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Abstract. In current study, we focus on a mathematical concept called the k-hypergeometric polynomials.
These polynomials are constructed using a mathematical tool called the Pochhammer k-symbol, as intro-
duced by [R. Diaz, E. Pariguan, On hypergeometric functions and pochhammer k-symbol, Divulg. Mat.
15(2007), 179-192]. We develop several theorems related to these k-hypergeometric polynomials. Using
these theorems, we derive two important functions: a multilinear generating function and a multilateral
generating function for k-hypergeometric polynomials. These functions play a crucial role in our analy-
sis. Furthermore, extend our research to explore the concept of the k-fractional secondary driver. This
extension is based on the properties of k-hypergeometric polynomials and another mathematical entity
known as the beta k-function. To make these connections, we utilize the Riemann-Liouville k-fractional
process, as described by [G. Rahman, S. Nisar Mubeen, K. Sooppy, On generalized k-fractional derivative
operator, AIMS Math. 5(2020), 1936-1945]. This has allowed us to establish some novel results, which
are analogous to well-known mathematical transformations like the Mellin transformation. Additionally,
we explore the relationships between our findings and other mathematical functions, such as hypergeo-
metric and Appell” k-functions. In the last section of our paper, we delve into the relationship between
k-hypergeometric polynomials and two specific mathematical functions: We also provide an integral repre-
sentation of k-hypergeometric polynomials. Overall, our research paper contributes to the understanding
of k-hypergeometric polynomials and their connections to various mathematical functions and transforma-
tions.

1. Introduction

In the realm of applied sciences, special functions serve as pivotal mathematical tools, often defined
through improper integrals or infinite series. Over the last five decades, a plethora of research has emerged
that expands upon these well-established functions, including but not limited to the gamma and beta func-
tions as well as the Gauss hypergeometric function. These extensions not only enrich theoretical discourse
but also enhance practical applications across various scientific domains. Recent studies have highlighted
significant advancements in the k-generalization of these special polynomials. Works by authors such [7, 8]
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have provided rigorous frameworks for understanding these generalizations, while researchers like [3] and
[22] have contributed further insights into their applications. This growing body of literature underscores
a collective endeavor to refine our comprehension of special functions and their utility. Importantly, this
ongoing exploration is motivated by both historical study and contemporary needs within applied sciences.
The extension and generalization of familiar special functions allow for more versatile solutions to complex
problems encountered in fields such as physics, engineering, and quantitative finance. As we continue to
delve into this rich area of mathematics drawing inspiration from works such as those cited there lies a
promising future for innovative approaches that could revolutionize our understanding and application of
these essential mathematical constructs. In conclusion, the advancement in special functions through recent
research signifies not merely an academic pursuit but a vital step toward enhancing practical methodolo-
gies within applied sciences. The collaborations among various scholars ultimately pave the way for new
discoveries that resonate beyond pure mathematics into real-world implications.

The hypergeometric polynomials sh (x) are defined by [5]
S ) = (a +Z B 1) oF 1 [-n,Ba;x], (x,a,p€C).

Where ,F; indicates Gauss’s hypergeometric series whose natural generalization of an arbitrary number of
p numerator and g denominator parameters (p, g € INg := IN U {0}) is called and showed by the generalized
hypergeometric series ,F, defined by
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Here (1), denotes the Pochhammer symbol described (in terms of gamma function) by

I'(A+0) _

(/\)U W (/\GC\ZO)
1, if v=0; AeC\{0}
AA+1)---(A+n-1), if v=nelN; AeC

and Z; indicates the set of nonpositive integers and I'(1) familiar Gamma function. These polynomials
have the following linear generating function [21]:

- a n - xt
Y SP@r = -0 s )7
n=0

xt
—_ e )
1-1 (1+1—t)

A=t [1-1-x17", (|t| < min, {1, 11— x|—1}).

