. By using (9), (17) and (18), we have

1
1 + qeλ(t)

∞∑
n=0

K
(r)
n,λ(q, α)

tn

n!
=

1
1 + qeλ(t)

pre−r
λ (−qeλ(t))e

α−q
λ (t)

= pr
∞∑

l=0

dl,λ(1 − r)
(−qeλ(t))l

l!
eα−q
λ (t)

= pr
∞∑

l=0

dl,λ(1 − r)
(−q)l

l!
el+α−q
λ (t)

= pr
∞∑

l=0

dl,λ(1 − r)
(−q)l

l!

∞∑
n=0

( n∑
k=0

(l + α − q)kλn−kS1(n, k)
) tn

n!

= pr
∞∑

n=0

( n∑
k=0

∞∑
l=0

(−q)l

l!
(l + α − q)kλn−kdl,λ(1 − r)S1(n, k)

) tn

n!
. (40)

On the other hand, by the same way of (23), we get

1
1 + qeλ(t)

∞∑
n=0

K
(r)
n,λ(q, α)

tn

n!
=

1
1 + q

∞∑
n=0

n∑
l=0

(
n
l

)
h∗l,λ(−q−1)K (r)

n−l,λ(q, α)
tn

n!
. (41)

Thus, by comparing the coefficients of (40) and (41), we get the desired result.
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