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Abstract. For the first time in 2022, the authors introduced the notion of pseudo-Chebyshev wavelets in the
context of one dimension. Continuing the study in advance sense, in this article, two dimensional pseudo
Chebyshev wavelets are introduced. Two dimensional pseudo Chebyshev wavelet expansion of a function
of two variable is defined and verified. This research paper introduces a novel algorithm based on the
two dimensional pseudo Chebyshev wavelet method to address computation problems in approximation
theory. The methods are illustrated by an example and compared with prominent Chebyshev wavelet
methods to demonstrate the validity and applicability of the results. The error analysis and convergence
analysis of a functions in the Hölder classes have been studied by this wavelets. More over the error of
approximation of functions of Holder’s class have been estimated by an orthogonal projection operators of
its two dimensional pseudo Chebyshev wavelets. The results of this paper are the significant developments
in wavelet analysis.

1. Introduction

Wavelets which were relatively recently, at the start of the 1980s, have considerable interest from the
mathematical community and research of many diverse areas of science and technology. A consequence of
this interest is the appearance of several researchers like Daubechies [10], Chui [8], Morlet et al. [32, 33],
Meyer [34], Strang [44], Natanson [36], Chui [9], Daubechies and Lagarias [11], Walter [47, 48], Islam et
al.[12], Mohammadi[35], Venkatesh [46], Keshavarz et al. [13], Kumar[14], Lal et al [15, 18–22, 24, 25], Bastin
[1], Biazar et al. [2], Babolian and Fattahzadeh [3, 5] in wavelet analysis as well as the different area of
Mathematics and Mathematical sciences. While with the company of Fourier analysis and harmonic theory,
wavelets are growing under the influence of approximation theory and fractals. Working in this direction,
researchers like Strang [42], Lal et al. [26–30],and Rehman & Siddiqi [37] and many more developed the
applications of wavelets in diverse area of sciences and technology.

Wavelets are only natural to look for complete orthonormal bases for the Hilbert space L2 (R) having
qualities that reflect the applications of translations and dilations. In view of these observations, orthogonal
functions play an important role for a constriction of new wavelets. The approach in using wavelets is
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to transform the underlying problems into simpler approximating truncated orthogonal functions. Their
are several orthogonal set of functions in L2 (R). Among them, one of the orthogonal sets of functions
is the Chebyshev polynomials. The Chebyshev polynomials Pϑ(ω), where ω ∈ Ω = (0, 1] & ϑ is a
non negative integers, are more applicable for the computational problems, see [4, 6, 31, 39–41]. The
pseudo Chebyshev functions of fractional degree is introduced by Ricci [38] and some of its important
properties like orthogonality and more many studied by Cesarano and Ricci [7]. Lal et al [23] introduced the
pseudo Chebyshev wavelet for the first time in June 2022. These wavelets possess numerous applications
in Mathematics and Mathematical Sciences, particularly in the realm of fractals due to their inherent
characteristics.

The fractals are everywhere continuous but nowhere differentiable functions (see[23]) . The fractional
Brownian motion, complex Bernoulli spiral, Brownian trajectories, typical Feynmann path, and turbulent
fluid motion are related to irregular fractals. The irregular fractals are specified at every point by a local
Hölder’s condition between any finite interval. This fact is to motivate the inspiration for considering the
approximation of functions belonging to Hölders class via the two-dimensional EPCW. But till now no
work seems to have been done to obtain the error of a function f belonging to generalized Hölder’s classes

H(α,β)
(Ω2,ϕ)

(R) where 0 < α, β ≤ 1, using its two dimensional EPCW expansion.

In precise, the theorem’s objectives of the research paper are as follows:

(i) To introduce the notion of algorithms to estimate the approximation of Hölders class f ∈ H(α,β)
(Ω2,ϕ)

(R)

of function by two-dimensional EPCW.
(ii) To discuss the convergence and error analysis of the functions f .

(iii) To estimate the order of error function .
(iv) To discuss the uniform convergence of a functions of the Hölders class using the two-dimensional

EPCW series expansions.

This research paper is organised as follows: In section 2, “Definitions and Preliminaries ” Functions of
Hölders class in two variables and examples, Two dimensional EPCW and its series expansions of functions,
Two Lemmas required for the proof of main results are described. In section 3, “Results: Convergence
analysis” we discussed the uniform convergence of the functions of generalized Hölders class by the two
dimensional extended pseudo Chebyshev wavelet series expansions. Three important corollaries related
to convergence analysis are introduced by the main results. In section 4 “Results: Error analysis” we
discussed the orthogonal projection operator, Function approximation and error analysis of the functions
of Hölders class by the orthogonal projection operators with two dimensional EPCW expansions. Some of
the most important corollaries related to error analysis are presented by the main theorems. In section 5,
“Effectiveness of the this method” the approximated solutions and its errors have been compared with the
solutions obtained by prominent CW method. Conclusion and impact of this research paper are provided
in section 6 .