In mathematical discourse, the pursuit of completeness necessitates a meticulous examination of founda-
tional concepts. This essay delineates a structured approach to the preliminary section of our investigation
by segmenting it into three distinct subsections. Such an organization is warranted by the extensive array
of theorems and definitions that underpin our subsequent analyses. The clarity and precision afforded
by this method enhance comprehension and facilitate a robust framework for future explorations. The
first subsection introduces essential definitions related to k-gamma, k-beta, and their k-analogues within
hypergeometric functions. These concepts are pivotal as they form the core building blocks for our forth-
coming inquiries. By elucidating these terms, we lay the groundwork necessary for understanding their
interrelations and applications in more complex scenarios. Moving forward, we delve into k-generalized
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F; functions, which represent classical Appell functions in a generalized context. This subsection not
only broadens the scope of classical analysis but also highlights how these generalizations can be em-
ployed to derive new results within mathematical frameworks that involve multiple variables. Finally,
we conclude this preliminary section with an exploration of fractional calculus specifically focusing on
Riemann-Liouville fractional derivatives and their k-generalizations. We will present several fundamental
results that are essential for our investigations in later sections. The inclusion of these vital theorems
emphasizes their significance in analytical procedures involving both traditional calculus and its fractional
counterparts. By establishing these conventions early on, we aim to ensure clarity in our mathematical
and analyses. In summary, organizing our preliminary section into three distinct subsections not only
enhances the accessibility of critical definitions and properties but also prepares the reader for deeper
engagement with the results that follow. This systematic approach underscores the importance of solid
foundation in mathematical investigation. In the realm of special functions, the k-gamma and k-beta
functions play a crucial role in various mathematical analyses. Defined as extensions of their traditional
counterparts, these functions were explored by Diaz et al. [7] and Mubeen et al. [11], who provided
significant relations and identities that enhance their applicability in diverse fields. The definitions of these
functions are foundational to understanding their behavior and interrelations. The study progresses with
the introduction of the k-hypergeometric function, a generalization that permits comprehensive integral
representations and various pertinent formulas [10, 11]. This function serves as a bridge between discrete
mathematics and continuous analysis, facilitating advancements across multiple disciplines. In 2015, re-
searchers introduced the k-generalization of F; Appell” functions, further expanding our analytical toolkit.
Utilizing fundamental relations associated with the Pochhammer k-symbol allowed for the derivation of
contiguous function relations alongside integral representations relevant to these Appell functions [8, 12].
These advancements underscore the versatility of special functions in addressing complex mathematical
problems. The exploration into fractional derivatives has fostered numerous extensions; among them is
Riemann-Liouville’s k-fractional derivative operator. This operator was meticulously studied by authors
such as [3, 14] and [16]. To facilitate our understanding moving forward into more intricate discussions
related to fractional calculus applications involving special functions defined above, we will remind read-
ers about both Riemann-Liouville fractional derivatives along with their respective generalizations while
presenting key theoretical frameworks applicable throughout subsequent sections. Through this synthesis
of knowledge encompassing definitions from k-function theory to contemporary applications within frac-
tional calculus methodologies outlined herein-one can appreciate not merely individual components but
rather an interconnected landscape contributing towards advancing mathematics holistically.

Definition 1.1. [7] For x € C and k € R, the integral representation of k-gamma function I'y is defined by

(e8]

l"k(x):ft"_le_[:dt )

0

where Re(x) > 0.

Definition 1.2. [7] For x,y € C and k € R*, the k-beta function By is defined by

1

By = ¢ [ -pi

0

where Re(x) > 0 and Re(y) > 0.
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Proposition 1.3. [7] Let k € R*.The k-gamma function T and the k-beta function By fulfill the following properties,

Ti(x + k) = Ty (x),

Te(x) = ki™'Ty (%)

1 X
Bk(x, y) = E Bk(%/ %)/

~ Te(@)I(y)

- Ti(x+y) @)

Bk(xl ]/)

Definition 1.4. Let x € C, k € R* and n € IN. Then, the Pochhammer k-symbol is defined in [7] by

() =x(x+k) (x +2k) ... (x + (n = 1) k). (3)
In particular, we denote (x)ox := 1. If k = 1 in the expression (3), the classical Pochammer symbol (x), is obtained.
Definition 1.5. [13] For n € IN, k € R*, we define (n, k) factorial as

(n, k) = k'n!. 4)
Using the above results, we see that

0,k)! =1.

By Pochhammer k-symbol and relation (4), we get

(s = (% tn— 1,k)!.

Proposition 1.6. [7]If a € Cand m,n € N then for k € R*, we have

_ Fk(a+nk)
@ = 2252 ©

(a)m+n,k = (a)m,k(a+7nk)n,k (6)

where (), denote the Pochhammer k-symbol, respectively.

Lemma 1.7. [7] For any o € C and k € R*, the following identity holds
00 xn .
Y @i = (L =k E )
n=0 ’

where |x| < t.

