

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Two dimensional pseudo-Chebyshev wavelets and their application in the theory of approximation of functions belonging to Hölders class

Susheel Kumar^{a,*}, Sudhir Kumar Mishra^a, Aditya Kumar Awasthi^a, Shyam Lal^b

 $^a Department \ of \ Mathematics, \ Tilak \ Dhari \ P.G. \ College, \ Jaunpur-222002, \ India \\ ^b Department \ of \ Mathematics, \ Institute \ of \ Science, \ Banaras \ Hindu \ University, Varanasi-221005, \ India$

Abstract. For the first time in 2022, the authors introduced the notion of *pseudo-Chebyshev wavelets* in the context of one dimension. Continuing the study in advance sense, in this article, two dimensional pseudo Chebyshev wavelets are introduced. Two dimensional pseudo Chebyshev wavelet expansion of a function of two variable is defined and verified. This research paper introduces a novel algorithm based on the two dimensional pseudo Chebyshev wavelet method to address computation problems in approximation theory. The methods are illustrated by an example and compared with prominent Chebyshev wavelet methods to demonstrate the validity and applicability of the results. The error analysis and convergence analysis of a functions in the Hölder classes have been studied by this wavelets. More over the error of approximation of functions of Holder's class have been estimated by an orthogonal projection operators of its two dimensional pseudo Chebyshev wavelets. The results of this paper are the significant developments in wavelet analysis.

1. Introduction

Wavelets which were relatively recently, at the start of the 1980s, have considerable interest from the mathematical community and research of many diverse areas of science and technology. A consequence of this interest is the appearance of several researchers like Daubechies [10], Chui [8], Morlet et al. [32, 33], Meyer [34], Strang [44], Natanson [36], Chui [9], Daubechies and Lagarias [11], Walter [47, 48], Islam et al. [12], Mohammadi[35], Venkatesh [46], Keshavarz et al. [13], Kumar[14], Lal et al [15, 18–22, 24, 25], Bastin [1], Biazar et al. [2], Babolian and Fattahzadeh [3, 5] in wavelet analysis as well as the different area of Mathematics and Mathematical sciences. While with the company of Fourier analysis and harmonic theory, wavelets are growing under the influence of approximation theory and fractals. Working in this direction, researchers like Strang [42], Lal et al. [26–30], and Rehman & Siddiqi [37] and many more developed the applications of wavelets in diverse area of sciences and technology.

Wavelets are only natural to look for complete orthonormal bases for the Hilbert space $L^2(\mathbb{R})$ having qualities that reflect the applications of translations and dilations. In view of these observations, orthogonal functions play an important role for a constriction of new wavelets. The approach in using wavelets is

2020 Mathematics Subject Classification. Primary 40A30; Secondary 42C15, 42A16, 65T60, 65L10, 65L60, 65R20. Keywords. Chebyshev Wavelet (CW), Pseudo Chebyshev Wavelet (PCW), Two dimensional (2DEPCW).

Received: 14 April 2024; Revised: 21 July 2025; Accepted: 12 August 2025

Communicated by Miodrag Spalević

Email addresses: susheel22686@rediffmail.com (Susheel Kumar), sudhirkrm@gmail.com (Sudhir Kumar Mishra), adityaawasthi1985@gmail.com (Aditya Kumar Awasthi), shyam_lal@rediffmal.com (Shyam Lal)

st Corresponding author: Susheel Kumar

to transform the underlying problems into simpler approximating truncated orthogonal functions. Their are several orthogonal set of functions in $L^2(\mathbb{R})$. Among them, one of the orthogonal sets of functions is the Chebyshev polynomials. The Chebyshev polynomials $P_{\vartheta}(\omega)$, where $\omega \in \Omega = (0,1] \& \vartheta$ is a non negative integers, are more applicable for the computational problems, see [4, 6, 31, 39–41]. The pseudo Chebyshev functions of fractional degree is introduced by Ricci [38] and some of its important properties like orthogonality and more many studied by Cesarano and Ricci [7]. Lal et al [23] introduced the pseudo Chebyshev wavelet for the first time in June 2022. These wavelets possess numerous applications in Mathematics and Mathematical Sciences, particularly in the realm of fractals due to their inherent characteristics.

The fractals are everywhere continuous but nowhere differentiable functions (see[23]). The fractional Brownian motion, complex Bernoulli spiral, Brownian trajectories, typical Feynmann path, and turbulent fluid motion are related to irregular fractals. The irregular fractals are specified at every point by a local Hölder's condition between any finite interval. This fact is to motivate the inspiration for considering the approximation of functions belonging to Hölders class via the two-dimensional *EPCW*. But till now no work seems to have been done to obtain the error of a function f belonging to generalized Hölder's classes $H_{(\Omega^2,\phi)}^{(\alpha,\beta)}(\mathbb{R})$ where $0 < \alpha, \beta \le 1$, using its two dimensional *EPCW* expansion.

In precise, the theorem's objectives of the research paper are as follows:

- (i) To introduce the notion of algorithms to estimate the approximation of Hölders class $f \in H^{(\alpha,\beta)}_{(\Omega^2,\phi)}(\mathbb{R})$ of function by two-dimensional *EPCW*.
- (ii) To discuss the convergence and error analysis of the functions f.
- (iii) To estimate the order of error function.
- (iv) To discuss the uniform convergence of a functions of the Hölders class using the two-dimensional *EPCW* series expansions.

This research paper is organised as follows: In section 2, "Definitions and Preliminaries" Functions of Hölders class in two variables and examples, Two dimensional *EPCW* and its series expansions of functions, Two Lemmas required for the proof of main results are described. In section 3, "Results: Convergence analysis" we discussed the uniform convergence of the functions of generalized Hölders class by the two dimensional extended pseudo Chebyshev wavelet series expansions. Three important corollaries related to convergence analysis are introduced by the main results. In section 4 "Results: Error analysis" we discussed the orthogonal projection operator, Function approximation and error analysis of the functions of Hölders class by the orthogonal projection operators with two dimensional *EPCW* expansions. Some of the most important corollaries related to error analysis are presented by the main theorems. In section 5, "Effectiveness of the this method" the approximated solutions and its errors have been compared with the solutions obtained by prominent *CW* method. Conclusion and impact of this research paper are provided in section 6.

2. Definitions and Preliminaries

2.1. Function of generalized Hölders class in two variable

A two variable real valued function $\xi:\Omega^2\to\mathbb{R}$, is said to be function of generalized Hölder's class

i.e.
$$\xi \in H_{\left(\Omega^2, \phi\right)}^{\left(\alpha, \beta\right)}(\mathbb{R})$$
 \Leftrightarrow if there exists a number $\kappa > 0$ such that
$$|\xi(\omega + \nu, \omega + \nu) - \xi(\omega, \omega)| = \kappa(|\nu|^{\alpha} + |\nu|^{\beta})\phi(\nu, \nu) = O(|\nu|^{\alpha} + |\nu|^{\beta})\phi(\nu, \nu),$$
 where, ϕ is uniformally bounded and, $\phi(\nu, \nu) \to 0$ as $\|(\nu, \nu)\| \to 0$, [45].

The function $\xi \in H_{\Omega^2}^{\left(\alpha,\beta\right)}\left(\mathbb{R}\right)$ if and only if $|\xi(\omega+\nu,\omega+\nu)-\xi(\omega,\omega)|=\kappa(|\nu|^\alpha+|\nu|^\beta)$, where, $0<\alpha,\beta\leq 1$.

Remark 2.1. (i) If
$$\phi = c$$
, then $H_{\Omega^2}^{(\alpha,\beta)}(\mathbb{R}) = H_{(\Omega^2,\phi)}^{(\alpha,\beta)}(\mathbb{R})$

(ii) If ξ be a function $\xi:\Omega^2\to\mathbb{R}$ defined by

$$\xi(\omega, \omega) = |\omega|^{\alpha} + |\omega|^{\beta} \quad \forall (\omega, \omega) \in \Omega^{2}, \ then \xi \in H_{\Omega^{2}}^{(\alpha, \beta)}(\mathbb{R}).$$

2.2. Two dimensional extended pseudo Chebyshev wavelets (EPCW)

The concept of *PCW* was primary considered by Shyam Lal, Susheel Kumar, and collaborators [23] in June 2022. Further their two-dimensional extension broadened their applicability to multivariate problems [16]. The two dimensional extended pseudo-Chebyshev wavelets $\Psi^{\lambda}_{(\eta,\vartheta;\eta',\vartheta')}$ are defined by

$$\begin{split} \Psi^{\lambda}_{\left(\eta,\vartheta;\eta',\vartheta'\right)}(\omega,\omega) & := & \Psi^{\left(\lambda,\left(\varrho,\varrho'\right)\right)}_{\left(\eta,\vartheta;\eta',\vartheta'\right)}(\omega,\omega) = \Psi^{\left(\lambda,\varrho\right)}_{\left(\eta,\vartheta\right)}(\omega) \times \Psi^{\left(\lambda,\varrho\right)}_{\left(\eta',\vartheta'\right)}(\omega), \\ \text{where} & \Psi^{\left(\lambda,\varrho\right)}_{\left(\eta,\vartheta\right)}(\omega) := \left\{ \begin{array}{l} \sqrt{\frac{2}{\pi}} \lambda^{\varrho/2} P_{(\vartheta+1/2)}(\lambda^\varrho\omega-2\eta+1); \text{ for } \frac{\eta-1}{\lambda^\varrho-1} \leq \omega \leq \frac{\eta}{\lambda^\varrho-1}, \\ 0; & \text{otherwise, see}[17], \end{array} \right. \end{split}$$

where ϑ , ϑ' are non negative integers and $\eta = 1, 2, 3, \dots$, $\lambda^{\varrho-1} << \infty$, $\eta' = 1, 2, 3, \dots$, $\lambda^{\varrho'-1} << \infty$ & λ (≥ 2), ϱ , ϱ' are a positive integers.