2. Definitions and Preliminaries

2.1. Function of generalized Hölders class in two variable
A two variable real valued function ξ : Ω2

→ R, is said to be function of generalized Hölder’s class

i.e. ξ ∈ H(α,β)
(Ω2,ϕ)

(R) ⇔ if there exists a number κ > 0 such that

|ξ(ω + ν, ϖ + υ) − ξ(ω,ϖ)| = κ(|ν|α + |υ|β)ϕ(ν, υ) = O(|ν|α + |υ|β)ϕ(ν, υ),
where, ϕ is uniformaly bounded and, ϕ(ν, υ)→ 0 as ∥ (ν, υ) ∥→ 0, [45].

The function ξ ∈ H(α,β)
Ω2 (R) if and only if |ξ(ω + ν, ϖ + υ) − ξ(ω,ϖ)| = κ(|ν|α + |υ|β), where, 0 < α, β ≤ 1.

Remark 2.1. (i) If ϕ = c, then H(α,β)
Ω2 (R) = H(α,β)

(Ω2,ϕ)
(R)
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(ii) If ξ be a function ξ : Ω2
→ R defined by

ξ(ω,ϖ) = |ω|α + |ϖ|β ∀ (ω,ϖ) ∈ Ω2, thenξ ∈ H(α,β)
Ω2 (R) .

2.2. Two dimensional extended pseudo Chebyshev wavelets (EPCW)

The concept of PCW was primary considered by Shyam Lal, Susheel Kumar, and collaborators [23] in
June 2022. Further their two-dimensional extension broadened their applicability to multivariate problems
[16]. The two dimensional extended pseudo-Chebyshev wavelets Ψλ

(η,ϑ;η′,ϑ′) are defined by

Ψλ

(η,ϑ;η′,ϑ′)(ω,ϖ) := Ψ
(λ,(ϱ,ϱ′))
(η,ϑ;η′,ϑ′)(ω,ϖ) = Ψ (λ,ϱ)

(η,ϑ) (ω) ×Ψ (λ,ϱ′)
(η′,ϑ′)(ϖ),

where Ψ
(λ,ϱ)
(η,ϑ) (ω) :=


√

2
πλ

ϱ/2P(ϑ+1/2)(λϱω − 2η + 1); for η−1
λϱ−1 ≤ ω ≤

η
λϱ−1 ,

0; otherwise, see[17],

whereϑ, ϑ′ are non negative integers andη = 1, 2, 3, · · · , λϱ−1 << ∞, η′ = 1, 2, 3, · · · , λϱ
′
−1 << ∞&λ (≥ 2) , ϱ, ϱ′

are a positive integers.

P(ϑ+1/2)(ω) = cos ((ϑ + 1/2) (arc cosω)) ϑ = 0, 1, 2, · · · , and recurrence relations are given by,

Pϑ′′+1/2(ω) = 2ωP(ϑ′′−1/2)(ω) − P(ϑ′′−3/2)(ω), with P±1/2(ω) =

√
1 + ω

2
, ϑ′′ ∈N.

It is noteworthy that the set of extended pseudo-Chebyshev wavelets (EPCW),
{
Ψ(η,ϑ;η′,ϑ′)

}
, forms a semi

bi-orthonormal subset of L2
Ω2 (R) with respect to the extended weight function (EWF)

w(λ,(ϱ,ϱ′))
(η,η′) = w(λ,ϱ)

η × w(λ,ϱ′)
η′ , where w(λ,ϱ)

η = w
(
λϱτ − 2η + 1

)
and w(τ) =

1
√

1 − τ2
.

2.3. Wavelet Series

A function ξ ∈ L2
Ω

(R) is expanded by extended pseudo-Chebyshev wavelet series as [17]:

ξ ∼

∞∑
η=1

∞∑
ϑ=0

α(η,ϑ)ψ
λ

(η,ϑ) =
∞∑
η=1

∞∑
ϑ=0

〈
ξ, ψλ(η,ϑ)

〉
wϱ
η

ψλ(η,ϑ) where α(η,ϑ) =
∫
ξ (ω)ψλ(η,ϑ) (ω) wϱ

η(ω)dω.

If ξ ∈ L2
Ω2 (R) then its two dimensional EPCW expansion is given by

ξ ∼

∞∑
η=1

∞∑
ϑ=0

∞∑
η′=1

∞∑
ϑ′=0

α(η,ϑ;η′,ϑ′)Ψ
λ

(η,ϑ;η′,ϑ) where α(η,ϑ;η′,ϑ′) =
∫
Ω2
ξψλ(η,ϑ;η′,ϑ′)w(ϱ,ϱ′)

(η,η′)dµ. (1)

2.4. Lemmas

The following Lemmas are required hereafter.

Lemma 2.2. Let ℵ be a non negative positive integer and a function ξ : [ℵ,∞) → R be a real valued monotonic
decreasing function. Then

∞∫
ℵ

ξ(υ)dυ ≤
∞∑
ℵ

ξ(υ) ≤ ξ(ℵ) +

∞∫
ℵ

ξ(υ)dυ, (see[16]) .
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Lemma 2.3. Let ξ : (X × X′) → R be a bounded measurable function on the non negative finite measurable spaces
(X,ℑ, µ) & (X′,ℑ′, µ′) and Ω′ & Ω′′ is a subset of X & X′ respectively. Then there exist κ0 > 0 such that

|ξ(υ0, ῡ0)| ≤ κ0µ(X × X′)µ(Ω′ ×Ω′′) a.e., where (υ0, ῡ0) ∈ Ω′ ×Ω′′ In particular,

if X = X′ = Ω and (Ω′ ×Ω′′) =
[
η − 1
λϱ−1 ,

η

λϱ−1

]
×

[
η′ − 1
λϱ′−1 ,

η′

λϱ′−1

]
,whereη = 1, 2, 3, · · · , λϱ−1 << ∞,

η′ = 1, 2, 3, · · · , λϱ
′
−1 << ∞, λ ≥ 2. Then, ξ

(
2η − 1
λϱ

,
2η′ − 1
λϱ′

)
≤

4κ0

λ(ϱ+ϱ′)
, (see[16]) .