Definition 1.8. Providing that x € C, k € R* and 0 < Re(B) < Re(y), then the the k-hypergeometric function is
defined in [11] as

«,
ZFl/k [

(v, k) ’

yﬁ ;x] = ZFl[ (@k)  (B,k) ;X (8)

()/)m,k m! '

m=0
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Theorem 1.9. Providing that x € C, k € R* and 0 < Re(B) < Re(y), then the integral representation of the
k-hypergeometric function is given in [6, 11] as

1
“ Byle L) 11— R (1 =kt
2F1,k[ y ,x] = mft 1(1 t) (1 — kxt)™* dt.

0

Theorem 1.10. [10] Assume that k € R* and Re (y — B) > 0, then

@l GO ] v @DuBx 1 Ty = B~ ka)
h [ 0,0 ’1] P Ve roreyy oS ©)
For the special case « = —n in (9)
i (—Tl)m,l (ﬁ)m,k i _ (]/ - ,B)n,k (10)

m=0 (y)m,k m! - (y)n,k .

Definition 1.11. [12] Letk € R*,x, y € C, a, B, ,y € Cand n € N. Then, the Appell’ k-function Fy ; with the
parameters a, B, B, y is given by

Fra(a B85 750y) = Z (@ k(B (B Ik x™ y (11)

(7/)m+n,k m! n!

m,n=0

1
]/|<E'

By taking k = 1 in expression (11), the following Appell” function is obtained [21]:

F (“lﬁrﬁ';)/;x,y) = Z (@men(B)m(B ) x™

)mn m! !’

wherey # 0,—1,-2...and |x| < 1,

m,n=0

Theorem 1.12. [12] Assume that k € R*, x, y € R, 0 < Re(a) < Re(y), then the integral representation of the
k-hypergeometric function is as follows;

1
s _ Ik(») e ey -t &
Fl,k (0(, ﬁ,‘B VX, y) = m t (1 t) (1 kxt) (1 kyt) dt.
0

Definition 1.13. [14] The k-analogue of Riemann-Liouville fractional derivative of order u is defined by

1 ( B
DY {f (z =—f 1) (z—t) Ftdt 12
where Re(u) < 0 and k € R*. Particularly, for the case m — 1 < Re(u) < m, where m = 1,2, ... (12) is written by
ar —mk ar 1 ( e
u _ 4 u—m _“ _ T tm-1
Dz {f @)} = dzm Dz Hf @) dzm {krk(—# + mk) ff(t) =-1) dt}' (13)
0

Taking k = 1 in (13) yields the well-known Riemann-Liouville fractional derivative of order y [21] .

The main aim of this paper is to introduce the generating function of k-hypergeometric polynomials and to
obtain some of its properties. The sum expression and some new generating functions for k-hypergeometric
polynomials will be given and their special cases will be studied. Also, integral representations and Mellin
transform will be given. Finally, conclusions will be given.
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2. The Sum Expression and Generating Function Relations for k-Hypergeometric Polynomials

In the realm of mathematical analysis, k-hypergeometric polynomials emerge as a significant extension
of traditional hypergeometric functions. These polynomials not only encapsulate a broader class of series
but also facilitate numerous applications across combinatorial theory and mathematical physics. This essay
outlines the fundamental sum expressions and generating function relations pertinent to k-hypergeometric
polynomials, drawing on methodologies established in several key studies [17, 19] and [20]. The sum
expression for k-hypergeometric polynomials is characterized by its intricate dependence on parameters
that define both the polynomial’s structure and its convergence properties. Specifically, these sums are
articulated through a finite series that incorporates multiple variables each representing distinct dimen-
sions within the hypergeometric framework. The systematic arrangement of these parameters allows for an
efficient evaluation of their coefficients, which relates closely to combinatorial identities. Moreover, gener-
ating functions play an instrumental role in understanding the behavior of k-hypergeometric polynomials.
As elucidated in referenced articles, these functions serve as a powerful tool to encode sequences derived
from polynomial evaluations into a singular analytic expression. By doing so, they enable mathemati-
cians to derive recurrence relations and transformation formulas that are essential for deeper insights into
polynomial behavior under various conditions. Furthermore, recent contributions have expanded upon
traditional methods by introducing novel approaches to manipulating generating functions associated with
k-hypergeometric forms. The interplay between sum expressions and their corresponding generating func-
tions underscores their duality where one can often be expressed or transformed into the other through
intricate transformations or limiting processes. In conclusion, the exploration of sum expressions and gen-
erating function relations surrounding k-hypergeometric polynomials reveals profound connections within
mathematical theory. As highlighted by foundational works [17, 19] and [20], these relationships not only
enhance our comprehension of hypergeometric structures but also pave pathways toward future research
endeavors aimed at uncovering new properties inherent in this expansive classof polynomials. For further
reading, you may want to refer to the following sources that delve deeper into the study of k-hypergeometric
polynomials and their generating function relations:

