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Invariant subspaces associated with class p-wA(s, t) operators

M.H.M. Rashid?

?Department of Mathematics-Faculty of Science P.O.Box(7), Mutah university-Al-Karak-Jordan

Abstract. In this paper, we establish that when T € 2(¢) belongs to a class denoted as p-wA(s, t) with
0<p<landO<s,t,s+t<1,the quasi-nilpotent component Hy(T) of T is defined as follows:

ker(T') = {x € 7 : r2(x) = O} = [ (T = A" 2.
A#0

This characterization holds for sufficiently large integer values of p, where rr(x) = lim,_,, sup ||T”x||'17.
Furthermore, when the spectrum ¢(T) is finite and T belongs to the class p-wA(s, t), we demonstrate that
T is an algebraic operator. Moreover, in the case where T € Z(J¢) is part of the class p-wA(s,t) and
possesses the decomposition property (0), there exists a non-trivial invariant closed linear subspace of T.
Additionally, we uncover that an operator exhibiting such a diverse spectrum also possesses a nontrivial

invariant subspace. The exploration of the existence of invariant and hyperinvariant subspaces is further
elaborated upon in this study.

1. Introduction

Assuming 2 is an infinite-dimensional complex Banach space, we use the symbol #(.2") to denote the
algebra of all bounded linear operators on 2. Similarly, if .7# represents an infinite-dimensional complex
Hilbert space, we denote the algebra of all bounded linear operators on ¢ as %(7).

Throughout this paper, the terms “range” and "null space” of an operator T are denoted by ran(T) and
ker(T), respectively. We also use the notations o(T), o5, 04(T), 0,(T), p(T), and r(T) to represent the spectrum,
the surjective spectrum, the approximate point spectrum, the point spectrum, the resolvent set, and the
spectral radius of T, respectively. Additionally, we define Lat(T) to represent the collection of all closed
linear subspaces of .7# that are invariant under T. For T € #(5) and .# € Lat(T), we use T|_4 to denote
the restriction of T to ..

An operator T € #A(57) is considered decomposable if, for every open cover C = % U ¥ of the complex
plane C, there exist .# and 9 in Lat(T) such that:

H=MM+N, 6(T|4) €% and o(T|p) € 7.

This definition of decomposability is consistent with the original concept developed by Foias in 1963, as
documented in the classic volumes by Colojoarvd and Foias [10] and [24]. The theory of decomposable
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operators has recently seen significant development, with numerous intriguing connections and applica-
tions. Notably, all normal operators on Hilbert spaces and, more broadly, all spectral operators in the
Dunford sense on Banach spaces fall under the category of decomposable operators. Additionally, it can be
shown through a straightforward application of Riesz functional calculus that operators with completely
disconnected spectra are also decomposable. Hence, algebraic and compact operators can be decomposed
as well.

If there exists a continuous algebra homomorphism @ : ¢(C) — #A(Z") with ®(1) = [ and O(z) = T,
then we refer to T € A(X") as a generalized scalar operator (see [15]). Here, ¢(C) denotes the algebra of
all infinitely differentiable functions on C, and the topology is determined by the universal convergence
of these functions and their derivatives ([10]). An operator resembling a generalized scalar operator, but
restricted to one of its closed invariant subspaces, is termed a subscalar operator, and such operators are
considered subdecomposable (see [15]). Each operator T € #(7) can be expressed as T = U|T|, where %
is a partial isometry, and |T| represents the square root of T*T. When the kernel condition ker U = ker T
uniquely determines %, this decomposition is referred to as the polar decomposition of T. In this paper,
we use T = U|T| to denote the polar decomposition that satisfies the kernel condition ker U = ker [T].

An operator T € B(H) is considered hyponormal if T*T > TT". The Aluthge transformation, introduced
by Aluthge[4], is defined as T = |T|% UlTI%, where T = U|T| is the polar decomposition of T € B(H). The
generalized Aluthge transformation T(s, t) with 0 < s, t is defined as T(s, t) = [TFU|T/".

To recall, an operator T € B(H) is labeled as p-hyponormal if (T*T)” > (TT*)” and belongs to class
WA(s, t) if (T*F[T/®|T*")s > |T** and [T/ > (ITF|T*¥|TF)s ([20]). Furuta et al. [18] introduced class A(k)
for k > 0 as a class of operators that encompasses p-hyponormal and log-hyponormal operators, with A(1)
coinciding with a class A operator. An operator T is designated as class A(k), k > 0, if (T*lTIZkT)kl*1 > |T).

Fors,t > 0and 0 < p < 1, an operator T € A(J¢) is defined as class p-A(s, t) (or belonging to class
p-A(s, 1)) if (|T*|t|T|25|T*It)% > |T**" ([28]). It is termed class p-wA(s, t) ([28]) if the following conditions are
satisfied: ) ‘

(TIPS 2 [TPP and (TP > (TFTPITR),

or equivalently,
IT(s, D)7 > [TP% and [TPP > (T(s, )]

For a given operator T € #(J¢) and a linear subspace .# within J#, we define .# as an invariant subspace of
T when T.# C .# . It's evident that both 0 and .77 qualify as invariant subspaces, and if .# is an invariant

subspace, then its closure, denoted as _#, also remains invariant. Specifically, an .# C 7 is termed a
hyperinvariant subspace for T € Z(s¢) if it stays invariant under every S € #(J¢) that commutes with T.
Therefore, the intriguing closed invariant subspaces are those that are not trivial. The invariant subspace
problem inquires whether every operator on a complex separable Hilbert space possesses a nontrivial
invariant subspace. This problem traces back to approximately 1935 when, as stated in [5], ]. von Neumann
demonstrated that every compact operator on a separable infinite-dimensional complex Hilbert space has
a nontrivial subspace. In 1954, Aronszajn and Smith [5] established that if .77 is an infinite-dimensional
complex Hilbert space, and T € #(5) is completely continuous, then T possesses a nontrivial invariant
subspace. In 1966, Bernstein and Robinson [7] verified that if 5 is a complex Hilbert space, and T € #(57)
is a polynomially compact operator, i.e., there exists a non-zero polynomial p such that p(T) is compact, then
T has a nontrivial invariant subspace. The proof involves non-standard analysis techniques similar to those
in [5]. In the same year, Halmos [13] offered an alternative proof of this result using a similar approach but
avoiding non-standard tools.