3. Main results

3.1. Convergence Analysis

In this section we state and prove a theorem ascertaining that the two dimensional EPCW expansions

for the classes of H(α,β)
(Ω2,ϕ)

(R) , functions, converges uniformly.

Theorem 3.1. If f : Ω2
→ R be a real valued function of two variable such that f ∈ H(α,β)

(Ω2,ϕ)
(R) , then the two

dimensional EPCW series expansions of the function f ,

∞∑
n=1

∞∑
m=0

∞∑
n′=1

∞∑
m′=0

α(n,m;n′,m′)Ψ
λ
(n,m;n′,m′) =

∞∑
n=1

∞∑
m=0

∞∑
n′=1

∞∑
m′=0

〈
f ,Ψλ

(n,m;n′,m′)

〉
w(k,n;k′ ,n′ )

Ψλ
(n,m;n′,m′), is uniformly converges to f .

Proof of Theorem 3.1. Consider the sequence of partial sums of the above two-dimensional EPCW series

S f
(ℵ,℘;ℵ′,℘′) =

ℵ∑
η=1

℘−1∑
ϑ=0

ℵ
′∑

η′=1

℘′−1∑
ϑ′=0

α(η,ϑ;η′,ϑ′)Ψ
(ϱ,ϱ′),λ
(η,ϑ;η′,ϑ′) where Ψ

(ϱ,ϱ′),λ
(η,ϑ;η′,ϑ′)(ω,ϖ) = ψϱ,λη,ϑ(ω)ψϱ

′,λ
η′,ϑ′ (ϖ),

further suppose that f ∈ H(α,β)

(Ω2,ϕ)
(R) , and by the semi by-orthonormality of the

{
Ψλ

(η,ϑ;η′,ϑ′)

}
in the disjoint

intervals
[
η−1
λϱ−1 ,

η
λϱ−1

]
×

[
η′−1
λϱ′−1 ,

η′

λϱ′−1

]
and take ℵ = λϱ−1,ℵ′ = λϱ

′
−1 λ(≥ 2), ϱ, ϱ′ ∈ N, we have

∥ f − S f

(2ϱ ,℘;λϱ′ ,℘′) ∥
2
2=

λϱ−1∑
η=1

∞∑
ϑ=℘

λϱ
′
−1∑

η′=1

∞∑
ϑ=℘′

∣∣∣∣α(η,ϑ;η′,ϑ′)

∣∣∣∣2 = ∞∑
ϑ=℘

∞∑
ϑ=℘′

λϱ−1∑
η=1

λϱ
′
−1∑

η′=1

∣∣∣∣α(η,ϑ;η′,ϑ′)

∣∣∣∣2
Since

α(η,ϑ;η′,ϑ′) =

∫
R

∫
R

f (ω,ϖ)Ψλ

(η,ϑ;η′,ϑ′)(ω,ϖ)w(ϱ,ϱ′),λ
(η,η′) (ω,ϖ)dωdϖ =

∫
R

∫
R

f (ω,ϖ) − f
(

2η − 1
λϱ

,
2η′ − 1
λϱ′

)

× Ψλ

(η,ϑ;η′,ϑ′)(ω,ϖ)w(ϱ,ϱ′),λ
(η,η′) (ω,ϖ)dωdϖ + f

(
2η − 1
λϱ

,
2η′ − 1
λϱ′

) ∫
R

∫
R

Ψλ

(η,ϑ;η′,ϑ′)(ω,ϖ)w(ϱ,ϱ′),λ
(η,η′) (ω,ϖ)dωdϖ.

Now, f ∈ H(α,β)
(Ω2,ϕ)

(R) , sup
(
λϱω − 2η + 1

)
= 1 ∀ ν =

(
x − 2η−1

λϱ

)
, ω ∈

(
η−1
λϱ−1 ,

η
λϱ−1

]
& sup

(
λϱ
′

ϖ − 2η′ + 1
)
=

1,∀ υ =
(
y − 2η′−1

λϱ′

)
, ϖ ∈

(
η′−1
λϱ′−1 ,

η′

λϱ′−1

]
and using Lemma 2.3, we have,

∣∣∣∣α(η,ϑ;η′,ϑ′)

∣∣∣∣ ≤ (
supϕ (ν, υ)κ

( 1
λϱα
+

1
λϱ′β

)
+

4κ0

λϱλϱ′

) η

λϱ−1∫
η−1

λϱ−1

η′

λϱ
′−1∫

η′−1

λϱ
′−1

∣∣∣∣∣Ψλ

(η,ϑ;η′,ϑ′)(ω,ϖ)w(ϱ,ϱ′),λ
(η,η′) (ω,ϖ)