 $P_{(\vartheta+1/2)}(\omega) = \cos((\vartheta+1/2)(arc\cos\omega))$ $\vartheta = 0, 1, 2, \cdots$, and recurrence relations are given by,

$$P_{\vartheta''+1/2}(\omega) = 2\omega P_{(\vartheta''-1/2)}(\omega) - P_{(\vartheta''-3/2)}(\omega), \text{ with } P_{\pm 1/2}(\omega) = \sqrt{\frac{1+\omega}{2}}, \ \vartheta'' \in \mathbb{N}.$$

It is noteworthy that the set of extended pseudo-Chebyshev wavelets (*EPCW*), $\left\{\Psi_{\left(\eta,\vartheta;\eta',\vartheta'\right)}\right\}$, forms a semi bi-orthonormal subset of $L^2_{\mathrm{O}^2}(\mathbb{R})$ with respect to the extended weight function (*EWF*)

$$w_{(\eta,\eta')}^{(\lambda,(\varrho,\varrho'))} = w_{\eta}^{(\lambda,\varrho)} \times w_{\eta'}^{(\lambda,\varrho')}$$
, where $w_{\eta}^{(\lambda,\varrho)} = w(\lambda^{\varrho}\tau - 2\eta + 1)$ and $w(\tau) = \frac{1}{\sqrt{1-\tau^2}}$.

2.3. Wavelet Series

A function $\xi \in L^2_{\Omega}(\mathbb{R})$ is expanded by extended pseudo-Chebyshev wavelet series as [17]:

$$\xi \sim \sum_{\eta=1}^{\infty} \sum_{\vartheta=0}^{\infty} \alpha_{\left(\eta,\vartheta\right)} \psi_{\left(\eta,\vartheta\right)}^{\lambda} = \sum_{\eta=1}^{\infty} \sum_{\vartheta=0}^{\infty} \left\langle \xi, \psi_{\left(\eta,\vartheta\right)}^{\lambda} \right\rangle_{w_{\eta}^{\varrho}} \psi_{\left(\eta,\vartheta\right)}^{\lambda} \text{ where } \alpha_{\left(\eta,\vartheta\right)} = \int \xi(\omega) \psi_{\left(\eta,\vartheta\right)}^{\lambda}(\omega) w_{\eta}^{\varrho}(\omega) d\omega.$$

If $\xi \in L^2_{\mathbb{O}^2}(\mathbb{R})$ then its two dimensional *EPCW* expansion is given by

$$\xi \sim \sum_{\eta=1}^{\infty} \sum_{\vartheta=0}^{\infty} \sum_{\eta'=1}^{\infty} \sum_{\vartheta'=0}^{\infty} \alpha_{(\eta,\vartheta;\eta',\vartheta')} \Psi^{\lambda}_{(\eta,\vartheta;\eta',\vartheta)} \text{ where } \alpha_{(\eta,\vartheta;\eta',\vartheta')} = \int_{\Omega^2} \xi \psi^{\lambda}_{(\eta,\vartheta;\eta',\vartheta')} w^{(\varrho,\varrho')}_{(\eta,\eta')} d\mu. \tag{1}$$

2.4. Lemmas

The following Lemmas are required hereafter.

Lemma 2.2. Let \aleph be a non negative positive integer and a function $\xi : [\aleph, \infty) \to \mathbb{R}$ be a real valued monotonic decreasing function. Then

$$\int_{\aleph}^{\infty} \xi(v)dv \le \sum_{\aleph}^{\infty} \xi(v) \le \xi(\aleph) + \int_{\aleph}^{\infty} \xi(v)dv, \text{ (see[16])}.$$

Lemma 2.3. Let $\xi: (X \times X') \to \mathbb{R}$ be a bounded measurable function on the non negative finite measurable spaces $(X, \mathfrak{I}, \mu) \& (X', \mathfrak{I}', \mu')$ and $\Omega' \& \Omega''$ is a subset of X & X' respectively. Then there exist $\kappa_0 > 0$ such that

$$\begin{split} |\xi(\upsilon_{0},\bar{\upsilon}_{0})| & \leq \kappa_{0}\mu(X\times X')\mu(\Omega'\times\Omega'') \text{ a.e., } \text{ where } (\upsilon_{0},\bar{\upsilon}_{0})\in\Omega'\times\Omega'' \text{ In particular,} \\ & \text{if } X=X'=\Omega \text{ and } (\Omega'\times\Omega'')=\left[\frac{\eta-1}{\lambda^{\varrho-1}},\frac{\eta}{\lambda^{\varrho-1}}\right]\times\left[\frac{\eta'-1}{\lambda^{\varrho'-1}},\frac{\eta'}{\lambda^{\varrho'-1}}\right], \text{ where } \eta=1,2,3,\cdots,\lambda^{\varrho-1}<<\infty, \\ & \eta'=1,2,3,\cdots,\lambda^{\varrho'-1}<<\infty,\lambda\geq 2. \text{ Then, } \xi\left(\frac{2\eta-1}{\lambda^{\varrho}},\frac{2\eta'-1}{\lambda^{\varrho'}}\right)\leq\frac{4\kappa_{0}}{\lambda^{(\varrho+\varrho')}}, \text{ (see[16])} \,. \end{split}$$

3. Main results

3.1. Convergence Analysis

In this section we state and prove a theorem ascertaining that the two dimensional EPCW expansions for the classes of $H_{(\Omega^2,\phi)}^{(\alpha,\beta)}(\mathbb{R})$, functions, converges uniformly.

Theorem 3.1. If $f: \Omega^2 \to \mathbb{R}$ be a real valued function of two variable such that $f \in H^{(\alpha,\beta)}_{(\Omega^2,\phi)}(\mathbb{R})$, then the two dimensional EPCW series expansions of the function f,

$$\sum_{n=1}^{\infty}\sum_{m=0}^{\infty}\sum_{n'=1}^{\infty}\sum_{m'=0}^{\infty}\alpha_{(n,m;n',m')}\Psi_{(n,m;n',m')}^{\lambda}=\sum_{n=1}^{\infty}\sum_{m=0}^{\infty}\sum_{n'=1}^{\infty}\sum_{m'=0}^{\infty}\left\langle f,\Psi_{(n,m;n',m')}^{\lambda}\right\rangle_{w_{(k,n;k',n')}}\Psi_{(n,m;n',m')}^{\lambda}, \ is \ uniformly \ converges \ to \ f.$$

Proof of Theorem 3.1. Consider the sequence of partial sums of the above two-dimensional *EPCW* series

$$S_{(\aleph,\wp;\aleph',\wp')}^f = \sum_{\eta=1}^{\aleph} \sum_{\vartheta=0}^{\varrho-1} \sum_{\eta'=1}^{\aleph'} \sum_{\vartheta'=0}^{\varrho'-1} \alpha_{(\eta,\vartheta;\eta',\vartheta')} \Psi_{(\eta,\vartheta;\eta',\vartheta')}^{(\varrho,\varrho'),\lambda} \text{ where } \Psi_{(\eta,\vartheta;\eta',\vartheta')}^{(\varrho,\varrho'),\lambda}(\omega,\omega) = \psi_{\eta,\vartheta}^{\varrho,\lambda}(\omega) \psi_{\eta',\vartheta'}^{\varrho',\lambda}(\omega),$$

further suppose that $f \in H^{(\alpha,\beta)}_{(\Omega^2,\phi)}(\mathbb{R})$, and by the semi by-orthonormality of the $\left\{\Psi^{\lambda}_{\left(\eta,\vartheta;\eta',\vartheta'\right)}\right\}$ in the disjoint intervals $\left[\frac{\eta-1}{\lambda^{\varrho-1}},\frac{\eta}{\lambda^{\varrho-1}}\right] \times \left[\frac{\eta'-1}{\lambda^{\varrho'-1}},\frac{\eta'}{\lambda^{\varrho'-1}}\right]$ and take $\aleph = \lambda^{\varrho-1}$, $\aleph' = \lambda^{\varrho'-1}$ $\lambda (\geq 2)$, $\varrho,\varrho' \in \mathbb{N}$, we have

$$\|f - S_{\left(2^{\varrho}, \wp; \lambda^{\varrho'}, \wp'\right)}^{f}\|_{2}^{2} = \sum_{\eta=1}^{\lambda^{\varrho-1}} \sum_{\vartheta=\wp}^{\infty} \sum_{\eta'=1}^{\lambda^{\varrho'-1}} \sum_{\vartheta=\wp'}^{\infty} \left|\alpha_{\left(\eta, \vartheta; \eta', \vartheta'\right)}\right|^{2} = \sum_{\vartheta=\wp}^{\infty} \sum_{\vartheta=\wp'}^{\infty} \sum_{\eta=1}^{\lambda^{\varrho-1}} \sum_{\eta'=1}^{\lambda^{\varrho'-1}} \left|\alpha_{\left(\eta, \vartheta; \eta', \vartheta'\right)}\right|^{2}$$