An operator Y € #() is classified as a quasiaffinity if it possesses a trivial kernel and a dense range.
An operator T in #(J) is termed a quasiaffine transform of another operator Z in Z(J7) if there exists a
quasiaffinity Y in #(¢) such that YT = ZY. This relationship between Z and T is denoted as T < Z. If both
T < Z and Z < T, then we describe Z and T as quasisimilar.

In 1990, Eschmeier and Prunaru [16] established a significant result regarding the richness of Lat(T). They
demonstrated that Lat(T) contains the lattice of all closed subspaces of some infinite-dimensional Banach
space, provided that the essential spectrum ¢,(T) is sufficiently extensive. Additionally, they showed that
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Lat(T) is nontrivial when the spectrum o(T) is also sufficiently extensive. While we won’t delve into the
formal definition of “thick” subsets of the complex plane here, it’s worth noting that thick sets include all
compact sets with non-empty interiors. The invariant subspace problem has sparked a significant amount
of research in operator theory, as indicated by the citations provided by [6], [1], [8], [9], [32], and [30].

Here is an overview of the paper’s organization: In the following section, we present preliminary
definitions and observations related to class p-wA(s, t) operators. The third section focuses on addressing
the issue of invariant subspaces for a class of p-wA(s, t) operators. Specifically, we demonstrate that if T
falls into the class p-wA(s, t) and has a finite spectrum o(T), then T is algebraic. Moreover, we establish that
if T is a class p-wA(s, t) operator with the decomposition property (6), it possesses a non-trivial invariant
closed linear subspace. We also uncover that operators with such rich spectra have nontrivial invariant
subspaces. Additionally, we explore the existence of invariant and hyperinvariant subspaces for class
p-wA(s, t) operators. Furthermore, if T belongs to the class p-wA(s, ) and is not a scalar multiple of the
identity, and if there exists a constant K and a positive integer m such that |[|T"|| < K|n|" for n = +1,+2,---,
then we establish that T has a hyperinvariant subspace.

2. Preliminaries and Complementary results

The local resolvent set pr(x) of the operator T at a vector x in 2" is defined as the collection of all complex
numbers A in C for which there exists an analytic function 1 that maps to 2" and is defined on an open
neighborhood % of A, satisfying the equation:

(T-wy(u)=x, forallue %.

The formula o1(x) = C\ pr(x) characterizes the local spectrum. It’s important to note that the local spectrum
ot(x), which is a subset of the spectrum ¢(T), may be empty. Additionally, as established in [24], we have:

o(T) = ) or®)

xeZ

For T € (%) and # C C, we define Hy(.#) as the local spectral subspace, given by:
HT(y) ={xe Z :o1(x) c Z}.

It's worth noting that Hr(.%) is a linear subspace of 2", although not necessarily closed. If Hy(.#) is closed
for every closed subset .7 of C, then the operator T is said to possess Dunford’s property (C).

Moving on, an operator T € #(Z") is considered to have the single valued extension property (SVEP
for short) at A € C if there exists an open disc V centered at A such that for every open subset % C ¥, the
only solution to the equation (T — p)y(u) = 0 for all u € % is the constant function f = 0.

An operator T € #(Z) is deemed to possess the single valued extension property (SVEP for brevity) at
a point A € C if there exists an open disk V centered around A such that for every open subset % C ¥, the
sole analytic solution of the equation

(T-wy(u)=0forallye %.

The algebraic spectral subspace E1(.%) is constructed as the linear span of a set comprising various (poten-
tially non-closed) linear subspaces .# of # for which the equation (T — A).# = .# holds true for every A
belonging to C \ .%. This subspace is closely associated with the operator T and corresponds to each closed
subset.# of C. Evidently, Et(.%) is the largest linear subspace .# for which (T-A).# = .# forallA € C\ .%.
It follows from Proposition 1.2.16 of [24] that Hy(.#) C E1(.%) forevery T € () and all closed set.# C C.
Thus if T has no non-trivial divisible subspace in the sense that E1(0) = {0}, then clearly T has SVEP. By the
open mapping theorem, we observe, for a closed set F C C that if E7(.%) is closed, then E1(.%#) = Hr(.%), see
[24].

For an openset % of C, let F(U, Z") be the Fréchet space of all 2 -valued analytic function on % endowed
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with the topology defined by uniform convergence on every compact subset of %/. An operator T € #(Z")
is said to satisfy the Bishop’s property (8) on an open set % C C provided that for every open subset ¥ of
% and for any sequence (i), of analytic 2 -valued functions on V,

(T — wpu(u) — 0 in F(¥, Z°) implies ,,(u) — 0 in F(¥, Z°).

Let pg(T) be the largest open set on which T has the property (B). Its complement og(T) = C \ pg(T) is a
closed, possibly empty, subset of o(T). Then T is said to satisfy the Bishop’s property (B), precisely when
op(T) = 0, [3, 27]. Clearly, ET(#) represents the most extensive linear subspace .# where (T — A\).# = .#
forall A € C\ #. Proposition 1.2.16 from [24] establishes that, for any T € #(57) and every closed set
F CC, Hr(#) € Ex(#). Thus, if T lacks any non-trivial divisible subspace, meaning Et(0) = 0, it logically
implies that T has the Single Valued Extension Property (SVEP), based on the Open Mapping Theorem.