∣∣∣∣∣ dωdϖ.
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If ϱ , ϱ′ or η , η′ then Ψ(η,ϑ;η′,ϑ′) = 0

∣∣∣∣α(η,ϑ;η,ϑ′)

∣∣∣∣ ≤ (
supϕ (ν, υ)κ

( 1
λϱα
+

1
λϱβ

)
+

4κ0

λϱλϱ

) η

λϱ−1∫
η−1

λϱ−1

η

λϱ−1∫
η−1

λϱ−1

∣∣∣∣∣Ψλ

(η,ϑ;η,ϑ′)(ω,ϖ)w(ϱ,ϱ),λ
(η,η) (ω,ϖ)

∣∣∣∣∣ dωdϖ,

≤ max
{
supϕ (ν, υ)κ, 2κ0

} ( 1
λϱα
+

1
λϱβ
+

2
λϱαλϱβ

) η

λϱ−1∫
η−1

λϱ−1

η

λϱ−1∫
η−1

λϱ−1

∣∣∣∣∣Ψλ

(η,ϑ;η,ϑ′)(ω,ϖ)w(ϱ,ϱ),λ
(η,η) (ω,ϖ)

∣∣∣∣∣ dωdϖ,

≤ 2 max
{
supϕ (ν, υ)κ, 2κ0

} ( 1
λϱα
+

1
λϱβ

) η

λϱ−1∫
η−1

λϱ−1

η

λϱ−1∫
η−1

λϱ−1

∣∣∣∣∣Ψλ

(η,ϑ;η,ϑ′)(ω,ϖ)w(ϱ,ϱ),λ
(η,η) (ω,ϖ)

∣∣∣∣∣ dωdϖ.

Next,
n

λϱ−1∫
η−1

λϱ−1

Ψλ

(η,σ)(ω)wϱ
η(ω)dω =

√
λϱ+1

π

n
λϱ−1∫
η−1

λϱ−1

P(σ+1/2)(λϱω − 2η + 1)w(λϱω − 2η + 1)dω =
1
λϱ

√
λϱ+1

π

π∫
0

P(σ+1/2)(cosθ)dθ

=
(−1)σ

λϱ

√
λϱ+1

π
1

(σ + 1/2)
where σ is non negative integers.

Therefore,

∣∣∣∣α(η,ϑ;η,ϑ′)

∣∣∣∣ ≤ 2 max
{
supϕ (ν, υ)κ, 2κ0

} ( 1
λϱα
+

1
λϱβ

) η

λϱ−1∫
η−1

λϱ−1

∣∣∣∣∣Ψλ

(η,ϑ)(ω)wϱ,λ
η (ω)

∣∣∣∣∣ dω
η

λϑ−1∫
η−1
λϑ−1

∣∣∣∣∣Ψλ

(η,ϑ′)(ϖ)wϱ,λ
η (ϖ)

∣∣∣∣∣ dϖ
≤ 2 max

{
supϕ (ν, υ)κ, 2κ0

} ( 1
λϱα
+

1
λϱβ

) 1
λϱ

√
λϱ+1

π
1

(ϑ + 1/2)
1
λϱ

√
λϱ+1

π
1

(ϑ′ + 1/2)

=
4
π

max
{
supϕ (ν, υ)κ, 2κ0

} 1
λϱ

( 1
λϱα
+

1
λϱβ

) 1
(ϑ + 1/2) (ϑ′ + 1/2)

=
4
π

max
{
supϕ (ν, υ)κ, 2κ0

} ( 1
λϱ(α+1)

+
1

λϱ(β+1)

)
1

(ϑ + 1/2) (ϑ′ + 1/2)

= δ

(
1

λϱ(α+1)
+

1

λϱ(β+1)

)
1

(ϑ + 1/2) (ϑ′ + 1/2)
where δ =

4
π

max
{
supϕ (ν, υ)κ, 2κ0

}

∥ f − S f

(λϱ ,℘;λϱ′ ,℘′) ∥
2
2 =

λϱ−1∑
η=1

∞∑
ϑ=℘

λϱ
′
−1∑

η′=1

∞∑
ϑ=℘′

∣∣∣∣α(η,ϑ;η′,ϑ′)

∣∣∣∣2 = ∞∑
ϑ=℘

∞∑
ϑ′=℘′

λϱ−1∑
η=1

λϱ−1∑
η=1

∣∣∣∣α(η,ϑ;η,ϑ′)

∣∣∣∣2
≤

λϱ−1λϱ−1

4π2

∞∑
ϑ=℘

∞∑
ϑ′=℘′

(
δπ
4

)2 (
1

λϱ(α+1)
+

1

λϱ(β+1)

)2 (
1

(ϑ + 1/2) (ϑ′ + 1/2)

)2

= δ2
( 1
λϱα+3 +

1
λϱβ+3

)2 ∞∑
ϑ=℘

∞∑
ϑ′=℘′

1

(ϑ + 1/2)2 (ϑ′ + 1/2)2 .
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Thus,

∥ f − S f

(λϱ ,℘;λϱ′ ,℘′) ∥
2
2 ≤ δ2

( 1
λϱα+3 +

1
λϱβ+3

)2

S(℘,℘′).

