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Hülya Gültekin Çitila
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Abstract. This paper is on third-order fuzzy problems with symmetric triangular fuzzy numbers. We
study solutions of the problems via fuzzy Laplace transform method. We give comparison results of the
problems. Numerical examples are solved. Graphics of the solutions are drawn for each alpha level sets.
Conclusions are given.

1. Introduction

Dynamical systems under uncertainty are modeled by means of fuzzy differential equations. The topic
of fuzzy differential equations has been rapidly growing in recent years. Firstly, Zadeh introduced fuzzy
number and fuzzy arithmetic [36]. Chang and Zadeh first introduced the concept of fuzzy derivative [11],
followed by Dubois and Prade [12]. Dubois and Prade used the extension principle. Puri and Ralescu
generalized the Hukuhara derivative of a set-valued function [29]. Hukuhara derivative has a drawback:
It becomes fuzzier as time goes. So, the fuzzy solution behaves quite differently from the crisp solution.
Hüllermeier interpreted the fuzzy differential equation as a family of differential inclusions [19]. Bede
and Gal introduced the strongly generalized differentiability [6]. The strongly generalized differentiability
was studied [7, 8, 10, 14, 26]. Another approach to solve fuzzy differential equations is Zadeh’s extension
principle [3, 27].

Abbasbandy and Allahviranloo, Abbasbandy et al. and Allahviranloo et al. introduced the numerical
methods for solving fuzzy differential equations [1, 2, 4]. Numerical methods were studied in many papers
[15, 16, 20, 21, 24, 33, 34].

Fuzzy differential equations and corresponding fuzzy initial and boundary value problems are solved
by the fuzzy Laplace transform method. The fuzzy Laplace transform method is practically the most
important operational method. Problems are solved directly. So, fuzzy Laplace transform method was
used in many papers [9, 13, 17, 18, 31, 32, 35].

After a preliminary section, we study the solutions of third-order fuzzy problems with positive sym-
metric triangular fuzzy numbers using the fuzzy Laplace transform method. Also, in section 4, we present
numerical examples to illustrate our problems. At the end of the paper, we give some conclusions.
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2. Preliminaries

Definition 2.1 ([7]). A fuzzy number is a function û:R→ [0, 1] verifying the following four assumptions:
(a) û is normal,
(b) û is convex fuzzy set,
(c) û is upper semi-continuous on R,
(d) cl {x ∈ R | û (x) > 0} is compact, where cl denotes the closure of a subset.
Let RF be the set of all fuzzy number on R.

Definition 2.2 ([26]). Let û ∈ RF. The α-level set of û is

[û]α =
{
{x ∈ R | û (x) ≥ α} , if 0 < α ≤ 1

cl {x ∈ R | û (x) > 0} , if α = 0 .

Definition 2.3 ([5]). A fuzzy number û in parametric form is a pair
[
ûα, ûα

]
of functions ûα, ûα, 0 ≤ α ≤ 1, which

satisfty the following requirements:
1. ûα is bounded non-decreasing left-continuous in (0, 1], right-continuous at α = 0.
2. ûα is bounded non-increasing left-continuous in (0, 1] , right-continuous at α = 0.
3. ûα ≤ ûα, 0 ≤ α ≤ 1.

Definition 2.4 ([26]). For û1, û2 ∈ RF and λ ∈ R,

[û1 + û2]α = [û1]α + [û2]α,

[λû1]α = λ[û1]α.

Definition 2.5 ([23]). If Â is a symmetric triangular number with support
[
a, a

]
, the α-level set of Â is[

Â
]α
=

[
a +

(
a − a

2

)
α, a −

(
a − a

2

)
α

]
.

Definition 2.6 ([22]). Let û1, û2 ∈ RF. If there exists û3 ∈ RF such that û1 = û2+ û3 then û3 is called the Hukuhara
difference of û1 and û2, which we denote by û1 ⊖ û2.