Furthermore, according to the Open Mapping Theorem, for a closed set . C C, if E1(%) is a closed
subspace, then E1(.#) = Hr(.#), as outlined in [24].

Now, moving on to the Bishop’s property, consider an open set % within C. Let F(U, Z") denote the
Fréchet space of all analytic functions mapping to 2" on %, equipped with the topology defined by uniform
convergence on every compact subset of 7. An operator T € %(Z") is said to possess Bishop’s property
(B) on an open set  C C if, for any open subset ¥ of % and for any sequence ({',),, of analytic 2 -valued
functions on V:

(T = wWu(u) — 0in F(¥, Z) implies i, () — 0 in F(¥', Z).

Let pg(T) represent the largest open set over which T possesses property (8). Its complement, o4(T) =
C\ pp(T), is a closed subset of o(T), which may potentially be empty. Hence, T is deemed to satisfy Bishop’s
property () precisely when o4(T) = 0, as indicated in [3] and [27].

It is well-known that

Property (f) = Dunford’s property (C) = SVEP.

To incorporate the dual concept of Bishop’s property () into the local spectral subspace, we introduce a
modified version called the global spectral analytic space denoted as Xt(.#). This space consists of vectors
x € Z for which there exists an analytic function ¢ : C \ # — %" such that:

(T-wy(u)=x, forallpeC\ .#.

Notably, the analytic function 1 is defined globally over the entire complement of .%. Clearly, the linear
subspace Xt(.#) is contained within Hr(.#). Additionally, when T satisfies the Single Valued Extension
Property (SVEP) [24, Proposition 3.3.2], the equivalence Xt(.#) = Hr(.#) holds for all closed sets .# C C.
Now, turning our attention to the property (5), an operator T € Z(X%) is considered to have the
decomposition property (5) on % if, for all open sets ¥, % C C where C\ % C ¥ C ¥ C #, the following
holds: .
Xr(C\ )+ Xe(W) =X

Let p5(T) denote the largest open set on which the operator T possesses property (0). Its complement
05(T) = C\ ps(T) is a closed subset of o(T), which may potentially be empty, as indicated in [27, Corollary
17]. Therefore, T is said to have the decomposition property () if o5(T) = 0.

It's worth noting that properties (8) and (0) are dual to each other in the sense that T has property () on
% if and only if T* has property (0) on % [3, 27]. Moreover, we have the equivalences:

O@(T) = Cfﬁ(T*) and O'(s(T*) = O'ﬁ(T)

The operator T € #(X") is deemed decomposable on % if, for every finite open cover %,--- , %, of C,
where o(T) \ Z <€ 74, there exist closed T-invariant subspaces 21, 23, -+, Zn of 2 such that:

o(T|Z) % fori=1,--- ,nand 27+ 2o+ + 2, = Z.



M.H.M. Rashid / Filomat 39:26 (2025), 9289-9302 9293

Let ps(T) denote the largest open set % C C on which the operator T exhibits decomposability. Its
complement, 04(T) = C \ py(T), is a closed subset of o(T), which may potentially be empty.

We describe T as decomposable if 64(T) = 0. This class of operators encompasses all normal operators
and, more broadly, all spectral operators. Additionally, operators with completely disconnected spectra can
be decomposed using the Riesz functional calculus. Consequently, the category of decomposable operators
includes compact and algebraic ones.

Furthermore, it’s worth noting that property () characterizes operators with decomposable extensions,
as established in [3]. Thus, property (B) remains intact under restrictions, while property (0) is transferred
to quotient operators. For more comprehensive details, refer to [24]. We have

04(T) = p(T) U 05(T) = 04(T) U 04(T") = 04(T").

Let F(% , X) represent the Fréchet space encompassing all X-valued C*-functions, i.e., functions that are
infinitely continuously differentiable on % (as defined in [15]). We designate T as possessing the Eschmeier-
Putinar-Bishop’s property ()., denoted as T € ()., if, for every open set % within C, the operator

T.: F(%,x) — E%,X), f— (T-2)¢

constitutes a topological monomorphism. In simpler terms, T,i),, — 0 implies ¢, — 0 for ¢, € F(% , X).

The property (). serves an analogous role for generalized scalar operators as Bishop’s property () does
for decomposable operators. Specifically, an operator T satisfies (). if and only if T is subscalar as defined
in [15], meaning it possesses a generalized scalar extension.

In the realms of local spectral theory and Fredholm theory, two significant subspaces are Ht(A) associated
with the singleton A, and Ht(C \ A).

It’s noteworthy that Hr(A) coincides with the quasi-nilpotent part of an operator A — T, which is defined
as:

Ho(A=T) = {x € 2 : lim |[(A - T)"x||" = O}.

It’s evident that ker(A — T)" C Hyp(A — T) for every natural number n. Additionally, Hr(C \ A) corresponds
to the analytic core K(A — T), which is defined as the set of all x € .7 for which there exists a constant ¢ > 0
and a sequence of elements x,, € . satisfying xo = x, Tx, = x,-1, and ||x,|| < ¢" ||x|| for all n € IN.
It’s essential to note that, in general, Hy(A — T) and K(A — T) are not closed subspaces. Furthermore, it’s
observed that:
the closdness of Hy(A — T) = T has the SVEP at A.

Definition 2.1. An operator T € () is deemed to possess property (Q) if, for each A € C, the subspace Hy(A —T)
is closed.

It follows that
Property (f) = Dunford’s property (C) = Property (Q) = SVEP.