Definition 2.1. The generating function of k-hypergeometric polynomials is defined by the following relation:

_b
3

(x) " :(1—kt)-‘i(1+ 1"_’“’;d) , (14)

Some values of the k-hypergeometric polynomials S

Y slf

n=0

where k € R*, || < min {,l(/ —k(11_x)

a b
) (x) can be given as follows:

nk
a b
i@ = 1,
(8 _
Sl,k (x) a—px,
4 ala+k) (26 BB+K)
W - T(l‘;“mxz)'

(£.8) a(a +k) (a + 2k) 3 3B+k , PE+K)(E+2k)

Sk () = 3l (1_3“ 2@ R’ a@rR @ 3)’

Si%,%) ) = ala + k) (a Z!Zk) (a + 3k) [1 _ %x N 65((5::))}(2

_BE+OE+2) 5 BE+OE+20 (430 ,
a(a+k)(a+2k) a@+k)(@+26)(a+3k)" |
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It is observed that the special case k = 1 of equation (14) immediately reduces to the hypergeometric
polynomials in [5].

Theorem 2.2. The explicit form of k-hypergeometric polynomials is as follows:

(%,%) ( )nk (—7’1,1), (ﬁ/k) .
S W =KER | g "

where x € C, k € R* and Re (o) > Re (B) > 0.

Proof. We first recall the following double series equality [21]:

i Zn;A(m, n) = i i A(m,n + m). (16)

SR e, ket
Y s et L=k F A+ )

tm
= (1- kt)_kZ(:B)mk(l:—t))m,

i i B (@) (Z1)" e

(@), nim!

i L (B), @ (C1)" 2787
=0

(a)m,k (n - m)'m'

- a n - (_n)m m, "
_ an(),kz 1(B) LEa
(n, k)! ~ (@) m!
By comparing the coefficients of t" on both sides of the equation, the desired result can be obtained. [

Corollary 2.3. Theorem 2.2 can alternatively be proved using relations (12) and (13). However, due to the extensive
steps and technical details required by this approach, the present proof method, which is more concise and efficient, is
used in this study.

Theorem 2.4. The k-hypergeometric polynomials satisfy the following addition formula:

Y1 +“2 ﬂl ﬂ“z

fL
3

e = Z s st By 7)

where x € C, k € R*.

Proof. Replacing a by a; + a2 and B by 1 + 82 in (14), we obtain

R a1+u2 /31+/32 ., kxt pithy
Zs o = -k -

kxt _7(1 kt)‘*(l— kxt

= (1- kf)_*(l— )_7
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71 (x)thSTZTZ (x)tm

Il
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:U‘)F\
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B2

(x) S(”kz k ) (x) tn+m

|
(I)
—
» x-\f
=

(Jf) @ s #) oy 1.

>
R?

By comparing the coefficients of " on both sides of the equation, the desired result can be obtained. [

Theorem 2.5. The following equation represents the generating function for the k-hypergeometric polynomials:

() ) v B — k1 — o o) x
Z:“O( . )n+mk(x)t =(1-k)T (A -k -0t (1_k(1_x)t), (18)

where |t| < min{%,

+x|} and k € R*.

Proof. Replacing t by u + t in (14), we obtain

)(x ) (F + )" A—ku—kt)T (1 k(1 =x)t—k(1=x)u)*

=~

Y st ) ¢y

b u \E o, k@-x) u )
(1—kt)k(1—kl_kt) (1—k(1—x)t)k(1—1 T 1- kt}

o

> af ﬁ%y -
Y st merw = a-kFa-ka- o0k (1-k(22)) (1—k(1—1_k(’i_x)t)1fkt)

Sy n (%%) n—mym - _ £ %% X u "
y (m)snlk ()t = 1-k)T Ak -0)) Zsmk (1_k(1_x)t)(1_kt)

by n+m (%'%) n,,m 3 ;—m —7 (?X %) X m
ZZ( - )Snmlk(x)tu ;1 k)T (1 —k(1-2)H7FS) (m)u

n=0 m=0

From the coeffcients of u™ on the both sides of the last equality, one can get the wanted result. [J

Remark 2.6. If we take k = 1 in Theorem 2.5, we obtain the generating function for generalized hypergeometric

polynomials Sgi’,‘? (x) in [5].
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3. Generating Functions

This section focuses on deriving several families of multilinear and multilateral generating functions for
the k-hypergeometric polynomials. These polynomials, characterized by (15), (17) and (18), are explicitly

expressed in (15). The derivation employs a similar approach to that used in S,(1 +m) (x), [1,4,9] and [18]. To
begin, we state the following theorem.