Where

S(℘,℘′) =

∞∑
ϑ=℘

∞∑
ϑ′=℘′

1

(ϑ + 1/2)2 (ϑ′ + 1/2)2 =

∞∑
ϑ=℘

1

(ϑ + 1/2)2

∞∑
ϑ′=℘′

1

(ϑ′ + 1/2)2

≤

 1
(℘ + 1/2)2 +

∞∫
℘

dϑ
(ϑ + 1/2)2


 1

(℘′ + 1/2)2 +

∞∫
℘′

dϑ′

(ϑ′ + 1/2)2

 by Lemma 2.2,

=

(
1

(℘ + 1/2)2 +
1

(℘ + 1/2)

) (
1

(℘′ + 1/2)2 +
1

(℘′ + 1/2)

)
.

Since

0 ≤ ∥ f − S f

(λϱ ,℘;λϱ′ ,℘′) ∥2≤ max
{
supϕ (ν, υ)κ, 2κ0

} ( 1
λϱα+3 +

1
λϱ′β+3

) 2

π
√

(℘ + 1/2) (℘′ + 1/2)

=
2 max

{
supϕ (ν, υ)κ, 2κ0

}
π

√
(℘ + 1/2) (℘′ + 1/2)

( 1
λϱα+2 +

1
λϱ′β+2

)
=

2δ√
(℘ + 1/2) (℘′ + 1/2)

( 1
λϱα+2 +

1
λϱ′β+2

)
→ 0 as ϱ, ϱ′;℘, ℘′ →∞.

Therefore, the EPCW series of the function f is uniformly convergent to f . Thus, Theorem 3.1 is completely
established.

Theorem 3.2. If f : Ω2
→ R be a real valued function of two variable such that f ∈ H(α,β)

Ω2 (R) , then the EPCW

series expansion
∞∑

n=1

∞∑
m=0

∞∑
n′=1

∞∑
m′=0

〈
f ,Ψλ

(n,m;n′,m′)

〉
w(k,n;k′ ,n′ )

Ψλ
(n,m;n′,m′), of the function f , is uniformly converges to f .

Proof of Theorem 3.2 The proof of above theorem can be given by exactly the same line of proof of Theorem
3.1 using the fact that ϕ = c.

3.2. Corollaries

In this section, three new corollaries related to Theorems 3.2, have been established in the following
forms:

Corollary 3.3. If f ∈ H(α,β)
Ω2 (R) and it can be expanded as an infinite series of the EPCW for ϑ = 0 and ϑ′ = 0 is

given by

∞∑
η=1

∞∑
η′=1

α(η;η′)Ψ
λ

(η;η′) =
∞∑
η=1

∞∑
η′=1

〈
f , Ψλ

(η;η′)

〉(ϱ,ϱ′)

w(η;η′),λ
Ψλ

(η;η′), then the series converges uniformly to f .

Corollary 3.4. If f ∈ H(α,β)
Ω2 (R) and it can be expanded as an infinite series of the EPCW for ϱ = ϱ′ = 1 is given by

∞∑
ϑ=0

∞∑
ϑ′=0

〈
f , Ψλ

(ϑ;ϑ′)

〉
w(1,1),λ

(1;1)

Ψλ
(ϑ;ϑ′), then the series converges uniformly to f .
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Corollary 3.5. If f is single variable real valued function in the class Hα
Ω (R) and it can be expanded as an infinite

series of the EPCW for ϱ = η = 1 is given by

∞∑
ϑ=0

αϑΨϑ =
∞∑
ϑ=0

〈
f , ψλϑ

〉
w1

1

ψλϑ, where αϑ =
∫
R

f (ω)ψ̄λϑ(ω)w(2ω−1)dω, then the series converges uniformly to f .

4. Error analysis

4.1. Orthogonal Projection Operator

An orthogonal projection operator is a surjective map Φη : L2
Ω
→ Vη defined by (see[43])

Φη( f ) =

∞∑
m=0

〈
f , Ψλ

(η,ϑ)

〉
wϱ
η

Ψλ

(η,ϑ), fixed η = 1, 2, 3, · · ·λϱ−1 << ∞, ϱ ∈N.

The two dimensional orthogonal projection operator Φ(η,η′) : L2
Ω2 → V(η,η′) is given by

Φ(η,η′)( f ) =

∞∑
ϑ′=0

∞∑
ϑ=0

α(ϑ;ϑ′)Ψ
λ
(ϑ;ϑ′), fixed η = 1, 2, 3, · · ·λϱ−1 << ∞, η′ = 1, 2, 3, · · ·λϱ

′
−1 << ∞, ϱ, ϱ′ ∈N,

=

∞∑
ϑ=0

∞∑
ϑ′=0

〈
f , Ψλ

(ϑ;ϑ′)

〉
w(ϱ,ϱ′),λ

(η;η′)
Ψλ

(ϑ;ϑ′)(ω,ϖ), where α(ϑ,ϑ′) =

∫
R

∫
R

f (ω,ϖ)Ψλ
ϑ;ϑ′w

(ϱ,ϱ′),λ
η;η′ (ω,ϖ)dωdϖ.