Definition 2.7 ([28]). Let f̂ : (a, b) −→ RF and t0 ∈ (a, b). If there exists f̂ ′ (t0) ∈ RF such that for all h > 0
sufficiently small, exists f̂ (t0 + h) ⊖ f̂ (t0), f̂ (t0) ⊖ f̂ (t0 − h) and the limits hold

lim
h−→0+

f̂ (t0 + h) ⊖ f̂ (t0)
h

= lim
h−→0+

f̂ (t0) ⊖ f̂ (t0 − h)
h

= f̂
′

(t0) ,

f̂ is Hukuhara differentiable at t0.

Definition 2.8 ([28]). Let f̂ : (a, b) −→ RF and t0 ∈ (a, b).
1) f̂ is said to be (i)-differentiable at t0, if there exists f̂ ′ (t0) ∈ RF such that for all h > 0 sufficiently small, exists

f̂ (t0 + h) ⊖ f̂ (t0), f̂ (t0) ⊖ f̂ (t0 − h) and the limits hold

lim
h−→0+

f̂ (t0 + h) ⊖ f̂ (t0)
h

= lim
h−→0+

f̂ (t0) ⊖ f̂ (t0 − h)
h

= f̂
′

(t0) .

2) f̂ is said to be (ii)-differentiable at t0, if there exists f̂ ′ (t0) ∈ RF such that for all h > 0 sufficiently small, exists
f̂ (t0) ⊖ f̂ (t0 + h), f̂ (t0 − h) ⊖ f̂ (t0) and the limits hold

lim
h−→0+

f̂ (t0) ⊖ f̂ (t0 + h)
−h

= lim
h−→0+

f̂ (t0 − h) ⊖ f̂ (t0)
−h

= f̂

′

(t0) .
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Theorem 2.9 ([10]). Let f̂ : (a, b) −→ RF and
[

f̂ (t)
]α
=

[
f̂
α

(t) , f̂ α (t)
]
, for all α ∈ [0, 1].

1) If f̂ is (i) differentiable, then f̂
α

and f̂ αdifferentiable functions and
[

f̂ ′ (t)
]α
=

[
f̂
′

α
(t) , f̂

′

α (t)
]
.

2) If f̂ is (ii)-differentiable, then f̂
α

and f̂ αdifferentiable functions and
[

f̂ ′ (t)
]α
=

[
f̂
′

α (t) , f̂
′

α
(t)

]
.

Definition 2.10 ([30]). The fuzzy Laplace transform of fuzzy function f̂ is

F̂ (s) = L
(

f̂ (t)
)
=

∫
∞

0
e−st f̂ (t) dt =

[
lim
ρ−→∞

∫ ρ

0
e−st f̂ (t) dt , lim

ρ−→∞

∫ ρ

0
e−st f̂ (t) dt

]
,

F̂ (s, α) = L
([

f̂ (t)
]α)
=

[
L
(

f̂
α

(t)
)
,L

(
f̂ α (t)

)]
,

L
(

f̂
α

(t)
)
=

∫
∞

0
e−st f̂

α
(t) dt = lim

ρ−→∞

∫ ρ

0
e−st f̂

α
(t) dt ,

L
(

f̂ α (t)
)
=

∫
∞

0
e−st f̂ α (t) dt= lim

ρ−→∞

∫ ρ

0
e−st f̂ α (t) dt.

Theorem 2.11 ([5]). Let f̂ ′ (t) be an integrable fuzzy function and f̂ (t) is primitive of f̂ ′ (t) on (0,∞]. Then,

L
(

f̂
′

(t)
)
= sL

(
f̂ (t)

)
⊖ f̂ (0)

where f̂ is (i) differentiable or
L
(

f̂
′

(t)
)
=

(
− f̂ (0)

)
⊖

(
−sL

(
f̂ (t)

))
where f is (ii) differentiable.