Since

$$\begin{split} \alpha_{\left(\eta,\vartheta;\eta',\vartheta'\right)} &= \int\limits_{\mathbb{R}} \int\limits_{\mathbb{R}} f\left(\omega,\varpi\right) \Psi_{\left(\eta,\vartheta;\eta',\vartheta'\right)}^{\lambda}(\omega,\varpi) w_{\left(\eta,\eta'\right)}^{\left(\varrho,\varrho'\right),\lambda}(\omega,\varpi) d\omega d\varpi = \int\limits_{\mathbb{R}} \int\limits_{\mathbb{R}} f(\omega,\varpi) - f\left(\frac{2\eta-1}{\lambda^{\varrho}},\frac{2\eta'-1}{\lambda^{\varrho'}}\right) \\ &\times \Psi_{\left(\eta,\vartheta;\eta',\vartheta'\right)}^{\lambda}(\omega,\varpi) w_{\left(\eta,\eta'\right)}^{\left(\varrho,\varrho'\right),\lambda}(\omega,\varpi) d\omega d\varpi + f\left(\frac{2\eta-1}{\lambda^{\varrho}},\frac{2\eta'-1}{\lambda^{\varrho'}}\right) \int\limits_{\mathbb{R}} \int\limits_{\mathbb{R}} \Psi_{\left(\eta,\vartheta;\eta',\vartheta'\right)}^{\lambda}(\omega,\varpi) w_{\left(\eta,\eta'\right)}^{\left(\varrho,\varrho'\right),\lambda}(\omega,\varpi) d\omega d\varpi. \end{split}$$

Now, $f \in H_{\left(\Omega^2, \phi\right)}^{\left(\alpha, \beta\right)}(\mathbb{R})$, $\sup \left(\lambda^{\varrho}\omega - 2\eta + 1\right) = 1 \ \forall \ \nu = \left(x - \frac{2\eta - 1}{\lambda^{\varrho}}\right), \omega \in \left(\frac{\eta - 1}{\lambda^{\varrho - 1}}, \frac{\eta}{\lambda^{\varrho - 1}}\right] \ \& \ \sup \left(\lambda^{\varrho'}\varpi - 2\eta' + 1\right) = 1, \forall \ \nu = \left(y - \frac{2\eta' - 1}{\lambda^{\varrho'}}\right), \varpi \in \left(\frac{\eta' - 1}{\lambda^{\varrho' - 1}}, \frac{\eta'}{\lambda^{\varrho' - 1}}\right] \ \text{and using Lemma} \ 2.3, \ \text{we have,}$

$$\left|\alpha_{\left(\eta,\vartheta;\eta',\vartheta'\right)}\right| \leq \left(\sup \phi\left(\nu,\upsilon\right)\kappa\left(\frac{1}{\lambda^{\varrho\alpha}} + \frac{1}{\lambda^{\varrho'\beta}}\right) + \frac{4\kappa_0}{\lambda^{\varrho}\lambda^{\varrho'}}\right) \int\limits_{\frac{\eta-1}{\lambda^{\varrho-1}}}^{\frac{\eta}{\lambda^{\varrho'-1}}} \int\limits_{\frac{\eta'-1}{\lambda^{\varrho'-1}}}^{\eta'} \left|\Psi_{\left(\eta,\vartheta;\eta',\vartheta'\right)}^{\lambda}(\omega,\omega)w_{\left(\eta,\eta'\right)}^{\left(\varrho,\varrho'\right),\lambda}(\omega,\omega)\right| d\omega d\omega.$$

If $\varrho \neq \varrho'$ or $\eta \neq \eta'$ then $\Psi_{(\eta,\vartheta;\eta',\vartheta')} = 0$

$$\begin{split} \left|\alpha_{\left(\eta,\vartheta;\eta,\vartheta'\right)}\right| & \leq \left(\sup\phi\left(\nu,\upsilon\right)\kappa\left(\frac{1}{\lambda\varrho\alpha} + \frac{1}{\lambda\varrho\beta}\right) + \frac{4\kappa_{0}}{\lambda\varrho\lambda\varrho}\right)\int_{\frac{\eta-1}{\lambda\varrho-1}}^{\frac{\eta}{\lambda\varrho-1}}\int_{\frac{\eta-1}{\lambda\varrho-1}}^{\frac{\eta}{\lambda\varrho-1}}\left|\Psi_{\left(\eta,\vartheta;\eta,\vartheta'\right)}^{\lambda}(\omega,\omega)w_{\left(\eta,\eta\right)}^{\left(\varrho,\varrho\right),\lambda}(\omega,\omega)\right|d\omega d\omega, \\ & \leq \max\left\{\sup\phi\left(\nu,\upsilon\right)\kappa,2\kappa_{0}\right\}\left(\frac{1}{\lambda\varrho\alpha} + \frac{1}{\lambda\varrho\beta} + \frac{2}{\lambda\varrho\alpha\lambda\varrho\beta}\right)\int_{\frac{\eta-1}{\lambda\varrho-1}}^{\frac{\eta}{\lambda\varrho-1}}\int_{\frac{\eta-1}{\lambda\varrho-1}}^{\frac{\eta}{\lambda\varrho-1}}\left|\Psi_{\left(\eta,\vartheta;\eta,\vartheta'\right)}^{\lambda}(\omega,\omega)w_{\left(\eta,\eta\right)}^{\left(\varrho,\varrho\right),\lambda}(\omega,\omega)\right|d\omega d\omega, \\ & \leq 2\max\left\{\sup\phi\left(\nu,\upsilon\right)\kappa,2\kappa_{0}\right\}\left(\frac{1}{\lambda\varrho\alpha} + \frac{1}{\lambda\varrho\beta}\right)\int_{\frac{\eta-1}{\lambda\varrho-1}}^{\frac{\eta}{\lambda\varrho-1}}\int_{\frac{\eta-1}{\lambda\varrho-1}}^{\frac{\eta-1}{\lambda\varrho-1}}\left|\Psi_{\left(\eta,\vartheta;\eta,\vartheta'\right)}^{\lambda}(\omega,\omega)w_{\left(\eta,\eta\right)}^{\left(\varrho,\varrho\right),\lambda}(\omega,\omega)\right|d\omega d\omega. \end{split}$$

Next,

$$\int_{\frac{\eta-1}{\lambda^{\varrho-1}}}^{\frac{\eta}{\lambda^{\varrho-1}}} \Psi_{(\eta,\sigma)}^{\lambda}(\omega) w_{\eta}^{\varrho}(\omega) d\omega = \sqrt{\frac{\lambda^{\varrho+1}}{\pi}} \int_{\frac{\eta-1}{\lambda^{\varrho-1}}}^{\frac{\eta}{\lambda^{\varrho-1}}} P_{(\sigma+1/2)}(\lambda^{\varrho}\omega - 2\eta + 1) w(\lambda^{\varrho}\omega - 2\eta + 1) d\omega = \frac{1}{\lambda^{\varrho}} \sqrt{\frac{\lambda^{\varrho+1}}{\pi}} \int_{0}^{\pi} P_{(\sigma+1/2)}(\cos\theta) d\theta \\
= \frac{(-1)^{\sigma}}{\lambda^{\varrho}} \sqrt{\frac{\lambda^{\varrho+1}}{\pi}} \frac{1}{(\sigma + 1/2)} \text{ where } \sigma \text{ is non negative integers.}$$