Theorem 3.1. Corresponding to an identically non-vanishing function Q (y1, ..., y,) of ¥ complex variables yy, ..., y,
(r € IN) and of complex order u, ¢ let

00

Ay 1 91 = ) 0Qugilyr, o YT, (@ # 0)

i=0
and

[n/p]

®5;pk(xl ]/1,---/ ]/r/ C) = Z u] El P])k (x) Qyﬂp/(]/l/- /]/r)cj
]_

where the notation [n/p] means the greatest integer less than or equal n/p. Then, for p € N, k € R*, we have

RV
Z®"Pk X; }/11 ryr/ t_p) (19)
et \F
_a x
= (1 kt) (1 + 1= kt) AHW [ylr v Yrs T]]
provided that each member of (19) exists.

Proof. For convenience, let S denote the first member of the assertion (19) of Theorem 3.1. Then,

o [n/p] a /s
5= Z Z a]Sn p]k(x) Q!“'l//](yl’ ’yr)njtn P,

n=0 j=0

Replacing n by n + pj, we may write that

(o] (o] o /g

= Zzajs'a )(x) y+¢](y1/ /yr)ﬁ]fn
n=0 j=0

_ is(%é(x)tnia,g | j

= ik j H+¢;j(]/1, cees yT)T]
n=0 j=0

EY

" kxt \
= (1-kt)* (1+1 kt) Ay Y1, Y]

which completes the proof. [
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Theorem 3.2. Corresponding to an identically non-vanishing function Q;(y1, ..., yr) of r complex variables (y, ..., y)
(r € N) and of complex order 1, Y, a1, a2, p1, B2 let

np kK 7k
X Y1, ey Ypy 2| 1= a;s "

LA B By [ T Y1, Yy ] — 1 n—pjk

]:

[n/p] (tn 41 apthy ) )
(O)Qu4yi(y1, - yr)Z

whereaj # 0,n,p € N. Then, for p € N, k € R, we have

n [j/p] (“1 /51) ( 2)
ZZmSn S @S @) Qe - Lynz Auialk o Brbas (%Y1, Yri 2] (20)
j=0 1=0

provided that each member of (20) exists.
Proof. For convenince, let T denote the first member of the assertion (20) of Theorem 3.2. Then, upon

a b
subsituting for the polynomials Sffk' 0 (x) by (17) into the left-hand side of (20), we get

n [j/P] (“1 ﬁ]) (4\2 ﬁz)
T = Y Y as, @S 0 Quegiy, o )2
=0 =0
[n/P]n —pl (“1 131) ( )
= Y Y as, @S (0 Qv y)
=0 =0
[n/p]  (n—pi

(“1 ﬁl

- Z a an ~j- plk(x)SSf

B2
k

) (x) Qy+1pl(]/1/ y ]/r)zl

[H/p] (“1;[51 ,ﬂz;ﬁz ) ]
= Z alsnfpl,k (x) Qy+ll)l(y1/ eeey ]/r)z
1=0
— np . .
- AP g B B [x, Vi, Y Z] :

O

Theorem 3.3. Corresponding to an identically non-vanishing function Q;(y1, ..., yr) of r complex variables (y1, ..., y)
(reIN)and u e C, k € R* let

»\Q
~ro

Ap,p,q;k [X; Vi, Yrs Z] = Z a;S ( ) (X) Qy+p1(]/1/ . ]/r)Z

=0
where a; # 0 and
L] M+ i
®#,p,q(y1, " yr, Z) = Z (l q]) y+P](]/1/ /]/Y)Z]
j=0
Then, for p,q € IN; we have
Z Sm+z k (x) Oupqa(yr, s yy,z)tl o

i=0
b2 _g —X ; ; ; '
= (1-kt) (1-k(@-x)t) Ay,p,q;k[l_k(l_x)tfylf""y”z(1—kt)]‘

provided that each member of (21) exists.
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Proof. For convenience, let H denote the first member of the assertion (21) of Theorem 3.3. Then,

(o)

(4.%) ) m+1i
ZS k“k Z( 07])“1 wipi(Y1, s Y)ZE

Replacing i by i + gj and then using (18), we may write that

e m+i+ 8 l
H = ZZQJ( i q]) £1+z+)q]k(x)Qu+w(y1/- S YN

j=0 i=0

aj [Z m+l+‘7]) m+l+)wk(x)t] (1, o o) 7))