4.2. Function Approximation

A two dimensional real valued function f defined on Ω2 may be expanded in terms of the two
dimensional EPCW series (1). If an infinite series (1) is approximated by an orthogonal projection operators
Φ(η,η′), then

f ≈ f0 =

2ϱ−1∑
η=1

℘−1∑
ϑ=0

2ϱ
′
−1∑

η′=1

℘′−1∑
ϑ′=0

αη,ϑ;η′,ϑ′Ψη,ϑ;η′,ϑ′ = ⟨Υ,Ψ⟩ = Υ
τΨwhere Υτ indicates transpose of a matrix Υ,

whereΥ andΨ are 2ϱ−1℘2ϱ
′
−1℘′×1 matrices and ⟨Υ,Ψ⟩ is an inner product of column vectorsΥ andΨ (see[23]) .

4.3. Error of Wavelet Approximation

The error ζ(ℵ,℘) of wavelet approximation of a function f by the orthogonal projection operators Φ(ℵ,℘) is
defined by (see[49])

ζ(ℵ,℘)( f ) = inf
Φ(ℵ,℘)( f )

∥Φ(ℵ,℘)( f0) − f ∥2 where ℵ = λϱ−1 and ϱ ∈N.

If error ζ(ℵ,℘)( f ) → 0 as ℵ → ∞ or ℘ → ∞ then Φ(ℵ,℘)( f0) is called the best wavelet approximation of a
function f ∈ L2

Ω
(R) (see[49]).

The error ζ(ℵ,℘;ℵ′,℘′)( f ) of two dimensional EPCW approximation of a function f ∈ L2
Ω2 (R) by the operators

Φ(ℵ,℘;ℵ′,℘′) is given by

ζ(ℵ,℘;ℵ′,℘′)( f ) = inf
Φ(ℵ,℘;ℵ′ ,℘′ )( f )

∥Φ(ℵ,℘;ℵ′,℘′)( f0) − f ∥2.

If error ζ(ℵ,℘;ℵ′,℘′)( f ) → 0 as ℵ,ℵ′ → ∞ or ℘, ℘′ → ∞ then Φ(ℵ,℘;ℵ′,℘′)( f0) is called the best wavelet
approximation of a function f ∈ L2

Ω2 (R).
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4.4. Main Results
In this section, we develop a new theorems related to approximation error of function using orthogonal

projection operators, ascertaining that the two dimensional EPCW expansion of a function f , in the

Hölder’s class H(α,β)
(Ω2,ϕ)

(R) .

Theorem 4.1. Let f : Ω2
→ R be a function belongs to class H(α,β)

(Ω2,ϕ)
(R) , and two dimensional EPCW expansion

is given by

∞∑
η=1

∞∑
ϑ=0

∞∑
η′=1

∞∑
ϑ′=0

α(η,ϑ;η′,ϑ′)Ψ
λ

(η,ϑ;η′,ϑ′). Then the error function ζ(ℵ,℘;ℵ′,℘′)( f ) of f converges uniformly to zero θ̂.

Proof: Following the proof of theorem 3.1 we have

0 ≤∥ ζ(ℵ,℘;ℵ′,℘′)( f ) ∥22 ≤
δ2

16

( 1
ℵα
+

1
ℵ′β

)2 ∞∑
ϑ=℘

∞∑
ϑ′=℘′

1

(ϑ + 1/2)2 (ϑ′ + 1/2)2 ≤
ℵ

2
0

(℘ + 1/2) (℘′ + 1/2)
by Lemma 2.2

→ 0 as ℘ or ℘′ →∞.

Therefore, error function ζ(ℵ,℘;ℵ′,℘′)( f ) uniformly converges to zero function θ̂. Thus, Theorem 4.1 is com-
pletely established.

Theorem 4.2. If f : Ω2
→ R be a function belongs to class H(α,β)

Ω2 (R) , and two dimensional EPCW expansion is

given by
∞∑
η=1

∞∑
ϑ=0

∞∑
η′=1

∞∑
ϑ′=0

α(η,ϑ;η′,ϑ′)Ψ
λ

(η,ϑ;η′,ϑ′), then the error function ζ(ℵ,℘;ℵ′,℘′)( f ) of f converges uniformly to θ̂.

Proof of Theorem 4.2 The proof of above theorem can be given by exactly the same line of proof of Theorem
4.1 using the fact that ϕ = c.

4.5. Corollaries
In this section, three new corollaries related to Theorem 4.1, has been established in the following forms:

Corollary 4.3. If f ∈ H(α,β)
Ω2 (R) , then the two dimensional EPCW error function ζ(ℵ;ℵ′)( f ) of the target functions f

by the orthogonal projection operators Φ(ℵ;ℵ′)( f ) are satisfy∣∣∣ζ(ℵ,ℵ′)( f )
∣∣∣ = O

( 1
ℵα
+

1
ℵ′β

)
.

Corollary 4.4. If f ∈ H(α,β)
Ω2 (R) , then the two dimensional EPCW error function ζ(℘;℘′)( f ) of a ξ by the operators

Φ(℘,℘′)( f ) are satisfy∣∣∣∣Φξ(℘,℘′)∣∣∣∣ = O
( 1
λα+1 +

1
λβ+1

)  1√
(℘ + 1/2) (℘′ + 1/2)

 for 0 < α, β ≤ 1.