Therefore,

$$\begin{split} \left|\alpha_{(\eta,\vartheta;\eta,\vartheta')}\right| & \leq & 2\max\left\{\sup\phi\left(\nu,\nu\right)\kappa,2\kappa_{0}\right\}\left(\frac{1}{\lambda^{\varrho\alpha}}+\frac{1}{\lambda^{\varrho\beta}}\right)^{\frac{\eta}{\lambda^{\varrho-1}}}_{\frac{\eta}{\varrho-1}}\left|\Psi_{(\eta,\vartheta)}^{\lambda}(\omega)w_{\eta}^{\varrho,\lambda}(\omega)\right|d\omega \int_{\frac{\eta^{-1}}{\lambda^{\varrho-1}}}^{\frac{\eta}{\lambda^{\varrho-1}}}\left|\Psi_{(\eta,\vartheta')}^{\lambda}(\omega)w_{\eta}^{\varrho,\lambda}(\omega)\right|d\omega \\ & \leq & 2\max\left\{\sup\phi\left(\nu,\upsilon\right)\kappa,2\kappa_{0}\right\}\left(\frac{1}{\lambda^{\varrho\alpha}}+\frac{1}{\lambda^{\varrho\beta}}\right)\frac{1}{\lambda^{\varrho}}\sqrt{\frac{\lambda^{\varrho+1}}{\pi}}\frac{1}{(\vartheta+1/2)\frac{1}{\lambda^{\varrho}}}\sqrt{\frac{\lambda^{\varrho+1}}{\pi}}\frac{1}{(\vartheta'+1/2)} \\ & = & \frac{4}{\pi}\max\left\{\sup\phi\left(\nu,\upsilon\right)\kappa,2\kappa_{0}\right\}\frac{1}{\lambda^{\varrho}}\left(\frac{1}{\lambda^{\varrho\alpha}}+\frac{1}{\lambda^{\varrho\beta}}\right)\frac{1}{(\vartheta+1/2)(\vartheta'+1/2)} \\ & = & \frac{4}{\pi}\max\left\{\sup\phi\left(\nu,\upsilon\right)\kappa,2\kappa_{0}\right\}\left(\frac{1}{\lambda^{\varrho(\alpha+1)}}+\frac{1}{\lambda^{\varrho(\beta+1)}}\right)\frac{1}{(\vartheta+1/2)(\vartheta'+1/2)} \\ & = & \delta\left(\frac{1}{\lambda^{\varrho(\alpha+1)}}+\frac{1}{\lambda^{\varrho(\beta+1)}}\right)\frac{1}{(\vartheta+1/2)(\vartheta'+1/2)} \text{ where } \delta = \frac{4}{\pi}\max\left\{\sup\phi\left(\nu,\upsilon\right)\kappa,2\kappa_{0}\right\} \\ & \parallel f-S_{\left(\lambda^{\varrho},\wp;\lambda^{\varrho'},\wp'\right)}^{f}\parallel_{2}^{2} & = & \sum_{\eta=1}^{\lambda^{\varrho-1}}\sum_{\vartheta=\wp}^{\infty}\sum_{\gamma'=1}^{\lambda^{\varrho-1}}\left|\alpha_{\left(\eta,\vartheta;\eta',\vartheta'\right)}\right|^{2} = \sum_{\vartheta=\wp}^{\infty}\sum_{\vartheta'=\wp'}\sum_{\eta=1}^{\lambda^{\varrho-1}}\sum_{\eta=1}^{\lambda^{\varrho-1}}\left|\alpha_{\left(\eta,\vartheta;\eta,\vartheta'\right)}\right|^{2} \\ & \leq & \frac{\lambda^{\varrho-1}\lambda^{\varrho-1}}{4\pi^{2}}\sum_{\vartheta=\wp}^{\infty}\sum_{\vartheta'=\wp'}\left(\frac{\delta\pi}{4}\right)^{2}\left(\frac{1}{\lambda^{\varrho(\alpha+1)}}+\frac{1}{\lambda^{\varrho(\beta+1)}}\right)^{2}\left(\frac{1}{(\vartheta+1/2)(\vartheta'+1/2)}\right)^{2} \\ & = & \delta^{2}\left(\frac{1}{\lambda^{\varrho\alpha+3}}+\frac{1}{\lambda^{\varrho\beta+3}}\right)^{2}\sum_{\Sigma}^{\infty}\sum_{\gamma'=1}^{\infty}\sum_{(\vartheta+1/2)^{2}}^{\infty}\frac{1}{(\vartheta+1/2)^{2}(\vartheta'+1/2)^{2}}. \end{split}$$

Thus,

$$\parallel f - S^f_{\left(\lambda^\varrho, \wp; \lambda^{\varrho'}, \wp'\right)} \parallel_2^2 \leq \delta^2 \left(\frac{1}{\lambda^{\varrho\alpha + 3}} + \frac{1}{\lambda^{\varrho\beta + 3}}\right)^2 S_{(\wp, \wp')}.$$

Where

$$S_{(\wp,\wp')} = \sum_{\vartheta=\wp}^{\infty} \sum_{\vartheta'=\wp'}^{\infty} \frac{1}{(\vartheta+1/2)^{2} (\vartheta'+1/2)^{2}} = \sum_{\vartheta=\wp}^{\infty} \frac{1}{(\vartheta+1/2)^{2}} \sum_{\vartheta'=\wp'}^{\infty} \frac{1}{(\vartheta'+1/2)^{2}}$$

$$\leq \left(\frac{1}{(\wp+1/2)^{2}} + \int_{\wp}^{\infty} \frac{d\vartheta}{(\vartheta+1/2)^{2}} \right) \left(\frac{1}{(\wp'+1/2)^{2}} + \int_{\wp'}^{\infty} \frac{d\vartheta'}{(\vartheta'+1/2)^{2}} \right) \text{ by Lemma 2.2,}$$

$$= \left(\frac{1}{(\wp+1/2)^{2}} + \frac{1}{(\wp+1/2)}\right) \left(\frac{1}{(\wp'+1/2)^{2}} + \frac{1}{(\wp'+1/2)}\right).$$

Since

$$0 \leq \|f - S_{\left(\lambda^{\varrho}, \wp; \lambda^{\varrho'}, \wp'\right)}^{f}\|_{2} \leq \max \left\{ \sup \phi\left(\nu, \nu\right) \kappa, 2\kappa_{0} \right\} \left(\frac{1}{\lambda^{\varrho\alpha+3}} + \frac{1}{\lambda^{\varrho'\beta+3}}\right) \frac{2}{\pi \sqrt{(\wp + 1/2)(\wp' + 1/2)}}$$

$$= \frac{2 \max \left\{ \sup \phi\left(\nu, \nu\right) \kappa, 2\kappa_{0} \right\}}{\pi \sqrt{(\wp + 1/2)(\wp' + 1/2)}} \left(\frac{1}{\lambda^{\varrho\alpha+2}} + \frac{1}{\lambda^{\varrho'\beta+2}}\right) = \frac{2\delta}{\sqrt{(\wp + 1/2)(\wp' + 1/2)}} \left(\frac{1}{\lambda^{\varrho\alpha+2}} + \frac{1}{\lambda^{\varrho'\beta+2}}\right)$$

$$\to 0 \text{ as } \varrho, \varrho'; \varrho, \wp' \to \infty.$$

Therefore, the EPCW series of the function f is uniformly convergent to f. Thus, Theorem 3.1 is completely established.

Theorem 3.2. If $f: \Omega^2 \to \mathbb{R}$ be a real valued function of two variable such that $f \in H^{(\alpha,\beta)}_{\Omega^2}(\mathbb{R})$, then the EPCW series expansion $\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \sum_{n'=1}^{\infty} \sum_{m'=0}^{\infty} \left\langle f, \Psi^{\lambda}_{(n,m;n',m')} \right\rangle_{w_{(k,n;k',n')}} \Psi^{\lambda}_{(n,m;n',m')}$, of the function f, is uniformly converges to f.

Proof of Theorem 3.2 The proof of above theorem can be given by exactly the same line of proof of Theorem 3.1 using the fact that $\phi = c$.

3.2. Corollaries

In this section, three new corollaries related to Theorems 3.2, have been established in the following forms:

Corollary 3.3. If $f \in H_{\Omega^2}^{(\alpha,\beta)}(\mathbb{R})$ and it can be expanded as an infinite series of the EPCW for $\vartheta = 0$ and $\vartheta' = 0$ is given by

$$\sum_{\eta=1}^{\infty} \sum_{\eta'=1}^{\infty} \alpha_{(\eta;\eta')} \Psi_{(\eta;\eta')}^{\lambda} = \sum_{\eta=1}^{\infty} \sum_{\eta'=1}^{\infty} \left\langle f, \Psi_{(\eta;\eta')}^{\lambda} \right\rangle_{w_{(\eta;\eta'),\lambda}}^{(\varrho,\varrho')} \Psi_{(\eta;\eta')}^{\lambda}, \text{ then the series converges uniformly to } f.$$

Corollary 3.4. If $f \in H_{\Omega^2}^{(\alpha,\beta)}(\mathbb{R})$ and it can be expanded as an infinite series of the EPCW for $\varrho = \varrho' = 1$ is given by

$$\sum_{\mathfrak{d}=0}^{\infty} \sum_{\mathfrak{d}'=0}^{\infty} \left\langle f, \Psi_{(\mathfrak{d};\mathfrak{d}')}^{\lambda} \right\rangle_{w_{(\mathfrak{d};\mathfrak{d}')}^{(1,1),\lambda}} \Psi_{(\mathfrak{d};\mathfrak{d}')}^{\lambda}, \text{ then the series converges uniformly to } f.$$

Corollary 3.5. If f is single variable real valued function in the class $H_{\Omega}^{\alpha}(\mathbb{R})$ and it can be expanded as an infinite series of the EPCW for $\varrho = \eta = 1$ is given by

$$\sum_{\vartheta=0}^{\infty}\alpha_{\vartheta}\Psi_{\vartheta}=\sum_{\vartheta=0}^{\infty}\left\langle f,\psi_{\vartheta}^{\lambda}\right\rangle_{w_{1}^{1}}\psi_{\vartheta}^{\lambda},\ where\ \alpha_{\vartheta}=\int_{\mathbb{R}}f(\omega)\bar{\psi}_{\vartheta}^{\lambda}(\omega)w(2\omega-1)d\omega,\ then\ the\ series\ converges\ uniformly\ to\ f.$$

4. Error analysis

4.1. Orthogonal Projection Operator

An orthogonal projection operator is a surjective map $\Phi_{\eta}: L^2_{\Omega} \to V_{\eta}$ defined by (see[43])

$$\Phi_{\eta}(f) = \sum_{m=0}^{\infty} \left\langle f, \Psi_{\left(\eta,\vartheta\right)}^{\lambda} \right\rangle_{w_{\eta}^{\varrho}} \Psi_{\left(\eta,\vartheta\right)}^{\lambda}, \text{ fixed } \eta = 1, 2, 3, \dots \lambda^{\varrho-1} << \infty, \ \varrho \in \mathbb{N}.$$