1=

any+pj(y1/ s Yr) (th)j

i

Il
(=)

]

X

- R N
(1 - ki) T -k(1-x)t) Sm+wk(1 k(1 - x)t)]

= A-k)T Ak =)D FAypox | — .Z(;)”’
- y,p,q;k 1 _ k(]_ _ x) t/ ylr ceey yrr 1 _ kt 7

which completes the proof. [

4. Exploring the Implications of Multivariable Functions in Terms of Simpler Functions

In the realm of mathematical analysis, the study of multivariable functions is a critical area that fosters
deeper insights into complex systems. The function denoted as ,y; (1, - yr) j € No, r € N, where j be-
longs to the set of non-negative integers INy and r represents a natural number in IN, serves as an illustrative
example. Expressing such multivariable functions in terms of simpler one-variable or multivariable func-
tions not only enhances our understanding but also opens avenues for practical applications derived from
established theoretical frameworks. The primary benefit of rephrasing Q,,y; (y1, ..., ) involves simplifying
the intricate relationships among its variables. By breaking down this multivariable function into more
manageable components such as linear or polynomial expressions we can leverage existing mathematical
theorems more effectively. For instance, if we can represent 2,,; (11, -, yr) through a series expansion or
via product forms involving simpler functions like exponential or logarithmic functions, we may apply
well-known results such as Taylor’s theorem or properties related to convergence and continuity. Further-
more, this simplification facilitates computational efficiency and analytical tractability.

We first set r = 1 and

QHH/)j (yl) = La,ﬁ,m,p+¢j(y1)

in Theorem 3.1, where the modified Laguerre polynomials, denoted by Ly g u,x(x) [17], generated by

(1-pt) ™" exp ( ﬁf"jt 1) =Y Logmat", (|t <1). 22)
n=0

Thus, we obtain the following result, which supply a class of two-sided generating functions for the
univariate extension of modified Lagurre polynomials Ly g ,.+yj(y1) and the k-hypergeometric polynomials

a B
S(nkkk) (x).



N. Ozmen, Y. Cin / Filomat 39:26 (2025), 9329-9345 9340

Example 4.1. If

o)

Ay,w[yl} (]:= Z aj La,ﬁ,m,;wlpj(yl)éj (Ll]' +0, , ll’ € C)
=0
then, we have
o [n/p] , _t
C] n _a kxt k
Z a]Sn p]k aﬁ,m,yﬂ//j(yl)ﬁt =1 -kt)* (1 + Tkt) Ayyly; Cl.
n=0 j=0

Using the generating relation (22) for the univariate polynomials Ly g m,u+yj(y1) and gettinga; =1, u = 0,9 =1, we
find that

n/p

—_
—_

Y

).

n=0 j=0

f% e _a kxt \ —m
Sk 00 Lo 000 = =i (1 ) 10

ay1C
kt

pc-1)

If we set

( a3 f3 )
r=1,y1=x and Q44 (x) = Sy+¢]k (%)
in Theorem 3.2, we have the following bilinear generating functions the k-hypergeometric polynomials.

Example 4.2. If

[n/p ] ar+hy ﬂzﬂfz B3
AZ’,i/al;k,%k,ﬁl_k,ﬁz;k [x;x;z] == Z a]-sﬁ_;]k )(x) SEI x ) (x) 2/ (u] #0, LY eC, ke 1[{+)

=0
then, we have
Sh AP PRESPUNC ) o
]Z(; lZ;‘ RN SH (x)S o (x)z = A Dt By [x;x;2].
Using (17)anda; =1, u =0,y =1,p=1,2' =1
no e ) o f n ‘Ll o) i (22,%2) 73 fa
SElk]kk)(x)S(k k)()s( )(X) - k k ZS klkk A k)(x)
=0 1=0 =0 1=0
n o B az*‘*a ﬁz+ﬁ3
- sif D st
=0
agtaytas frHpa+hs
= Sfl,k ko )(x).
If we set

r=1, Qyﬂ#]' (yl) = PH+1p] (yl)

in Theorem 3.3, where the classical Jacobi polynomials P,(,a'ﬁ ) (y) is generating by [15],

ipgaﬁ)(x)tn = %;ﬁ(l—t—kp)“(1—t+p)’8{p:(1—2xt+t2);, lpl< 1}

n=0
we obtain a family of the bilateral generating functions for the classical Jacobi polynomials and the k-
hypergeometric polynomials as follow:
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Example 4.3. If