Theorem 2.12 ([25]). Suppose that f̂ (t), f̂ ′ (t) and f̂ ′′ (t) are continuous fuzzy-valued functions on (0,∞] and of
exponential order and f̂ ′′′ (t) is piecewise continuous fuzzy-valued function on (0,∞] with

f̂ (t) =
[

f̂ (t, α) , f̂ (t, α)
]
,

then
L
(

f̂
′′′

(t)
)
= s3L

(
f̂ (t)

)
⊖ s2 f̂ (0) ⊖ s f̂

′

(0) ⊖ f̂
′′

(0) .

Theorem 2.13 ([5]). Let f̂1 (t) and f̂2 (t) be continuous fuzzy-valued functions suppose that c1, c2 are constant, then
L
(
c1 f̂ 1 (t) + c2 f̂ 2 (t)

)
= c1L

(
f̂1 (t)

)
+ c2L

(
f̂2 (t)

)
.

3. Main results

We investigate the solutions of the following problems
i)

ŷ
′′′

=
[̂
τ
]α ŷ

′

, t > 0 (1)
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ŷ (0) =

[
µ̂
]α

ŷ′ (0) =
[̂
ν
]α

ŷ′′ (0) =
[
ξ̂
]α , (2)

and
ii)

ŷ
′′′

= −
[̂
τ
]α ŷ

′

, t > 0 (3)
ŷ (0) =

[
µ̂
]α

ŷ′ (0) =
[̂
ν
]α

ŷ′′ (0) =
[
ξ̂
]α , (4)

via fuzzy Laplace transform method, where[̂
τ
]α
=

[̂
τα, τ̂α

]
,
[
µ̂
]α
=

[
µ̂
α
, µ̂α

]
,
[̂
ν
]α
=

[̂
να, ν̂α

]
,
[
ξ̂
]α
=

[
ξ̂
α
, ξ̂α

]
are positive symmetric triangular fuzzy numbers, ŷ (t) is a positive fuzzy function and the Laplace transform
of ŷ (t) is L̂

(
ŷ (t)

)
= Ŷ (s) .

i) From the fuzzy differential equation (1), we obtain the equation

s3Ŷ (s) ⊖ s2 ŷ (0) ⊖ sŷ
′

(0) ⊖ ŷ
′′

(0) =
[̂
τ
]α (sŶ (s) ⊖ ŷ (0)

)
via fuzzy Laplace transform. From this, using the fuzzy arithmetic, the equations

Ŷα (s)
(
s3
− τ̂αs

)
= ŷ

α
(0)

(
s2
− τ̂α

)
+ sŷ

′

α
(0) + ŷ

′′

α
(0) ,

Ŷα (s)
(
s3
− τ̂αs

)
= ŷα (0)

(
s2
− τ̂α

)
+ sŷ

′

α (0) + ŷ
′′

α (0)

are obtained. Using initial conditions Eq. (2), yields Ŷα (s) , Ŷα (s) as

Ŷα (s) =
µ̂
α

s
+
ν̂α

s2 − τ̂α
+

ξ̂
α

s
(
s2 − τ̂α

) ,

Ŷα (s) =
µ̂α
s
+
ν̂α

s2 − τ̂α
+

ξ̂α

s
(
s2 − τ̂α

) .
Taking inverse Laplace transform, the solution of the problem (1)-(2) are obtained as

ŷ
α

(t) = µ̂
α
+
ν̂α√
τ̂α

sinh
(√
τ̂αt

)
+
ξ̂
α

τ̂α

(
cosh

(√
τ̂αt

)
− 1

)
,

ŷα (t) = µ̂α +
ν̂α√
τ̂α

sinh
(√
τ̂αt

)
+
ξ̂α

τ̂α

(
cosh

(√
τ̂αt

)
− 1

)
,

[
ŷ (t)

]α = [
ŷ
α

(t) , ŷα (t)
]
.
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ii) If we apply the fuzzy Laplace transform method to equation (3), we have

s3Ŷ (s) ⊖ s2 ŷ (0) ⊖ sŷ
′

(0) ⊖ ŷ
′′

(0) = −
[̂
τ
]α (sŶ (s) ⊖ ŷ (0)

)
.