The two dimensional orthogonal projection operator $\Phi_{(\eta,\eta')}:L^2_{\Omega^2}\to V_{(\eta,\eta')}$ is given by

$$\begin{split} &\Phi_{\left(\eta,\eta'\right)}(f) &= \sum_{\vartheta'=0}^{\infty} \sum_{\vartheta=0}^{\infty} \alpha_{(\vartheta;\vartheta')} \Psi^{\lambda}_{(\vartheta;\vartheta')}, \text{ fixed } \eta = 1,2,3,\cdots \lambda^{\varrho-1} << \infty, \quad \eta' = 1,2,3,\cdots \lambda^{\varrho'-1} << \infty, \quad \varrho,\varrho' \in \mathbb{N}, \\ &= \sum_{\vartheta=0}^{\infty} \sum_{\vartheta'=0}^{\infty} \left\langle f, \Psi^{\lambda}_{(\vartheta;\vartheta')} \right\rangle_{w^{(\varrho,\varrho'),\lambda}_{(\eta;\eta')}} \Psi^{\lambda}_{(\vartheta;\vartheta')}(\omega,\varpi), \text{ where } \alpha_{(\vartheta,\vartheta')} = \int\limits_{\mathbb{R}} \int\limits_{\mathbb{R}} f(\omega,\varpi) \Psi^{\lambda}_{\vartheta;\vartheta}, w^{(\varrho,\varrho'),\lambda}_{\eta;\eta'}(\omega,\varpi) d\omega d\varpi. \end{split}$$

4.2. Function Approximation

A two dimensional real valued function f defined on Ω^2 may be expanded in terms of the two dimensional *EPCW* series (1). If an infinite series (1) is approximated by an orthogonal projection operators $\Phi_{(\eta,\eta')}$, then

$$f \approx f_0 = \sum_{\eta=1}^{2^{\varrho-1}} \sum_{\vartheta=0}^{\varrho-1} \sum_{\eta'=1}^{2^{\varrho'-1}} \sum_{\vartheta'=0}^{\varrho'-1} \alpha_{\eta,\vartheta;\eta',\vartheta'} \Psi_{\eta,\vartheta;\eta',\vartheta'} = \langle \Upsilon, \Psi \rangle = \Upsilon^{\tau} \Psi \text{ where } \Upsilon^{\tau} \text{ indicates transpose of a matrix } \Upsilon,$$

where Υ and Ψ are $2^{\varrho-1}\wp 2^{\varrho'-1}\wp' \times 1$ matrices and (Υ, Ψ) is an inner product of column vectors Υ and Ψ (see[23]).

4.3. Error of Wavelet Approximation

The error $\zeta_{(\mathbf{N},\wp)}$ of wavelet approximation of a function f by the orthogonal projection operators $\Phi_{(\mathbf{N},\wp)}$ is defined by (see[49])

$$\zeta_{(\aleph,\wp)}(f) = \inf_{\Phi_{(\aleph,\wp)}(f)} \|\Phi_{(\aleph,\wp)}(f_0) - f\|_2 \text{ where } \aleph = \lambda^{\varrho-1} \text{ and } \varrho \in \mathbb{N}.$$

If error $\zeta_{(\aleph,\wp)}(f) \to 0$ as $\aleph \to \infty$ or $\wp \to \infty$ then $\Phi_{(\aleph,\wp)}(f_0)$ is called the best wavelet approximation of a function $f \in L^2_{\Omega}(\mathbb{R})$ (see[49]).

The error $\zeta_{(\aleph,\wp;\aleph',\wp')}(f)$ of two dimensional EPCW approximation of a function $f \in L^2_{\Omega^2}(\mathbb{R})$ by the operators $\Phi_{(\aleph,\wp;\aleph',\wp')}$ is given by

$$\zeta_{(\aleph,\wp;\aleph',\wp')}(f) = \inf_{\Phi_{(\aleph,\wp,\aleph',\wp')}(f)} \|\Phi_{(\aleph,\wp;\aleph',\wp')}(f_0) - f\|_2.$$

If error $\zeta_{(\aleph,\wp;\aleph',\wp')}(f) \to 0$ as $\aleph,\aleph' \to \infty$ or $\wp,\wp' \to \infty$ then $\Phi_{(\aleph,\wp;\aleph',\wp')}(f_0)$ is called the best wavelet approximation of a function $f \in L^2_{\Omega^2}(\mathbb{R})$.

4.4. Main Results

In this section, we develop a new theorems related to approximation error of function using orthogonal projection operators, ascertaining that the two dimensional *EPCW* expansion of a function f, in the Hölder's class $H_{(\Omega^2,\phi)}^{(\alpha,\beta)}(\mathbb{R})$.

Theorem 4.1. Let $f: \Omega^2 \to \mathbb{R}$ be a function belongs to class $H^{(\alpha,\beta)}_{(\Omega^2,\phi)}(\mathbb{R})$, and two dimensional EPCW expansion is given by

$$\sum_{n=1}^{\infty} \sum_{\vartheta=0}^{\infty} \sum_{\eta'=1}^{\infty} \sum_{\vartheta'=0}^{\infty} \alpha_{\left(\eta,\vartheta;\eta',\vartheta'\right)} \Psi^{\lambda}_{\left(\eta,\vartheta;\eta',\vartheta'\right)}.$$
 Then the error function $\zeta_{\left(\aleph,\wp;\aleph',\wp'\right)}(f)$ of f converges uniformly to zero $\hat{\theta}$.

Proof: Following the proof of theorem 3.1 we have

$$0 \le ||\zeta_{(\aleph,\wp;\aleph',\wp')}(f)||_2^2 \le \frac{\delta^2}{16} \left(\frac{1}{\aleph^\alpha} + \frac{1}{\aleph'^\beta}\right)^2 \sum_{\vartheta=\wp}^\infty \sum_{\vartheta'=\wp'}^\infty \frac{1}{(\vartheta+1/2)^2 (\vartheta'+1/2)^2} \le \frac{\aleph_0^2}{(\wp+1/2) (\wp'+1/2)} \text{ by Lemma 2.2}$$

$$\to 0 \text{ as } \wp \text{ or } \wp' \to \infty.$$

Therefore, error function $\zeta_{(\aleph,\wp;\aleph',\wp')}(f)$ uniformly converges to zero function $\hat{\theta}$. Thus, Theorem 4.1 is completely established.

Theorem 4.2. If $f: \Omega^2 \to \mathbb{R}$ be a function belongs to class $H^{(\alpha,\beta)}_{\Omega^2}(\mathbb{R})$, and two dimensional EPCW expansion is given by $\sum\limits_{\eta=1}^{\infty}\sum\limits_{\vartheta=0}^{\infty}\sum\limits_{\eta'=1}^{\infty}\sum\limits_{\vartheta'=0}^{\infty}\alpha_{(\eta,\vartheta;\eta',\vartheta')}\Psi^{\lambda}_{(\eta,\vartheta;\eta',\vartheta')}$, then the error function $\zeta_{(\mathbf{N},\wp;\mathbf{N}',\wp')}(f)$ of f converges uniformly to $\hat{\theta}$.

Proof of Theorem 4.2 The proof of above theorem can be given by exactly the same line of proof of Theorem 4.1 using the fact that $\phi = c$.

4.5. Corollaries

In this section, three new corollaries related to Theorem 4.1, has been established in the following forms:

Corollary 4.3. If $f \in H_{\Omega^2}^{(\alpha,\beta)}(\mathbb{R})$, then the two dimensional EPCW error function $\zeta_{(\aleph;\aleph')}(f)$ of the target functions f by the orthogonal projection operators $\Phi_{(\aleph;\aleph')}(f)$ are satisfy

$$\left|\zeta_{(\aleph,\aleph')}(f)\right| = O\left(\frac{1}{\aleph'^{\alpha}} + \frac{1}{\aleph'^{\beta}}\right).$$

Corollary 4.4. If $f \in H_{\Omega^2}^{(\alpha,\beta)}(\mathbb{R})$, then the two dimensional EPCW error function $\zeta_{(\wp,\wp')}(f)$ of a ξ by the operators $\Phi_{(\wp,\wp')}(f)$ are satisfy

$$\left|\Phi^{\mathcal{E}}_{(\wp,\wp')}\right| \quad = \quad O\left(\frac{1}{\lambda^{\alpha+1}} + \frac{1}{\lambda^{\beta+1}}\right) \left(\frac{1}{\sqrt{(\wp+1/2)\left(\wp'+1/2\right)}}\right) \text{ for } 0 < \alpha,\beta \leq 1.$$

Corollary 4.5. If f is a single real valued function in the class $H_{\Omega}^{\alpha}(\mathbb{R})$, then the EPCW error function $\zeta_{\wp}(f)$ of a function f by $\Phi_{\wp}(f)$ are satisfy

$$\left|\zeta_{\wp}(f)\right| = O\left(\frac{1}{\lambda^{\alpha}(\wp + 1/2)}\right).$$

5. Effectiveness of the EPCW/PCW approximation method

In this section, we calculate the approximation of a function and it effectiveness show by an example, more over this results are compared with *PCW* and *CW* approximation methods.