(o]

Aupgrliyrzl Z” ankﬂkq)k () P y+p1 (y )Z

i=0
(a; #0, me Ny, u, ¢ €C)
and
[ira]
m+1i ap
@y,p,q (yl;Z) = ZO (1 _ t]]) aj £+}7]) (]/1) J
]:

where p,q € IN, then we have
S o= (1=k)F "1 k(=0 FA x ot Y
Z m+zk(x Oupq (i)t = (1-kt) (L —k@=x) ) FAppgk T-k(A-xt V" \T-ke) |

Thus, for any appropriate choice of the coefficients a; (j € INp), if the multivariable functions Q4yj (Y1, ..., ),
r € IN, are expressed as a convenient product of several simpler functions, the results of Theorem 3.1, Theo-
rem 3.2 and Theorem 3.3 can be utilized to derive various families of multilinear and multilateral generating
functions for the k-hypergeometric polynomials explicitly defined in (14).

5. Theorems and Proofs on k-Hypergeometric Polynomials and the Riemann-Liouville k-Fractional
Derivative

In this section, we will show some theorems and proofs about k-hypergeometric polynomials. Moreover
we recall the following definition of fractional derivatives from and give a new extension called Rimann-
Liouville k-fractional derivative.

Theorem 5.1. Another expression of k-hypergeometric polynomials is as follows:

5(%f§)(x):kn( )”k(l kx)"F ,F (a+m1), (k) -—L],

& (n, !

where »F; is the k-hypergeometric function given in (8).

(o, k) " 1—kx

Proof. If we apply expressions (7) and (8) to the right side of the theorem, we get
k”( )k 14—kt [ (@+n1), Bk . «x ]

(n,k)! (o, k) "1k
K" ((:)Z)k' mi) D" (a(;r)n):;i !(ﬁ)m,k " hi)- B+ klfz)h,k X"
o m o
(ac)nk Z;) hzg =D (e + n)nz;)(ﬁirz : n(f + km), . x 23
If we apply the expression (6) to the expression (23)
% ((:)k)k, 1=k F F [ e+ ”’(}x)”k) (6.5 ;—ﬁ]
” (a)z,)k! i i D" @+ My Bl " ”

th!
=0 o0 (C()m,k m!h!
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Replacing h by h — m in (24), we obtain
( i 1 —kx)fg JF [ (@+n1), (Bk) X ]

( ,k)! (a, k) " 1-kx
(@ & o D" (@ + 1)1 (B)) X"
K B 2

(@) m!(h — m)!

L (@ = (o @+ 1) (1) (ﬁ)h,kxh
k (n, k)! ;[Z (), ! ) ] h!

0 \m=0
@i v (-h,1) (a+mn1) (ﬁ)hk
=k (n,k)!hZ_O 2F 1[ (k) ; ] o (25)

Considering (10) in the expression (25), we attain

k”()”" (1—ko)t 5 [((Hn,l), BK __x ]

(n, k)! (a, k) " 1—kx
L@ o G (B 2
7o M e
L (@ (-n,1), (B,k)
k (Tl ) Fl |: (a’ k) ;X
(% %)

7

O

Corollary 5.2. Theorem 5.1 demonstrates that the explicit form of the k-hypergeometric polynomials can also be
obtained by an alternative approach.

Theorem 5.3. The following Mellin transform formula holds true:

o a E
© D! {zk’ Y st e } l
n=0
(¢)) Tk (77 + k) LR
= m Fir(m+k B a+mk;n—u+kz —xz)

where Fy . is the Appell’ k- function given in (11), Re(—p) <0, Re(n) > 0, Re(a) >0, Re (cp) >0,
max {|z|,| - xz|} < , k € R*.

Proof. Applying the Mellin transform on definition (13), we have

M|e @ D {ZZ i ng%kg) (x)Zn}? (Pl
n=0
I I (2" |
= M_e kDZ{z ;(Q)nk Z(ﬁ)mk(l kz)" mv} qb}

= Mle™® kDg {zz Z (ﬁ)m,k (@) m+nk (=" z }; (l)}

(@), 'm!
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2 @t Bl (O i
M[e 5 O o)

n=0 m=0

@ B O i
) ( Z P }]dw

(a)m+n k (ﬁ) k ( x) 1 Z n+nk+mk+k U
w1 " A R
Of Z Z o R () bft ; (z—t) 7 dtdw

n=0 m=0

interchanging the order of integrations (26) in above equation, we get

e DY {zZ i Sgl%kg) (x) 2" } gbl

h S & @png B 0" 1
= —w,, -1 ek Py (= f e N
Of w0t NN @yt K () J (uz) "z uz) T zdu dow