For an operator T € %(7¢) acting on a Hilbert space .7 and an element x € ¢, we define the quantity:
rr(x) == 31_130 sup ||T”x||'17
This quantity is referred to as the local spectral radius of T at x. It's evident that, for all x € .77
max{|A| : A € o1(x)} < rr(x)

for all x € . According to Proposition 3.3.13 from [24], if T has the Single Valued Extension Property
(SVEP), then the local spectral radius formula is valid:

rr(x) = max{|A| : A € o1(x)}

This holds true for all non-zero x € .. However, for operators lacking SVEP, this inequality may be strict.
The upcoming theorem elucidates the spectral characteristics of class p-wA(s, t), which hold significant
importance for the subsequent discussion.
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Theorem 2.2. For T € () with0 <p <1and 0 <s,t < 1wheres +t <1, the following statements hold:

(i) If T belongs to class p-wA(s, t), then T(s, t) is %”f’pt-hyponormal (as stated in [28]).
(ii) If T is invertible and falls into class p-wA(s, t), then T~ also belongs to class p-wA(s, t) (as noted in [28]).
(iii) If T is classified as a class p-wA(s, t) operator, then T is normaloid (as per [29]).
(iv) If T is a class p-wA(s,t) operator, then it possesses Bishop’s property (B) and Eschmeier-Putinar-Bishop’s
property (B)., making T subscalar (as stated in [35]).
(v) For T in class p-wA(s,t), the non-zero point spectrum and the non-zero joint point spectrum coincide (as
mentioned in [31]).
(vi) For T in class p-wA(s, t), the non-zero approximate point spectrum and the non-zero joint approximate point
spectrum also coincide (as indicated in [31]).
(viit) If T is a class p-wA(s, t) operator and .# is T-invariant, then T| 4 is a class A(s, t) operator.

Definition 2.3. An operator T € JB8(I) is considered to have property (1) if it satisfies Bishop's property () and if
there exists a positive integer p such that the following condition holds for all closed sets % C C:

Hr(Z) = Ex(Z) = ﬂ (T = A A for all closed sets F C C.
AeC\F
Theorem 2.4. If T € HA(5C) is a class p-wA(s, t) operator with 0 < p < 1and 0 < s,t, s +t < 1, then T possesses
property (I).
Proof. The proof can be derived from Theorem 2.2 (iv) and Theorem 4 in [27]. [

Theorem 2.5. If T € () belongs to class p-wA(s,t) with0 <p < 1land 0 <s,t, s+t <1, then Hy(T — A) =
ker(T — A) forall A € C.

Proof. Let # C C be a closed set. According to Theorem 2.20 in reference [2], we have Ho(T — A) = Xt(A).
Since T possesses Bishop’s property, as stated in Theorem 2.2(iv), and according to Proposition 1.2.19 from
[24], X1(.#) is a closed subspace, and o(T|x,(#)) C #. Therefore, in accordance with Theorem 2.2, T|g,(r-1)
is a class p-wA(s, t) operator, and Ho(T — A) is a closed subspace.

Using Lemma 7 from [33], T|g,(r-4) is normal if o(T|g,cr-1)) € {A}. If 0(Tlgyr-1)) = 0, then Ho(T - A) = {0}
and ker(T — A) = {0}. If G(Tng(Tf/\)) = {A}, then T|H0(Tf/\) =Aand Hy(T - A) =ker(T-A). O

Theorem 2.6. If T € %(H) belongs to class p-wA(s, t) with0 < p < 1and 0 < s,t,s+t < 1, and its spectrum o(T)
is contained within S' := {z € C : |z| = 1}, then T is a unitary operator.

Proof. Based on the assumption about T, it follows that T is invertible. Consequently, as per Theorem 2.2,
T! also falls into the class p-wA(s, t), making both T and T~! normaloid operators. Consequently, their
spectral radii are bounded by 1, which implies that T must be an isometry. This conclusion can be justified
by noting that for any x € ¢

el = [T Te]| < ITxl < [l

Hence, T must be a unitary operator. []

3. Main results

This section is dedicated to demonstrating the presence of invariant and hyperinvariant subspaces for
specific operators belonging to the class p-wA(s, t), where 0 < p <land 0 <s,f,s+t < 1.

Theorem 3.1. Suppose T € () is a class p-wA(s, t) operator with 0 < p < 1and 0 <s,t, s+t < 1. Then,
M, o0 [[T"x|[" = 0 if and only if there exists an integer p > 0 such that TPxy = 0. Additionally, ker(T?) = Hr(0)
represents the quasi-nilpotent component of T. In this scenario, we have:
Hy(T) = ker(T") = Ex({0}) = {x € 2 : rr(x) = 0} = ﬂ (T-Ay2,
Ae€\(0}

where rr(x) denotes the local spectral radius of T at x.
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Proof. Suppose that T is a class p-wA(s, t) operator. Then, as indicated in Theorem 2.4, there exists an integer
p such that the following equality holds for all closed sets .# C C:

Ex(F)=H(P)= ] (T-ppt.
ueC\&#

For each A € .%, we can derive:

Ex((A) = [)(T - pyr.

A#u
Consequently, we have:
(T = AVEr(iAh = (T =AY [ \(T - M)W]
A#u
< (YT —wpr = He(® = (0},

ueC

since T possesses the single-valued extension property. This leads to the conclusion that (T — A)?Et(A) =0,
implying that E1(A) C ker(T — A)? for all A € .#. On the other hand, according to Proposition 1.2.16 of [24],
it follows that:

ker(T - )" € Hr({4)) € Ex({A})

for all A € .# and k € IN, which further leads to:
ker(T — A)’ = Hr({A}) = ET({A}) forall A € .%#.