5.1. Illustrative Examples

Example 5.1. Consider the single variable real valued function ξ on Ω ,

$$\xi(\omega) = \left\{ \begin{array}{ll} \omega^{1/2} - 2\omega^{3/2} - 3\omega^{5/2} + 4\omega^{7/2} & for \quad \omega \in \Omega, \\ 0 & otherwise. \end{array} \right.$$

Next, we calculate the approximated valued for the function ξ *, by the PCW approximation method. In the Corollary 3.5, if* $\lambda = 2$ *and*

$$\xi_0^{\wp}(\omega) = \sum_{\vartheta=0}^{\wp-1} \alpha_{\vartheta} \Psi_{\vartheta}(\omega) \& \alpha_{\vartheta} = \langle \xi, \Psi_{\vartheta} \rangle_{w_1^1}.$$

Next, we evaluate $\xi_0^1(\omega)$, $\xi_0^2(\omega)$, $\xi_0^3(x)$, $\xi_0^4(x)$, $\zeta_1^\xi(\omega)$, $\zeta_2^\xi(\omega)$, $\zeta_3^\xi(\omega)$, $\zeta_4^\xi(\omega)$ and $\xi_0^\varphi(\omega)$ & $\zeta_{\varphi}^\xi(\omega)$. If,

$$\Upsilon^{\wp} = (\alpha_0, \alpha_1, \alpha_2, \cdots, \alpha_{\wp-1})^{\tau} \quad \& \quad \Psi^{\wp} = (\Psi_0, \Psi_1, \Psi_2, \cdots, \Psi_{\wp-1})^{\tau}$$

$$\xi_{0} = \sum_{\vartheta=0}^{\infty} \alpha_{\vartheta} \Psi_{\vartheta} = \lim_{\vartheta \to \infty} \sum_{\vartheta=0}^{\vartheta-1} \alpha_{\vartheta} \Psi_{\vartheta}, = \lim_{\vartheta \to \infty} \langle \Upsilon^{\vartheta}, \Psi^{\vartheta} \rangle = \lim_{\vartheta \to \infty} ((\Upsilon^{\vartheta})^{\mathsf{T}} \Psi^{\vartheta}) = \lim_{\vartheta \to \infty} \xi_{0}^{\vartheta}, \text{ where } \alpha_{\vartheta} = \int_{0}^{1} \xi(\omega) \Psi_{\vartheta}(\omega) w(2\omega - 1) d\omega,$$

and $\xi_0(\omega)$ is called approximated valued function of the targeted problem $\xi(\omega)$ using PCW series expansion method. Now, we calculate α_ϑ for $\vartheta \ge 0$, $\alpha_0 = \int\limits_0^1 \xi(\omega) \Psi_0(\omega) w_1^1(\omega) d\omega \approx -0.1662$, $\alpha_1 = \int\limits_0^1 \xi(\omega) \Psi_1(\omega) w_1^1(\omega) d\omega \approx -0.1108$, $\alpha_2 = \int\limits_0^1 \xi(\omega) \Psi_2(\omega) w_1^1(\omega) d\omega \approx 0.2216$, $\alpha_3 = \int\limits_0^1 \xi(\omega) \Psi_3(\omega) w_1^1(\omega) d\omega \approx 0.0554$, $\alpha_4 = \int\limits_0^1 \xi(\omega) \Psi_4(\omega) w_1^1(\omega) d\omega = 0$, $\alpha_\vartheta = 0$, for $\vartheta \ge 4$, i.e. $\Upsilon^{\wp} = (-0.1662, -0.1108, 0.2216, 0.0554, 0, \cdots, 0)^\intercal$.

Since the approximated and its error of function ξ of an order \wp using PCW series expansion method are given by

$$\xi_0^{\wp}(\omega) = \sum_{\vartheta=0}^{\wp-1} \alpha_{\vartheta} \Psi_{\vartheta}(\omega) = (\Upsilon^{\wp})^{\tau} \Psi^{\wp}(\omega) \quad and \quad \zeta_{\wp}^{\xi}(\omega) = \sum_{\vartheta=\wp}^{\infty} \alpha_{\vartheta} \Psi_{\vartheta} \text{ respectively.}$$

Therefore

$$\xi_{0}^{\wp}(\omega) = -0.1662 \, \Psi_{0}(\omega) - 0.1108 \, \Psi_{1}(\omega) + 0.2216 \, \Psi_{2}(\omega) + 0.0554 \, \Psi_{3}(\omega) + 0 \Psi_{4}(\omega) + 0 \Psi_{5}(\omega) + \dots + 0 \Psi_{(\wp-1)}(\omega),$$

$$= \sum_{\vartheta=0}^{(4-1)} \alpha_{\vartheta} \Psi_{\vartheta}(\omega), = \xi_{0}^{4}(\omega), \text{ and approximation is given by}$$

$$\xi_0 = \lim_{\wp \to \infty} \sum_{\vartheta = 0}^{\wp - 1} \alpha_\theta \Psi_\vartheta = \lim_{\wp \to \infty} \left(\sum_{\vartheta = 0}^{4 - 1} \alpha_\theta \Psi_\vartheta + \sum_{\vartheta = 4}^{\wp - 1} \alpha_\theta \Psi_\vartheta \right) = \lim_{\wp \to \infty} \left(\xi_0^4 + \hat{\theta} \right) = \xi_0^4,$$

moreover the error of targeted function is zero $\hat{\theta} = \zeta_{\emptyset}^{\xi}(\omega) = \sum_{\vartheta=4}^{\infty} \alpha_{\vartheta} \Psi_{\vartheta}(\omega)$ of the order four. The energy of signal ξ and approximated signal ξ_{0}^{4} are given by

$$\|\xi\|_{2}^{2} = \langle \xi, \xi \rangle_{w_{1}^{1}} = \int_{0}^{1} (\xi(\omega))^{2} \omega (2\omega - 1) d\omega \simeq \lim_{\wp \to \infty} \sum_{\vartheta=0}^{\wp-1} |\alpha_{\vartheta}|^{2} = \|\xi_{0}^{4}\|_{2}^{2} = \|\xi_{0}\|_{2}^{2}.$$

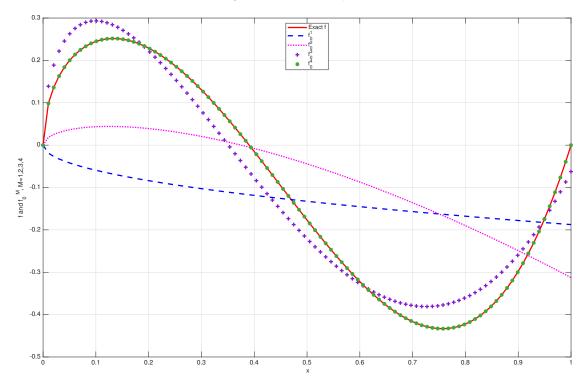


Figure 1: Graph of ξ and truncated ξ_0^{\wp} for $\wp = 1, 2, 3, 4$.

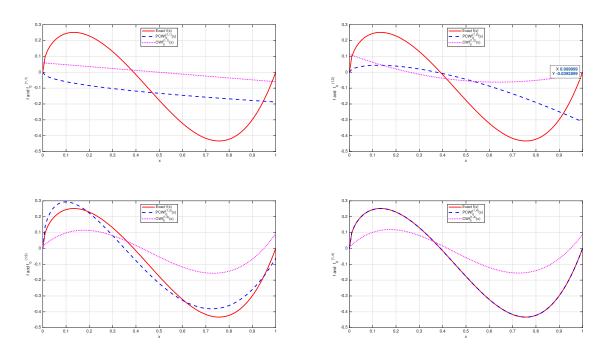


Figure 2: Graph of exact ξ and ξ_0^{\wp} by PCW & CW methods, for $\wp=1,2,3,4$.

t	0.00	0.25	0.50	0.75	1.00
ξ	0	0.1875	-0.1767766953	-0.4330127019	0
$PCW\xi_0^0$	0	-0.09375	-0.1325825215	-0.1623797632	-0.1875
$CW\xi_0^0$	0.05961994694	0.02980997347	0	-0.02980997347	-0.05961994694
$PCW\xi_0^1$	0	0.03125	-0.04419417382	-0.1623797632	-0.3125
$CW\xi_0^1$	0.1134524414	0.002893726238	-0.05383249446	-0.0567262207	-0.005787452476
$PCW\xi_0^2$	0	0.15625	-0.2209708691	-0.3788861142	-0.0625
$CW\xi_0^2$	0.01425310335	0.1020930643	-0.05383249446	-0.1559255587	0.09341188557
$PCW\xi_0^3$	0	0.1875	-0.1767766953	-0.4330127019	0
$CW\xi_0^3$	0.009970812508	0.1042342097	-0.0581147853	-0.1537844133	0.08912959473
$PCW\xi_0^4$	0	0.1875	-0.1767766953	-0.4330127019	0
$CW\xi_0^4$	0.003403968134	0.1009507875	-0.0581147853	-0.1505009911	0.0956964391

Table 1: Comparison between ξ, ξ_0^{\wp} for $\wp = 0, 1, 2, 3, 4$.

t	0.0 0	0.25	0.50	0.75	1.00
PCWζ ¹	0	0.28125	0.04419417382	0.2706329387	0.1875
CWζ ¹	0.05961994694	0.1576900265	0.1767766953	0.4032027284	0.05961994694
PCWζ ²	0	0.15625	0.1325825215	0.2706329387	0.3125
CWζ ²	0.1134524414	0.1846062738	0.1229442008	0.3762864812	0.005787452476
PCWζ ³	0	0.03125	0.04419417382	0.05412658774	0.0625
CWζ ³	0.01425310335	0.08540693572	0.1229442008	0.2770871431	0.09341188557
PCWζ ⁴	0	0	0	0	0
CWζ ⁴	0.009970812508	0.0832657903	0.11866191	0.2792282886	0.08912959473
PCWζ ⁵	0	0	0	0	0
CWζ ⁵	0.003403968134	0.08654921248	0.11866191	0.2825117108	0.0956964391

Table 2: ζ^{\wp} using PCW & CW methods for $\wp = 1, 2, 3, 4, 5$.