Corollary 4.5. If f is a single real valued function in the class Hα
Ω (R) , then the EPCW error function ζ℘( f ) of a

function f by Φ℘( f ) are satisfy∣∣∣ζ℘( f )
∣∣∣ = O

(
1

λα (℘ + 1/2)

)
.

5. Effectiveness of the EPCW/PCW approximation method

In this section, we calculate the approximation of a function and it effectiveness show by an example,
more over this results are compared with PCW and CW approximation methods.
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5.1. Illustrative Examples

Example 5.1. Consider the single variable real valued function ξ on Ω,

ξ(ω) =
{
ω1/2

− 2ω3/2
− 3ω5/2 + 4ω7/2 for ω ∈ Ω,

0 otherwise.

Next, we calculate the approximated valued for the function ξ, by the PCW approximation method.
In the Corollary 3.5, if λ = 2 and

ξ℘0 (ω) =

℘−1∑
ϑ=0

αϑΨϑ(ω) & αϑ = ⟨ξ,Ψϑ⟩w1
1
.

Next, we evaluate ξ1
0(ω), ξ2

0(ω), ξ3
0(x), ξ4

0(x), ζξ1(ω), ζξ2(ω), ζξ3(ω), ζξ4(ω) and ξ℘0 (ω) & ζξ℘(ω). If,

Υ℘ =
(
α0, α1, α2, · · · , α℘−1

)τ
& Ψ℘ =

(
Ψ0, Ψ1, Ψ2, · · · , Ψ℘−1

)τ

ξ0 =

∞∑
ϑ=0

αϑΨ℘ = lim
℘→∞

℘−1∑
ϑ=0

αϑΨϑ,= lim
℘→∞
⟨Υ℘,Ψ℘

⟩ = lim
℘→∞

(
(Υ℘)τΨ℘) = lim

℘→∞
ξ℘0 , where αϑ =

1∫
0

ξ(ω)Ψϑ(ω)w(2ω − 1)dω,

and ξ0(ω) is called approximated valued function of the targeted problem ξ(ω) using PCW series expansion method.

Now, we calculate αϑ for ϑ ≥ 0, α0 =
1∫

0
ξ(ω)Ψ0(ω)w1

1(ω)dω ≈ −0.1662, α1 =
1∫

0
ξ(ω)Ψ1(ω)w1

1(ω)dω ≈ −0.1108,

α2 =
1∫

0
ξ(ω)Ψ2(ω)w1

1(ω)dω ≈ 0.2216, α3 =
1∫

0
ξ(ω)Ψ3(ω)w1

1(ω)dω ≈ 0.0554, α4 =
1∫

0
ξ(ω)Ψ4(ω)w1

1(ω)dω = 0,

αϑ = 0, for ϑ ≥ 4, i.e. Υ℘ = (−0.1662,−0.1108, 0.2216, 0.0554, 0, · · · , 0)τ .

Since the approximated and its error of function ξ of an order ℘ using PCW series expansion method are given by

ξ℘0 (ω) =
℘−1∑
ϑ=0

αϑΨϑ(ω) = (Υ℘)τΨ℘(ω) and ζξ℘(ω) =
∞∑
ϑ=℘

αϑΨϑ respectively.

Therefore

ξ℘0 (ω) = −0.1662 Ψ0(ω) − 0.1108 Ψ1(ω) + 0.2216 Ψ2(ω) + 0.0554 Ψ3(ω) + 0Ψ4(ω) + 0Ψ5(ω) + · · · + 0Ψ(℘−1)(ω),

=

(4−1)∑
ϑ=0

αϑΨϑ(ω),= ξ4
0(ω), and approximation is given by

ξ0 = lim
℘→∞

℘−1∑
ϑ=0

αθΨϑ = lim
℘→∞

 4−1∑
ϑ=0

αθΨϑ +
℘−1∑
ϑ=4

αθΨϑ

 = lim
℘→∞

(
ξ4

0 + θ̂
)
= ξ4

0,

moreover the error of targeted function is zero θ̂ = ζξ℘(ω) =
∞∑
ϑ=4

αϑΨϑ(ω) of the order four. The energy of signal ξ

and approximated signal ξ4
0 are given by

∥ ξ ∥22 = ⟨ξ, ξ⟩w1
1
=

1∫
0

(ξ(ω))2 ω (2ω − 1) dω ≃ lim
℘→∞

℘−1∑
ϑ=0

|αϑ|
2 =∥ ξ4

0 ∥
2
2=∥ ξ0 ∥

2
2 .
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Figure 1: Graph of ξ and truncated ξ℘0 for ℘ = 1, 2, 3, 4.
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Figure 2: Graph of exact ξ and ξ℘0 by PCW & CW methods, for ℘ = 1, 2, 3, 4.
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t 0.0 0 0.25 0.50 0.75 1.00
ξ 0 0.1875 -0.1767766953 -0.4330127019 0