Thus we have
ker(T¥) = Hy(T) = Hr({0}) = Ex({0}) = [ |(T - Ay .
A#£0

Since T has Bishop’s property (B), it also has the Single-Valued Extension Property (SVEP), and hence, by
Corollary 2.4 of [23], we can conclude:

Hr({0}) = {x € 2 : lim |[T"x||" = O}
n—00

Finally, it follows from Proposition 3.3.7 of [24] that rr(x) = lim;—e ||T”x||%, which completes the proof. [

Theorem 3.2. Suppose we have an operator T € FB() that falls into the category of a class p-wA(s, t) operator,
with0 <p < land 0 <s,t, such that s +t < 1. In the case where T has a finite spectrum, it can be deduced that T is
algebraic. To elaborate further, if T happens to be quasi-nilpotent, it follows that T is, in fact, nilpotent.

Proof. Suppose we have an operator T belonging to the class of p-wA(s, t) operators with 0 < p < 1 and
0 <s,t, such thats + ¢t < 1. According to Theorem 2.4, there exists an integer p such that the equality

Ex(#)=Hi(F)= (| (T-pp
ueC\F#

holds for all closed sets F € C. If we assume that the spectrum o(T) is finite, given by Ay, A,,---, A, as
established in Theorem 3.1, then there exist positive integers p, € N for each k =1,2,-- -, n, satisfying

Et1({Ax}) = Hr({Ax)) = ker(T — Ag)Px.
This further leads to the result that

Hr(@(T)) = Ex(@(T) = (| (T—pyr =,
ueC\o(T)
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given that T — p is invertible for each p € C\ o(T). Therefore, we can conclude, based on Theorem 1 of [34],
that

A = Hr(o(T)) = Hr({A1}) @ Hr({A2}) @ - - - & Hr({An})
=ker(T— A1) dker(T— A2 @ --- ® ker(T — A,)"

as an algebraic direct sum. Consequently, we can deduce that there exists a complex polynomial p(A)
defined for all A € C as
p(A) = (A = A1 (A = Ag)P2 -+ - (A = AP

which satisfies p(T) = 0. This, in turn, implies that T is an algebraic operator. [J

Theorem 3.3. Consider an operator T in the class of p-wA(s, t) operators with 0 < p < 1 and 0 < s,t, such that
s+t < 1, and suppose that T possesses property (0) on a Hilbert space of dimension greater than 1. In this case, we
can conclude that T has a non-trivial invariant closed linear subspace.

Proof. Suppose that T € H(H) is a class p-wA(s, t) operator on a Hilbert space .# of dimension greater
than 1. Then, based on Theorem 2.2 (which establishes its subscalar nature), we can deduce that T is
subdecomposable. Now, let’s proceed to show that if ¢(T) contains at least two points, then T has a
non-trivial hyperinvariant closed linear subspace.

Since T is decomposable and subscalar, we can leverage Lemma 3.3 from [36] to conclude that T has a
non-trivial hyperinvariant closed linear subspace.

Now, let’s consider the case where T € #(.5¢) and 7 is at least two-dimensional, and o(T) is a singleton.
According to Theorem 3.2, we can express T as T = AI + N, where A € C and N is a nilpotent operator in
B(H). Let p € N represent the smallest integer such that NV = 0, and select an x € 7 for which N*~1x # 0.
The linear subspace generated by N¥~!x is a one-dimensional T-invariant linear subspace of ., which
completes the proof. [

A Banach space operator T € #(Z") is considered hypercyclic if there exists an x € 2" for which the orbit
T"x:n =0,1,2,---} is dense in Z". Conversely, it is referred to as supercyclic if the homogeneous orbit
{uT'x :ueCn=01,2---}is dense in Z for some x € Z". It's worth noting that hypercyclicity implies
supercyclicity.

One significant result is that hyponormal operators do not exhibit supercyclicity, as established in [24].
The subsequent corollary emphasizes that this property extends to class p-wA(s, t) operators.

Theorem 3.4. For a class p-wA(s, t) operator T € () with0 <p < 1and 0 <s,t, s+t <1, it can be stated that
T does not possess the property of supercyclicity.

Proof. Assume that a supercyclic class p-wA(s, t) operator T satisfies property (f). According to Theorem
2.2, [26, Theorem 2] implies that the spectrum o(T) is contained within a circle T(r) = {z : |z| = r} for some
r > 0. If r = 0, then o(T) = 0. Since T is normaloid, it is the zero operator, leading to a contradiction. Now,
let ¥ > 0. In this case, 0 (%T) C T(1). Consequently, 1T has a norm of 1. As T is a class p-wA(s, t) operator

and supercyclic, based on Theorem 2.6, 1T must be unitary. However, this leads to a contradiction. [J

Theorem 3.5. Suppose we have an injective pure class p-wA(s, t) operator T with an invariant subspace .# such
that T| 4 is an isometry. We aim to show that o(T) N St # 0, where S = {z € C : |z| = 1}.

Proof. Suppose we have an injective pure class p-wA(s, t) operator T with an invariant subspace .# such
that T| » is an isometry. We want to show that T has property (f).

First, let’s consider the case where T; = T|_ is not a pure isometry, and there exists a reducing subspace
1 of Ty such that T1| 4, is unitary. In this case, .#; is an invariant subspace of T such that T| 4, is injective
and normal. Using [33, Lemma 7], we can conclude that .#; reduces T, which contradicts the purity of T.
Therefore, we can assert that T is a pure isometry and has property (f).
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As aresult, we have 6(T|_4) = S'. Letx € .#; then F = o7(x) C 6(T|») = S, and Hy(.%) is closed. Notice
thatif F € 9S?, then T Hy(#) is unitary, as per Theorem 2.6. However, this would contradict the purity of T.
Therefore, F N St # (. The subspace Ht(.#) being hyperinvariant for T is rationally invariant for T, which
implies F = o(T|p,(#)) € o(T), indicating that o(T) N St #0. O

An operator in #(J¥) is referred to as hypertransitive when every nonzero vector in J# exhibits hyper-
cyclicity under that operator. Let’s denote the set of all nonhypertransitive operators in %(s¢) as (NHT).
The hypertransitive operator problem pertains to the open question of whether (NHT) equals #(¢).