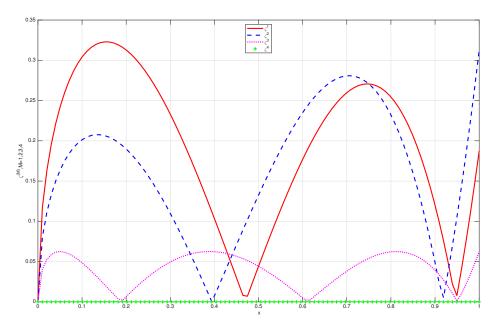


Figure 3: Graph of errors $\zeta_1^\xi, \zeta_2^\xi, \xi_3^\xi, \xi_4^\zeta$ for different order $\wp=1,2,3,4$.

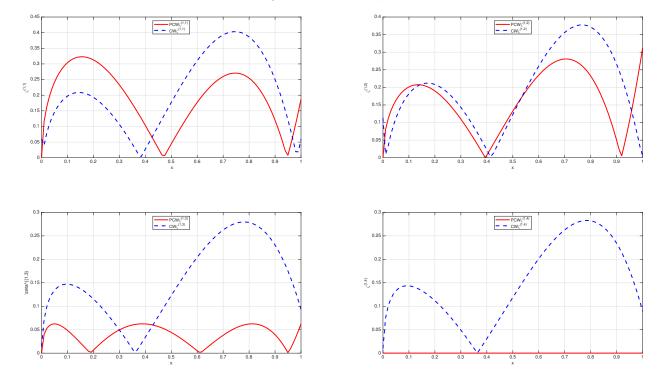


Figure 4: Graph of errors $\zeta_1^\xi, \zeta_2^\xi, \zeta_3^\xi, \zeta_4^\xi$ by PCW & CW methods.

Example 5.2. *In this example, we consider a function defined over two variables, f.*

$$f(\omega,u) = \begin{cases} \omega^{1/2} u^{3/2} - 2\omega^{3/2} u^{1/2} - 3\omega^{5/2} u^{7/2} + 4\omega^{7/2} u^{5/2} & for \ (\omega,u) \in \Omega^2, \\ 0 & otherwise. \end{cases}$$

In the Corollary 3.4, if $\lambda = 2$ *, and, if we consider the Pseudo-Chebyshev series expansions of the function, for*

$$\varrho = \varrho' = 1 \Rightarrow \eta = \eta' = 1$$
,

then,

$$f \sim \sum_{\vartheta=0}^{\infty} \sum_{\vartheta'=0}^{\infty} \alpha_{(\vartheta;\vartheta')} \psi_{\vartheta} \psi_{\vartheta'}$$

$$= -0.3206 \psi_0(\omega) \psi_0(u) + 0.2500 \psi_0(\omega) \psi_1(u) - 0.0537 \psi_0(\omega) \psi_2(u) - 0.0230 \psi_0(\omega) \psi_3(u)$$

$$- 0.1511 \psi_1(\omega) \psi_0(u) + 0.0805 \psi_1(\omega) \psi_1(u) - 0.0161 \psi_1(\omega) \psi_2(u) + 0.0192 \psi_1(\omega) \psi_3(u)$$

$$+ 0.5100 \psi_2(\omega) \psi_0(u) + 0.2684 \psi_2(\omega) \psi_1(u) + 0.0644 \psi_2(\omega) \psi_2(u) + 0.0038 \psi_2(\omega) \psi_3(u)$$

$$+ 0.0537 \psi_3(\omega) \psi_0(u) + 0.0268 \psi_3(\omega) \psi_1(u) + 0.0054 \psi_3(\omega) \psi_2(u) + 0 \psi_3(\omega) \psi_3(u) + \cdots$$

$$= f_0,$$

$$where \quad \alpha_{(\vartheta;\vartheta')} = \int_{\Omega^2} f \psi_{\vartheta} w_1^1 \psi_{\vartheta'} w_1^1 d\mu = \int_{\omega=0}^1 \int_{u=0}^1 f(\omega, u) \psi(\omega) w(2\omega - 1) \psi(u) w(2u - 1) d\omega du.$$

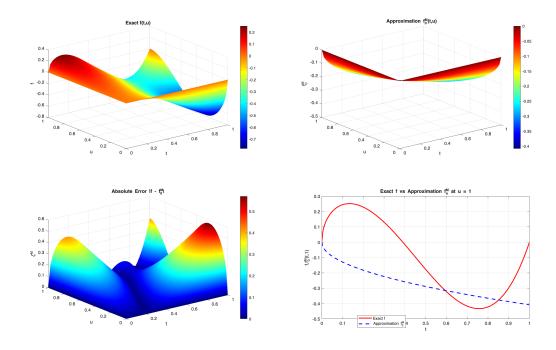


Figure 5: Graph of f, f_0 , $|f - f_0|$ in 3D and f, f_0 in 2D for M = 1



Figure 6: Graph of f, f_0 , $|f - f_0|$ in 3D and f, f_0 in 2D for M = 2

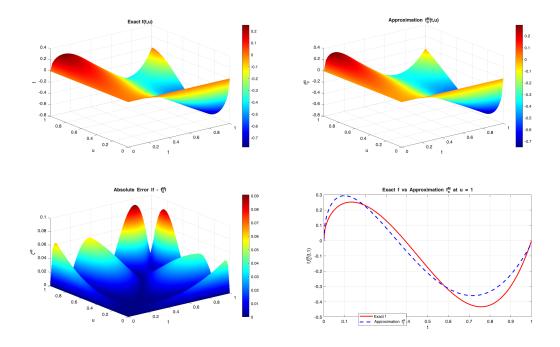


Figure 7: Graph of f, f_0 , $|f - f_0|$ in 3D and f, f_0 in 2D for M = 3

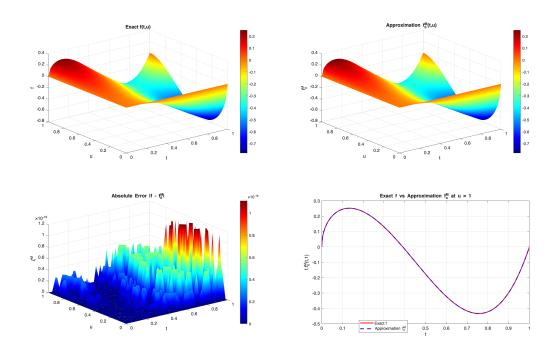


Figure 8: Graph of f, f_0 , $|f - f_0|$ in 3D and f, f_0 in 2D for M = 4

6. Conclusions

- (i) Since $\zeta_{(\aleph,\wp;\aleph',\wp')}(f) \to 0$ as $\aleph,\aleph' \to \infty$ or $\wp,\wp' \to \infty$ in above results. Therefore the EPCW approximations determined in this results are best possible in the wavelet analysis (see[49]).
- (ii) Some most important corollaries 3.3,3.4,3.5 and 4.3,4.4,4.5 have been derived from our main Theorems 3.2 and 4.2 respectively.
- (iii) Independent proofs of these corollaries 3.3,3.4,3.5, 4.3,4.4 and 4.5 can be developed for specific contributions of these estimates in wavelet analysis.
- (iv) Figures (1, 2, 3&4) and Tables (1&2) are shows that the *PCW* method is more effective rather than *CW* method in the case of fractional degree.
- (v) Figures (1, 2, 3 &4) are shows that how to error functions are rapidly converges to zero functions by the *PCW* method rather than *CW* method in this case.
- (vi) The outcomes obtained for the two-dimensional case are effectively demonstrated through Example 5.2. In this example, by fixing the variable u=1, the problem formulation aligns closely with that of Example 5.1. This equivalence becomes apparent when analyzing the respective solutions. Specifically, Figures 5, 6, 7, and 8 visually highlight the structural similarities and reinforce the consistency of the proposed approach across both one- and two-dimensional settings. Such correspondence not only validates the generality of the method but also showcases its adaptability in higher-dimensional approximation scenarios.

Acknowledgements Authors are grateful to anonymous learned referees and all the editorial board members, for their exemplary guidance, valuable feedback and constant encouragement which improve the quality and presentation of this paper. I, Susheel Kumar, one of the author, am thankful to my supervisor, Prof.Shyam Lal, for his incomparable and inexpressible guidance.

Conflict of interest The authors declare that there is no conflict of interest.

Data availability My manuscript has no associated data.