0 1

o (a)m+n k (,B) k (_x)m ZTT“-H/'H—TL q+nk+mk+k H

= —@ .y P-1 4 m, -1 1-— *?*1 duld

f ¢ @ Z Z @pentmt k(- J " (1-u) i
0

r b s m -y ;4
= ¢-1 m+n k (ﬁ)m k ( x) +m+n )
fe @ Z Z (@) 111! T (=) By (n+ mk + nk + k, —p) |dw

- Z Z (77 + k)n+mk (;B)mk a+ mk)”k (Z) ( XZ)
Tk (n u+ k) et Sl 9 nlm!

((P) Ty (77+k) L]
= —— 7% F +k, + mk; +k;z,—xz
R vk (n+kpa n-u )

which completes the proof. 0O

~

(,

nk

( ) I u, ) (ku +k(1- x)u)
n (x) rk(a ,B rk ff ( ! duldllz

where T'y is the k-gamma function given in (1).

)

Theorem 5.4. The k-hypergeometric polynomials S

>~\Y<

Proof. If we use the identity [2]

= FL f “to-14t, (Re (v) > 0)
0

on the right side of the generatin function (14), we arrive

(x) have the following integral representation:

9343

(26)

(27)
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)

gk
N
~ =

, )(x) # l fe—(l kt)ulul du1 [g fe—(l k(1- x)t)uzu duz
Tk T) 9 % 0

00 00

1 ff (g ety) bk, (1=, ) T B
= e Uiy ) gt Rt +BET0IL )y uf “duyduy
EE o
uy, (ku, +k(1—x)u) ab_q B ;
- el L A
k

0 0
il’( ﬁ) ff o +k(2|_X)u2) leulduzt”.
n=0 Lk\ % ’

One can derive the desired result by matchmg the coefficients of " on both sides of the equation. [

=
Il
o

Theorem 5.5. We have the following integral representation:

(@) Ti(a)
(n, )Tk (B)Tk(a — ) )

£.£)

( ’ _ n-1
Sn/k (x)=k

1
H11 - T (1 xty de
where T'y is the k-gamma function given in (1).

Proof. If we apply expressions (2) and (5) to the right side of the theorem, we obtain

2 @uk Te@) 1T ot )
(n, K Ti(B)Tk(@ = B) k f HEH 1= T (1 -ty dt

(a)”k ( n)m oz Iﬂk(Of) 1 1 t>+mk 7_
ST Z TP —ﬁ)Ef a-nT

o @k o () Te(@)Tk(B + mk)
=k (n,k)!z ml " T(B)Tk(a + mk)

(a)nk Z( Mo Le(B+mk)  Ti(a)
I'v(B)  Ti(a + mk)

— K (a)n,k (_n)m(,g)m,k ﬁ

- (1’1, k)' =0 (a)nt,k m!

_n (a)n,k (—I’l, 1)/ (ﬁr k) .

=Kk 2“[ (c, ) 'x]
= sl D)

Vl

which completes the proof. [

6. Conclusion

In this study, we have centered our attention on a mathematical concept known as the k-hypergeometric
polynomials. These polynomials are constructed using a mathematical tool called the Pochhammer k-
symbol, which was initially presented by Diaz and their collaborators. Throughout our research, we have
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developed a series of theorems that are closely tied to these k-hypergeometric polynomials. These theo-
rems serve as the foundation for our work, providing crucial insights into the behavior and properties of
these mathematical entities. Utilizing these theorems, we have derived two vital functions: a multilinear
generating function and a multilateral generating function specifically tailored for the k-hypergeometric
polynomials. These functions assume a pivotal role in our mathematical analysis and are essential for fur-
ther exploration. Expanding the scope of our investigation, we have extended our research to delve into
the concept of the k-fractional secondary driver. This extension is rooted in the unique properties exhibited
by k-hypergeometric polynomials and their relationship with another mathematical construct known as the
gamma k-function. In summary, our research paper makes significant contributions to the field of mathe-
matics by shedding light on the intricacies of k-hypergeometric polynomials and uncovering their intricate
connections with various mathematical functions and transformations. This work not only advances our
understanding of these mathematical concepts but also expand possibilities (break new ground) for future
mathematical exploration and applications.
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