Theorem 3.6. If T is an operator in JB(7€) and it belongs to the class of p-wA(s,t) with 0 < p < 1and 0 < s,t,
where s +t < 1, then T is not hypertransitive. Specifically, if T is invertible, it implies that both T and T~ share a
nontrivial closed invariant subspace.

Proof. 1f T is not a quasiaffinity, then 0,(T) Uc,(T*) # 0. Consequently, T has a nontrivial invariant subspace,
and therefore, T belongs to the set of nonhypertransitive operators (NHT).

On the other hand, suppose T is a quasiaffinity. Given that T is a class p-wA(s, ) operator, it follows from
[28] that T(s, t) is g-hyponormal, where g = %. Since T(s, t) is not hypercyclic, there exists a nonzero
vector x € J such that the orbit O'(x, T(s, t)) is not dense in 7. Let T = U|T| be the polar decomposition of

T. Since U|T|'T(s,t) = TU|T|’, we have:
T(UITI'O(x, T(s, 1)) = UITI(T(s,))0(x, T(s, 1)) € UITI O, T, ).

Since T is a quasiaffinity, it implies that T(s, t) is also a quasiaffinity, and hence |T| is a quasiaffinity, and %
is unitary. Therefore, U|T|'@(x, T(s, t)) is not dense in 7, leading to the conclusion that T(s, t) € (NHT). By
[21], this implies that T € (NHT). Moreover, the second result follows from the first statement and [22]. O

The following theorem provides both a necessary and a sufficient condition for the adjoint of a class
p-wA(s, t) operator to be hypercyclic.

Theorem 3.7. If T isa class p-wA(s, t) operator withO < p < 1and 0 <s,t, s+t < 1in B(I€), then T* is hypercyclic
if and only if, for all nonzero x € ¢, both or(x) NID # @ and or(x) N (C\ D) # 0, where D = {z e C : |z| < 1}.

Proof. If T* is hypercyclic, it suffices to demonstrate that ¢(T) has non-empty intersections with both ID and
C\D. Let S = T| 4, where .# is a closed T-invariant subspace, and let x be a hypercyclic vector for T".
Since (S5*)"Px = P(T*)"x for each nonnegative integer n, where P is the orthogonal projection of .7 onto
A, we have (S*)"(Px),., = P(T*)"x;,) = P(#’) = .. In other words, Px is hypercyclic for S*. Since T is
a class p-wA(s, t) operator and S* is hypercyclic, we know that 7(S) = |S| = |S*| > 1, as mentioned in [25].
Consequently, we conclude that o(T) N (C \ D) # 0.

On the other hand, to establish 6(S) N ID # 0, suppose that o(S) ¢ C\D. Since S™! is also a class p-wA(s, t)
operator according to Theorem 2.2, and o(S™!) C D, it follows that [S™!| = #(S7!) < 1. However, since S* is
hypercyclic and invertible, (S*)! is hypercyclic by [25], implying that |S7!| = |(S*)7!| > 1 according to [25].
This contradiction leads to the conclusion that ¢(S) N ID # 0.

Conversely, assume that or(x) N ID # 0 and or(x) N (C \ D) # O for all nonzero x € #. Then we can
deduce that Hp(C \ D) = 0 and HT(E) = 0. As T possesses the property (f) by Theorem 2.2, T* exhibits
the property (6). Consequently, following Proposition 2.5.14 in [24], we can conclude that both Hy-(ID) and
Hr-(C \ D) are dense in 2. This, in turn, allows us to apply Theorem 3.2 from [12], ultimately establishing
that T* is hypercyclic. [

In the following proposition, we establish certain spectral properties for a class p-wA(s, t) operator. An
operator T € H(7¢) is deemed quasitriangular when there exists a sequence Py of finite rank orthogonal
projections on ¢ that strongly converges to the identity operator I on /7, satisfying I}im I(I = Pr)TPx|l = 0.

If both T and T are quasitriangular, we refer to them as biquasitriangular operators.
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Theorem 3.8. Let T € HA(¢) be a class p-wA(s, t) operator with 0 < p < 1and 0 < s,t, s+t < 1. Then the
following statements are valid:

(i) The set of approximate point spectrum of T*, denoted by o,(T)*, is contained in the set of spectral approximate
point spectrum of T*, which is equal to the left approximate point spectrum of T*, and all of these sets are equal
to the spectrum of T*.
(ii) T is invertible if and only if T is right invertible.
(ii1) If T is not a scalar multiple of the identity operator on ¢ and has no nontrivial invariant subspace, then it is a
biquasitriangular operator.

Proof. (i) Due to the single-valued extension property of T as given in Theorem 2.2, we have o(T*) = 0,(T")
(as per [2]). Consequently, it follows that:

0o(T)" C o(T)" = o(T") = 0a(T") = 0y(T").
(ii) The proof can be derived from statement (i). Specifically, we have:
0/(T) = 0(T") = o(T")" = a(T).

(iii) If T lacks any nontrivial invariant subspace, then 6,(T*) = 0. As a result, T* possesses the single-valued
extension property. Since both T and T* exhibit the single-valued extension property, we can conclude, as
per [24], that T is a biquasitriangular operator. [

Corollary 3.9. For T € JB(5¢), specifically a class p-wA(s, t) operator with0 < p < 1and 0 <s,t,s+t < 1, it holds
that ker(T) N ran(T") = 0 for some positive integer n.