References

- [1] Bastin, F.; A Riesz basis of wavelets and its dual with quintic deficient splines, Note di Mathematica 25 (2006), 1, 55-62.
- [2] Biazar. J., Ebrahimi, H.; Chebyshev wavelets approach for nonlinear systems of Volterra integral equations Computers and Mathematics with Applications 63 (2012) 608–616.
- [3] Babolian, E., Fattahzadeh, F.; Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration, Applied Mathematics and Computation 188 (2007) 1016-1022.
- [4] Boyd, J. P.; Chebyshev and Fourier Spectral Methods, 2nd ed, Dover: Mineola, NY, USA, 2001.
- [5] Babolian, E., Fattahzadeh, F.; Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration Applied Mathematics and Computation 188 (2007) 417-426.
- [6] Cesarano, C.; Integral representations and new generating functions of Chebyshev polynomials. Hacet. J. Math. Stat. 2015, 44, 535-546
- [7] Cesarano, C., Ricci, P. E.; Orthogonality properties of the Pseudo Chebyshev functions (Variations on a Chebyshev's theme) Σ mathematics, Mdpi. J. Math. (2019), 7, 180; doi:103390/math7020180.
- [8] Chui C. K., An introduction to wavelets (Wavelet analysis and its applications), Vol. 1, Academic Press, USA, (1992).
- [9] Chui, C. K.; Wavelet: A Mathematical Tool for Signal Analysis, SIAM Publ., 1997
- [10] Daubechies, I.; Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.
- [11] Daubechies. I. and Lagarias. J. C., Two-scale difference equations I, Existence and global regularity of solutions, Siam. J. Math. Anal.,22(1991),pp. 13881410.
- [12] Islam, M. R., Ahemmed, S.F. and Rahman, S.M., Comparision of wavelet approximation order in different smoothness spaces, Int. J. Math. Math. Sci., (2006), Article ID 63670, 7 pages, 2006.
- [13] Keshavarz, E., Ordokhani, Y., Razzaghi, M.; Bernoulli wavelet operational mtrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Modelling (2014), 2014.04.064.
- [14] Kumar, S., Linear and non-linear wavelet approximations of functions of Lipschitz class and related classes using the Haar wavelet series J. of Ramanujan Society of Mathematics and Mathematical Sciences Vol. 10, Issue 2 (2023), pp. 161-176 DOI: https://doi.org/10.56827/JRSMMS.2023.1002.12
- [15] Kumar, S., Awasthi, A. K., Mishra, S. K., Yadav, H. C., & Lal, S. (2025). An error estimation of absolutely continuous signals and solution of Abel's integral equation using the first kind pseudo-Chebyshev wavelet technique. Franklin Open, 10, 100205.

- [16] Kumar, S., Mishra, G.K., Mishra, S.K., and Lal, S.; Pseudo Chebyshev wavelets in two dimensions and their applications in the theory of approximation of functions belonging to Lipschitz class. South East Asian J. of Mathematics and Mathematical Sciences, Vol. 20, No.2(2024), pp.247-268, DOI:10.56827/SEAJMMS.2024.2002.19.
- [17] Kumar, S., and Mishra, G.K.; Error bounds of an absolutely continuous function by orthogonal projection operator using extended pseudo-Chebyshev wavelet series. J. of Ramanujan Society of Mathematics and Mathematical Sciences, vol. 12, No. 1(2024), pp. 43-60, DOI:10.56827/JRSMMS.2024.1201.3.
- [18] Lal and Kumar, CAS wavelet approximation of functions of Hölder's class $H^{\alpha}[0,1)$ and Solution of Fredholm Integral Equations, Ratio Mathematics, vol.39, (2020) 187-212.
- [19] Lal & Patel, Chebyshev wavelet approximation of functions having first derivative of Hölder's class, São Paulo Journal of Mathematical Sciences, (2021).
- [20] Lal, S., and Yadav, H. C.; Extended Chebyshev wavelet of first kind and its applications in approximation of function belonging to Hölder's class and solution of Fredholm integral equation of second kind. J.Indian Math. Soc.,91(3-4),pp.400-415, (2024).
- [21] Lal, S., and Yadav, H. C.; Approximation of functions belonging to Hölder's class and solution of Lane-Emden differential equation using Gegenbauer wavelets, Filomat journal, vol.37(12), (2022) 4029-4045.
- [22] Lal, S., and Yadav, H. C.; approximation in Hölder's class and solution of Bessel's differential equations by extended Haar wavelet, Poincare Journal of Analysis & Applications, vol.10(1), (2023).
- [23] Lal S., Kumar S., Mishra S. K., Awasthi A. K. Error bounds of a function related to generalized Lipschitz class via the pseudo-Chebyshev wavelet and its applications in the approximation of functions Carpathian Math. Publ. 2022, 14 (1), 29-48, doi:10.15330/cmp.14.1.29-48.
- [24] Lal, S., Kumar, V. and Patel, N.; Wavelet estimation of a function belonging to Lipschitz class by first kind Chebyshev wavelet method, Alb. J. Math. 13(1) 95-106 (2019).
- [25] Lal, S., Bhan, I.; Approximation of Functions Belonging to Generalized Holder Class $H_{\alpha}^{\omega}[0,1)$ by First Kind Chebyshev Wavelets and Its Applications in the Solution of Linear and Nonlinear Differential Equations, Int. J. Appl. Comput. Math.10.1007 07295 (2019)
- [26] Lal, S., Kumar, S.; Best wavelet approximation of functions belonging to generalized Lipschitz class using Haar scaling function. Thai. J. Math. 15(2), 409-419 (2017).
- [27] Lal, S., Kumar. M.; Approximation of functions of space $L^2\mathbb{R}$ by wavelet expansions, Lobachevskii J. Math. 34(2), 163-172(2013).
- [28] Lal, S., Kumar, S.; Quasi- positive delta sequences and their applications in wavelet approximation, Int. J. Math. Math. Sci. Volume 2016, Article ID 9121249, 7 pages.
- [29] Lal, S., Kumari P.; Approximation of a function f of generalized Lipschitz class by its extended Legendre wavelet series, Int. J. Appl. Comput. Math.10.1007 05778 (2018)
- [30] Lal, S., Kumar, V.; Approximation of a function *f* belonging to Lipschitz class by Legendre wavelet method, Int. J. Appl. Comput. Math.10.1007 06485 (2019)
- [31] Mason, J.C. and Handscomb, D. C.L; Chebyshev Polynomials, Chapman and Hall; New York, USA; CRC; Boca Raton, FL, USA, 2003
- [32] Morlet.J., Arens.G., Fourgeau.E. and Giard.D. Wave propagation and sampling Theory, part I: complex signal land scattering in multilayer media, Geophysics 47 (1982),no.2,203-221.
- [33] Morlet J., Arens G., Fourgeau E. and Giard D. Wave propagation and sampling Theory, part II: complex signal land scattering in multilayer media, Geophysics 47 (1982),no.2,203-221.
- [34] Meyer.Y. Wavelets their post and their future, Progress in Wavelet Analysis and applications (Toulouse,1992)(Y.Meyer and S. Roques, eds.), Frontieres, Gif-sur-Yvette, 1993, pp.9-18.
- [35] Moĥammadi, F.; A wavelet-based computational method for solving stochastic Itô-Volterra integral equations, Journal of Computational Physics 298(2015) 254–265.
- $[36] \ \ Natanson.\ I.P., Constructive\ Function\ Theory, Gosudarstvennoe\ Izdatel's tvo\ Tehniko-Teoreticeskoi\ Literatury,\ Moscow, 1949.$
- [37] Rehman, S., Siddiqi, A. H.; Wavelet based correlation coefficient of time series of Saudi Meteorological Data, Chaos, Solitons and Fractals 39 (2009) 1764–1789
- [38] Ricci, P. E.; Complex spirals and Pseudo Chebyshev polynomials of fractional degree, Symmetry 2018, 10, 671.
- [39] Rivlin, T. J.; The Chebyshev Polynomials; J. Wiley and Sons: New York, NY, USA, 1974.
- [40] Ricci, P. E.; Alcune osservazioni sulle poteenze delle matrici del secondo ordine e sui polinomi di Tchebycheff di seconda specie, Atti Accad. Sci. Torino 1975, 109, 405-410.
- [41] Ricci, P. E.; Una proprieta iterativa dei polinomi di Chebshev di prima specie in piu variabili. Rend. Mater. Appl. 1986, 6, 555-563.
- [42] Strang, G.; Wavelet transforms versus Fourier transforms, Appeared in Bulletin of the American Mathematical Society Volume 28, No. 2, April 1993, Pages 228-305.
- [43] Sweldens W., Piessens R.; Quadrature Formulae and Asymptotic Error Expansions for Wavelet Approximation of smooth functions Siam. J. Numer. Anal. Vol. 31, No. 4, pp. 1240-1264, August 1994.
- [44] Strang, G., Ngyuen, T.; Wavelets and Filter Banks, Wellesley Cambridge Press, 1996.
- [45] Titchmarsh, E.C., The Theory of functions, Second Edition, Oxford University Press, (1939).
- [46] Venkatesh, Y.V., Ramani, K. and Nandini, R. Wavelet array decomposition of images using a Hermite sieve. Sadhana 18, 301–324 (1993). https://doi.org/10.1007/BF02742663
- [47] Walter, G. G.; Approximation of the delta functions by wavelets. J. Approx. Theory 71(3), 329-343(1992).
- [48] Walter, G. G.; Point wise convergence of wavelet expansions. J. Approx. Theory 80(1), 108-118 (1995)
- [49] Zygmund A., Trigonometric Series Volume I & II, Cambridge University Press, 1959.