From this, the equations

s3Ŷα (s) + τ̂αsŶα (s) = s2 ŷ
α

(0) + sŷ
′

α
(0) + ŷ

′′

α
(0) + τ̂α ŷα (0) ,

s3Ŷα (s) + τ̂αsŶα (s) = s2 ŷα (0) + sŷ
′

α (0) + ŷ
′′

α (0) + τ̂α ŷ
α

(0)

are obtained. Using the conditions (4), we obtain the following equations

s2Ŷα (s) + τ̂αŶα (s) = sµ̂
α
+ ν̂α +

(
ξ̂
α
+ τ̂αµ̂α

)
s

, (5)

s2Ŷα (s) + τ̂αŶα (s) = sµ̂α + ν̂α +

(
ξ̂α + τ̂αµ̂α

)
s

. (6)

From this, making the necessarry operations, Ŷα (s) is obtained as

Ŷα (s) =
s3µ̂
α

s4 − τ̂ατ̂α
+

s2ν̂α

s4 − τ̂ατ̂α
+

sξ̂
α

s4 − τ̂ατ̂α
−
τ̂αν̂α

s4 − τ̂ατ̂α
−

τ̂α

(
ξ̂α − τ̂αµ̂α

)
s
(
s4 − τ̂ατ̂α

) .
By the inverse Laplace transform, we get the lower solution of the problem

ŷ
α

(t) =

µ̂α − ξ̂α2̂τα


(
cosh

(
4
√
τ̂ατ̂αt

)
+ cos

(
4
√
τ̂ατ̂αt

))
+

ν̂α

2
4
√
τ̂ατ̂α

(
sinh

(
4
√
τ̂ατ̂αt

)
+ sin

(
4
√
τ̂ατ̂αt

))

+
ξ̂
α

2
√
τ̂ατ̂α

(
cosh

(
4
√
τ̂ατ̂αt

)
− cos

(
4
√
τ̂ατ̂αt

))
−

4
√
τ̂αν̂α

2
4
√(̂
τα

)3

(
sinh

(
4
√
τ̂ατ̂αt

)
− sin

(
4
√
τ̂ατ̂αt

))
+
ξ̂α
τ̂α
− µ̂

α
.

Similarly, we obtain the upper solution ŷα (t) of the problem as

ŷα (t) =

µ̂α − ξ̂α2̂τα


(
cosh

(
4
√
τ̂ατ̂αt

)
+ cos

(
4
√
τ̂ατ̂αt

))
+

ν̂α

2
4
√
τ̂ατ̂α

(
sinh

(
4
√
τ̂ατ̂αt

)
+ sin

(
4
√
τ̂ατ̂αt

))

+
ξ̂α

2
√
τ̂ατ̂α

(
cosh

(
4
√
τ̂ατ̂αt

)
− cos

(
4
√
τ̂ατ̂αt

))
−

4
√
τ̂αν̂α

2
4

√(̂
τα

)3

(
sinh

(
4
√
τ̂ατ̂αt

)
− sin

(
4
√
τ̂ατ̂αt

))
+
ξ̂
α

τ̂α
− µ̂α.
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4. Numerical examples

Example 4.1. We consider the problem with fuzzy initial conditions

ŷ
′′′

=
[
1̂
]α

ŷ
′

, (7)

ŷ (0) =
[
1̂
]α
, ŷ

′

(0) =
[
2̂
]α
, ŷ

′′

(0) =
[
3̂
]α
, (8)

where [
1̂
]α
= [α, 2 − α] ,

[
2̂
]α
= [1 + α, 3 − α] ,

[
3̂
]α
= [2 + α, 4 − α] .