Proof. If T is a class p-wA(s, t) operator, then, as shown in [31], we can deduce that ker(T) = ker(T") for some
positive integer n. In the case where y € ker(T) N ran(T"), it follows that Ty = 0 and consequently, there
exists x € # such that y = T"x. This further implies that T"*'x = Ty = 0. Given that x € ker(T"*!) = ker(T),
we can conclude that y = T"x = 0. Consequently, we find that ker(T) Nran(T”) = 0. O

We define an operator T € #(5¢) to satisfy Dunford’s boundedness condition (B) when it possesses the single-
valued extension property and there exists a constant K > 0 such that for any x and y with disjoint spectra
or(x) Nor(y) = 0, the inequality ||x|| < K Hx + y” holds, where the constant K is independent of x and y.

Theorem 3.10. Suppose we have an operator T € J8(S€) that belongs to class p-wA(s, t) with0 <p < 1and 0 <s,t,
s+t < 1. Additionally, assume that T satisfies the property that o1(P#(x)) C or(x) for all x € 7 and each closed
set F in C, where Pr represents the orthogonal projection of 7€ onto Hy(.F). In this case, it can be concluded that T
satisfies Dunford’s boundedness condition (B).

Proof. Since T satisfies Dunford’s property (C) as stated in Theorem 2.2, we know that Hy(.%#) is a closed
subspace. Let’s consider two vectors x; and x; in # such that or(x1) N ot(x2) = 0. Define .%#; = or(x;) for
j=12.

Based on the given hypothesis, we have o1(P#,x1) C o1(x1) = #;. Additionally, it’s clear that o1(P.#,x1) C
Z>. Therefore, we can conclude that

or(Pz,x1) C F1 N P = or(x1) Nor(xz) = 0.

Since T possesses the single-valued extension property, as indicated in Proposition 4.1 of [31], we can infer
that P#,x; = 0. This implies that x is orthogonal to Hr(.%,). However, since o1(x2) = %>, it follows that x,
belongs to Ht(.%#), so we can say x, € Hr(:%#;). Consequently, we find that (x;,x2) = 0.

This result implies that
2 2
1 + 22l = yllall” + [leall” = {lxll

This concludes our proof. [
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Theorem 3.11. Let T € B(H) be a class p-wA(s, t) operator with 0 < p < 1and 0 <s,t, s +t < 1. Additionally,
assume that T # zI for any z € C. If there exists x € S \ 0 such that or(x) C o(T), then T possesses a nontrivial
hyperinvariant subspace.

Proof. If there exists a nonzero vector x €  such that or(x) € o(T), we define
M = Hr(or(x), ie, M ={ye A :0o1(y) Cor(x)}

Because T satisfies Dunford’s property (C) as established in Theorem 2.2, it can be concluded that .# is a
hyperinvariant subspace with respect to T, as detailed in [24]. Moreover, since x € .#, we can conclude
that . # 0.

Now, assume, for the sake of contradiction, that .# = 7. This implies that T has the single-valued
extension property, leading to the conclusion that

o(T) = |_Jlor(y) : y € #) € ox(x) € o(T).

However, this results in a contradiction, as it contradicts our initial assumption. Therefore, .# indeed forms
a nontrivial hyperinvariant subspace for T. [

Theorem 3.12. Let T € H(%) be a class p-wA(s, t) operator with0 <p < 1and 0 <s,t,s+t < 1such that T # al
forany a € C. Suppose there exists x € 7 {0} such that for all positive integers n, we have ||T"x|| < Cr", where C > 0
and 0 < r < r(T) are constants. In this case, we can conclude that T possesses a nontrivial hyperinvariant subspace.

Proof. Define ¢(z) := — Yoo z=+)Tx which is an analytic function for |z|] > r. In fact, if we substitute
v =zl for |z| > r, we get P(v) = =Y V"' T for 0 < |[v| < 1/r. Since the hypothesis ensures that
lim,,_, sup ||T"x|| < r, the radius of convergence for the power series )., v™*1Ty is at least 1/r. Setting
¥ (0) := 0, we find that ¢(v) is analytic for [v| < 1/r, which implies that 1(z) is analytic for |z| > r.

Now, consider the equation

00

(T-2)Y(z) = - Z AR K i z"T"'x = x

n=0 n=0

for all z € C with |z| > r. This tells us that pr(x) D z € C : |z| > r, which implies that
or(x) c{zeC:lz| <}

Since r < r(T), it follows that or(x) € o(T). Therefore, by Theorem 3.11, we can conclude that T has a
nontrivial hyperinvariant subspace. [J

Recall that if % is a nonempty open set in C and there exists a subset Q2 C U such that for every function ¢
in H* (i.e., all functions bounded and holomorphic on %), the following condition holds:

sup [{(a)| = sup [p(v)|

aeQ) veQ)

Then, we say that Q is dominating for % .
The next theorem extends Scott Brown’s result to the case of p-wA(s, t) operators.

Theorem 3.13. If T is any class p-wA(s, t) operator with 0 < p < 1and 0 < s,t, s+t < 1, and there exists a
nonempty open set % in C such that the intersection of o(T) and U is dominating for % , then T possesses a nontrivial
invariant subspace.

Proof. 1f T is not a quasi-affinity, then 0 € 0,(T) Uo,(T"). Therefore, it is evident that T possesses a nontrivial
invariant subspace. Let’s consider the case when T is a quasi-affinity. Since T(s, t) is g-hyponormal by the
definition of a class p-wA(s, t) operator, Theorem 1.24 of [21] guarantees that T(s, t) has a nontrivial invariant
subspace. Consequently, by [21, Theorem 1.15], T has a nontrivial invariant subspace. [
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Theorem 3.14. Let T € H(¢) be a class p-wA(s, t) operator with0 <p < 1and 0 <s,t, s+t < 1such that T # al
forany a € C. If T is an invertible and if there exists a constant K and a positive integer m such that ||T"|| < K|n|™
forn =+1,42,---, then T has a hyperinvariant subspace.