PCWξ0
0 0 -0.09375 -0.1325825215 -0.1623797632 -0.1875

CWξ0
0 0.05961994694 0.02980997347 0 -0.02980997347 -0.05961994694

PCWξ1
0 0 0.03125 -0.04419417382 -0.1623797632 -0.3125

CWξ1
0 0.1134524414 0.002893726238 -0.05383249446 -0.0567262207 -0.005787452476

PCWξ2
0 0 0.15625 -0.2209708691 -0.3788861142 -0.0625

CWξ2
0 0.01425310335 0.1020930643 -0.05383249446 -0.1559255587 0.09341188557

PCWξ3
0 0 0.1875 -0.1767766953 -0.4330127019 0

CWξ3
0 0.009970812508 0.1042342097 -0.0581147853 -0.1537844133 0.08912959473

PCWξ4
0 0 0.1875 -0.1767766953 -0.4330127019 0

CWξ4
0 0.003403968134 0.1009507875 -0.0581147853 -0.1505009911 0.0956964391

Table 1: Comparison between ξ, ξ℘0 for ℘ = 0, 1, 2, 3, 4.

t 0.0 0 0.25 0.50 0.75 1.00
PCWζ1 0 0.28125 0.04419417382 0.2706329387 0.1875
CWζ1 0.05961994694 0.1576900265 0.1767766953 0.4032027284 0.05961994694

PCWζ2 0 0.15625 0.1325825215 0.2706329387 0.3125
CWζ2 0.1134524414 0.1846062738 0.1229442008 0.3762864812 0.005787452476

PCWζ3 0 0.03125 0.04419417382 0.05412658774 0.0625
CWζ3 0.01425310335 0.08540693572 0.1229442008 0.2770871431 0.09341188557

PCWζ4 0 0 0 0 0
CWζ4 0.009970812508 0.0832657903 0.11866191 0.2792282886 0.08912959473

PCWζ5 0 0 0 0 0
CWζ5 0.003403968134 0.08654921248 0.11866191 0.2825117108 0.0956964391

Table 2: ζ℘ using PCW & CW methods for ℘ = 1, 2, 3, 4, 5.
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Example 5.2. In this example, we consider a function defined over two variables, f .

f (ω,u) =
{
ω1/2u3/2

− 2ω3/2u1/2
− 3ω5/2u7/2 + 4ω7/2u5/2 for (ω,u) ∈ Ω2,

0 otherwise.

In the Corollary 3.4, if λ = 2, and, if we consider the Pseudo-Chebyshev series expansions of the function, for

ϱ = ϱ′ = 1⇒ η = η′ = 1,

then,

f ∼

∞∑
ϑ=0

∞∑
ϑ′=0

α(ϑ;ϑ′)ψϑψϑ′

= −0.3206ψ0(ω)ψ0(u) + 0.2500ψ0(ω)ψ1(u) − 0.0537ψ0(ω)ψ2(u) − 0.0230ψ0(ω)ψ3(u)
− 0.1511ψ1(ω)ψ0(u) + 0.0805ψ1(ω)ψ1(u) − 0.0161ψ1(ω)ψ2(u) + 0.0192ψ1(ω)ψ3(u)
+ 0.5100ψ2(ω)ψ0(u) + 0.2684ψ2(ω)ψ1(u) + 0.0644ψ2(ω)ψ2(u) + 0.0038ψ2(ω)ψ3(u)
+ 0.0537ψ3(ω)ψ0(u) + 0.0268ψ3(ω)ψ1(u) + 0.0054ψ3(ω)ψ2(u) + 0ψ3(ω)ψ3(u) + · · ·
= f0,

where α(ϑ;ϑ′) =

∫
Ω2

fψϑw1
1ψϑ′w

1
1dµ =

1∫
ω=0

1∫
u=0

f (ω,u)ψ(ω)w(2ω − 1)ψ(u)w(2u − 1)dωdu.
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Figure 5: Graph of f , f0, | f − f0| in 3D and f , f0 in 2D for M = 1

Figure 6: Graph of f , f0, | f − f0| in 3D and f , f0 in 2D for M = 2
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Figure 7: Graph of f , f0, | f − f0| in 3D and f , f0 in 2D for M = 3

Figure 8: Graph of f , f0, | f − f0| in 3D and f , f0 in 2D for M = 4
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6. Conclusions

(i) Since ζ(ℵ,℘;ℵ′,℘′)( f ) → 0 as ℵ,ℵ′ → ∞ or ℘, ℘′ → ∞ in above results. Therefore the EPCW
approximations determined in this results are best possible in the wavelet analysis (see[49]).

(ii) Some most important corollaries 3.3,3.4,3.5 and 4.3,4.4,4.5 have been derived from our main Theorems
3.2 and 4.2 respectively.

(iii) Independent proofs of these corollaries 3.3,3.4,3.5, 4.3,4.4 and 4.5 can be developed for specific
contributions of these estimates in wavelet analysis.

(iv) Figures (1, 2, 3&4) and Tables (1&2) are shows that the PCW method is more effective rather than CW
method in the case of fractional degree.

(v) Figures (1, 2, 3 &4) are shows that how to error functions are rapidly converges to zero functions by
the PCW method rather than CW method in this case.

(vi) The outcomes obtained for the two-dimensional case are effectively demonstrated through Exam-
ple 5.2. In this example, by fixing the variable u = 1, the problem formulation aligns closely with that
of Example 5.1. This equivalence becomes apparent when analyzing the respective solutions. Specif-
ically, Figures 5, 6, 7, and 8 visually highlight the structural similarities and reinforce the consistency
of the proposed approach across both one- and two-dimensional settings. Such correspondence not
only validates the generality of the method but also showcases its adaptability in higher-dimensional
approximation scenarios.
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