Solving (7)-(8), we get

ŷ
α

(t) = α +
(
1 +

1
α

)
sinh

(√
αt

)
+

(
1 +

2
α

) (
cosh

(√
αt

)
− 1

)
, (9)

ŷα (t) = 2 − α +
(
1 +

1
2 − α

)
sinh

(√
(2 − α)t

)
+

(
1 +

2
2 − α

) (
cosh

(√
(2 − α)t

)
− 1

)
(10)

[
ŷ (t)

]α = [
ŷ
α

(t) , ŷα (t)
]
. (11)

Example 4.2. We consider the following fuzzy initial value problem:

ŷ
′′′

= −
[
1̂
]α

ŷ
′

, (12)

ŷ (0) =
[
1̂
]α
, ŷ

′

(0) =
[
2̂
]α
, ŷ

′′

(0) =
[
3̂
]α
. (13)

Solving the problem (12)-(13), the solution is obtained as

ŷ
α

(t) =
(
α +

1
2
−

2
α

) (
cosh

(
4
√
α (2 − α)t

)
+ cos

(
4
√
α (2 − α)t

))

+

 1 + α

2 4
√
α (2 − α)

 (sinh
(

4
√
α (2 − α)t

)
+ sin

(
4
√
α (2 − α)t

))

+

 2 + α

2
√
α (2 − α)

 (cosh
(

4
√
α (2 − α)t

)
− cos

(
4
√
α (2 − α)t

))

−

 4
√

(2 − α) (3 − α)

2
4√

α3

 (sinh
(

4
√
α (2 − α)t

)
− sin

(
4
√
α (2 − α)t

))
+

4
α
− 1 − α, (14)

ŷα (t) =
(
2 − α −

1
2

(2 + α
2 − α

)) (
cosh

(
4
√
α (2 − α)t

)
+ cos

(
4
√
α (2 − α)t

))

+

 3 − α

2 4
√
α (2 − α)

 (sinh
(

4
√
α (2 − α)t

)
+ sin

(
4
√
α (2 − α)t

))
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+

 4 − α

2
√
α (2 − α)

 (cosh
(

4
√
α (2 − α)t

)
− cos

(
4
√
α (2 − α)t

))

−


4
√
α (1 + α)

2
4
√

(2 − α)3


(
sinh

(
4
√
α (2 − α)t

)
− sin

(
4
√
α (2 − α)t

))
+

2 + α
2 − α

+ α − 2, (15)

[
ŷ (t)

]α = [
ŷ
α

(t) , ŷα (t)
]
. (16)

The found solutions Eq. (9)-(11) and Eq. (14)-(16) must be valid fuzzy functions. For this, the graphs of the
solutions are analyzed:

According to Definition 2.3 , and Fig. 1-6, Eq. (9)-(11) and Eq. (14)-(16) are valid fuzzy functions. However,
fuzzy solution (14)-(16) approaches faster to the crisp solution.

Figure 1. Graphic of the solution (9)-(11) for α = 0.3

Figure 2. Graphic of the solution (9)-(11) for α = 0.5
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Figure 3. Graphic of the solution (9)-(11) for α = 0.7

Figure 4. Graphic of the solution (14)-(16) for α = 0.3

Figure 5. Graphic of the solution (14)-(16) for α = 0.5
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Figure 6. Graphic of the solution (14)-(16) for α = 0.7

red→ ŷ
α

(x) , blue→ ŷα (x) , 1reen→ ŷ
1

(x) = ŷ
1

(x)

5. Conclusions

In this paper, third-order fuzzy problems with symmetric triangular fuzzy numbers are investigated.
Solutions are found using the fuzzy Laplace transform method. Numerical examples are solved. Graphics
of solutions are drawn.

In this study, it is seen that the solutions are valid fuzzy functions, but one of the fuzzy solutions
approaches faster to the crisp solution.
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