Proof. The presumption that T is an invertible class p-wA(s, t) implies that, according to Theorem 2.2, T~! also
belongs to the class p-wA(s, t). As a consequence, both T and T~! are considered normaloid operators. It is
worth noting that || T|| = lim,, e [T"]|"/" < lim,, e K/*(n!/")" = 1. Similarly, T‘1|| = limy e ITM" < 1.
Consequently, the spectra of both T and T~! are enclosed within the unit disk, leading to the conclusion that
the spectrum of T is also confined to the unit disk. In the event that the spectrum of T is disconnected, we can
deduce, as per [30, Corollary 2.11], that T possesses a hyperinvariant subspace. Let us assume, therefore,
that o(T) contains a continuous portion of the unit circle. To establish the existence of a hyperinvariant
subspace in this scenario, it is necessary to verify the relevant growth condition on the resolvent of T, as
demonstrated in [30, Theorem 6.3].
Assume that 1 < |y| < 2. In that case, we can express the norm of the operator inverse as follows:

1l
—_

Y- L 1o lopey Ky
(e - 1) 1|_“u| 1+ T+HT SHZ:‘M”.
Let’s define t = “1—[‘ Then:
[(u-D7Y| = tK[l +ant”]
n=1
< Kt[l+Z(n+1)(n+2)---(n+m)t”].

Now, observe that Yo (n + 1)(n + 2) -+ (n + m)t" corresponds to the m" derivative of the function F(t) =

Yo T = tm“ . Consequently, Y7, (n + 1)(n + 2) - - - (n + m)t" takes the form W for some polynomial
p. Therefore, there exists a constant M such that for 1 < |u| < 2:
_ 1
(u-T)" —
|| H (1 _ ﬁ)mﬂ
2m+1
< M——F— .
(|[J| — 1)m+1

Considering the case where |uo| = 1 and u lies on a non-tangent line segment with (i as an endpoint, we
have |u — po| < c(Jjul = 1). Consequently, it can be concluded that (u — T)_1 meets the growth condition
stipulated by Theorem 6.3 in [30] for lines L outside of the unit circle.

-1
In the event that 1 < |u| < 1, we can express (1 — T) ' as (iT‘l) (T‘1 - i) . This leads to the inequality

(-7 < 2|t ||(% - T‘l)_ln. Given that the assumptions on T and T~! remain the same, it follows

-1
from the previous calculation that (% - T‘l) satisfies the requisite growth condition. Consequently, and

so does (u — T)_1 and, in turn, the result can be derived from [30, Theorem 6.3]. O

Theorem 3.15. Consider an operator T in the space of bounded linear operators on a Hilbert space, denoted as J(.7¢),
which is characterized as a class p-wA(s, t) operator. Here, 0 < p < 1, and 0 < s, t with the constraint that s + t < 1.
Furthermore, it is assumed that T is not equal to al for any complex number . If neither of the sequences T" and T™
converges strongly to zero, then it can be concluded that T possesses a non-trivial hyperinvariant subspace.

Proof. Let’sbreak down the argument into more digestible parts: First, define twosets, .# = {x : {T"x} — 0}
and N = {x : {T™x} — 0}. If both .# and N consist only of the zero vector, then, according to [30, Theorem
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6.20], T is quasi-similar to a unitary operator denoted as % . Since T is not a multiple of the identity, the same
holds true for . Now, due to [30, Corollary 1.17], it follows that % possesses a non-trivial hyperinvariant
subspace. Consequently, by [30, Theorem 6.20] again, it can be established that T also has a non-trivial
hyperinvariant subspace. Now, let’s consider the case where both .# and 9t are not solely comprised of the
zero vector. It’'s important to note that both .# and 9t are linear manifolds. Suppose we have a sequence
{xm} C A that converges to x. We can analyze the behavior of T"x as follows:

Tl < NIT" = T"xull + [T X0l
< Ml = xll + [T x0]l.

Therefore, {T"x} — 0, which implies that x € .#. This demonstrates that ./ is a closed subspace. The same
argument can be applied to show that % is also a closed subspace. If TC = CT for some operator C, then
we can deduce that |[T"Cx|| = [|CT"x|| < ||C||||T"x]|, which indicates that .# is a hyperinvariant subspace
for T. If .# +# {0}, we can conclude that T has a non-trivial hyperinvariant subspace because it’s clear that
A is not equal to the entire Hilbert space. If 9t # {0}, then 9t serves as a hyperinvariant subspace for T".
Consequently, 9+ is a hyperinvariant subspace for T. In both cases, T possesses a non-trivial hyperinvariant
subspace. [

4. Conclusion and Future Work

In this paper, we have established several key findings related to operators in the class p-wA(s, t), where
0<p<land0 <s,t,s+t <1 Weintroduced the concept of the quasi-nilpotent component, denoted as
Hy(T), for such operators, defined as:

ker(T?) = {x € A : rr(x) = 0} = ﬂ(T — Ay
A#0

This characterizationis valid for sufficiently large integer values of p, where rr(x) is defined as lim sup || T"x|| .
n—oo

Additionally, we have shown that when the spectrum o(T) is finite and T belongs to the class p-wA(s, t), the
operator T is an algebraic operator. Furthermore, if T € Z(J¢) is part of the class p-wA(s, t) and possesses
the decomposition property (0), we have demonstrated the existence of a non-trivial invariant closed linear
subspace of T. Moreover, it has been revealed that operators with diverse spectra, as explored in this
study, also exhibit nontrivial invariant subspaces. Our investigation into the existence of invariant and
hyperinvariant subspaces adds depth to our understanding of these operators.
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