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Abstract. In this paper, we define a new generalization of Laguerre-based Appell polynomials with two
parameters. We obtain a recurrence relation, a lowering operator, a integro-partial raising operator, a
integro-partial differential equation for this new polynomial family. We introduce subpolynomials of these
polynomials, namely Laguerre-based Hermite-Frobenius Euler polynomials, Laguerre-based Miller-Lee
polynomials and generalizations of Laguerre-based Hermite polynomials and obtain various properties of
them. We also show 3D graphs of these subfamilies and graphs of the distribution of their real roots.

1. Introduction

The theory of special functions plays a crucial role in both theoretical and applied mathematics. Within
this framework, polynomial sequences stand out due to their rich structure and widespread applications.
Among them, Appell polynomials have attracted significant attention thanks to their differential properties
and generating functions. These polynomials A,, (x) are defined by the differential relation [12, 18, 31, 35]

d

27 Am () = mAu-1 (x),  Ao(x) #0, 1)

and have the generating function given by
sl tm
a)e’ =) An(x) — @)
m=0
where
[oe] tm
a(t) = ZOA'”E' Ay #0. (3)
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In recent years, researchers have focused on extending the classical Appell structure by incorporating
various special function bases. In this context, numerous Appell-type polynomial families associated with
different bases have been proposed and studied. Notable examples include the Hermite-based Appell
polynomials, Gould-Hopper Appell polynomials, Hann Appell polynomials, other related generalizations
[3-5, 11, 13-16, 22, 25, 26, 29, 32]. These families allow the construction of richer algebraic frameworks
beyond the classical Appell polynomials and facilitate the exploration of novel analytical properties. Such
constructions are often referred to as hybrid polynomial families, as they combine classical and special
function structures. Hybrid Appell polynomials have demonstrated effectiveness in solving differential
equations, modeling physical phenomena, deriving operational identities, and establishing combinatorial
identities. Their flexibility and structural diversity make them valuable tools in both pure and applied
mathematical research. Among the various hybrid constructions, one particularly notable class arises from
incorporating Laguerre polynomials into the Appell framework. The properties of various polynomial
families in the literature continue to be investigated through different methods. One of this method, the
factorization method, is widely used in the literature to derive differential equations associated with special
functions and polynomial families [1, 5, 11, 14-16, 24].

As a classical family of polynomials, Laguerre polynomials possess rich analytical properties such as
recurrence relations, well-defined differential equations. These features make them highly suitable for
building structured generalizations of existing polynomial families. Two-variable Laguerre polynomials
L, := Ly (x, y) are defined by Dattoli and Torre [7] as follows

m ok .k, m—k
Lp=my TV ()
= (m = k)L (kY

The generating function of this polynomial is as follows [8]
(o9 tm
eV'Cy (xt) = ZLmﬁ 5)
m=0

where the 0-th order Tricomi function is denoted by Cy (x). The definition of Tricomi functions of order m-th
is given in [8]

Cu(x) = ZS|(m+)', m € INp. (6)

The classical Laguerre polynomials, along with their numerous generalizations, have been the focus of
extensive research due to their analytical richness and applicability [2, 6,7, 9, 10, 17, 19, 20, 23, 27, 28, 30, 33,
34, 36]. One of them, Laguerre-based Appell polynomials 1A, (x, y) are defined in [27] with the following
generating function

(o8]

a(t)e'Co (xt) = ZLA’” (x,y) :n—"l' 7)

m=0

Motivated by these developments, the present study focuses on the class of Laguerre-based Appell poly-
nomials with two parameters, which has received increasing attention in the literature. The generalization
of the Laguerre-based Appell polynomials with two parameters framework provides a unifying structure
that enables the systematic construction of various rich subfamilies. Thanks to the flexibility of this ap-
proach, numerous well-known and novel polynomial families can be obtained as special or extended cases.
In particular, the generalized forms of Laguerre-based Hermite-Frobenius-Euler, Miller-Lee and Hermite
polynomials emerge naturally within this framework. This not only broadens the scope of the theory
but also simplifies the derivation of their fundamental properties such as generating functions, recurrence
relations, and differential equations. The paper proceeds as follows: In section 2, a new generalization of
Laguerre-based Appell polynomials with two parameters is introduced and its various properties such as
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a recurrence relation, a lowering operator, a integro-partial raising operator, a integro-partial differential
equation are shown. In section 3, the subfamilies of these polynomials are given and their corresponding
properties are derived. In addition, 3D graphical plots of these subfamilies of polynomials and the graph
of the distribution of their real roots are shown.

2. The generalization of Laguerre-based Appell polynomials with two parameters

In this section, a new generalization of Laguerre-based Appell polynomials with two parameters will be
defined and the recurrence relation, shift operators that decrease and increase the degree of the polynomial
and the integro-partial differential equation will be obtained for this polynomial family.

Definition 2.1. The generalization of Laguerre-based Appell polynomials with two parameters LAY = | A (x, Y, z)
is defined with the help of the following explicit representation:

Lﬂﬁ,b):iiz’:( )()() () L@ 0 ®

=0 1=0 =0
where
0 k s k
A=Y w 0H=Y Ay ad abeR\(o) )
k=0 ) k=0 ’

Theorem 2.2. { L&Z{%’b)i is a generalization of Laguerre-based Appell polynomial sequence with two parameters if and
only if it has the generating function given by

(e8]

AW (0 Colbat) = Y AL (10)

m=0

Proof. Let { Lﬂ%’b)} be the generalization of Laguerre-based Appell polynomials with two parameters. Then,
by equality (8), we have

Bt -EEEE )

m=0 m=0 j=0 [=0 r=0

Using the Cauchy product and the relevant arrangements, we obtain the generating function given in (10).
On the other hand, let {Lﬂ,(Z’b)} have the generating function given in eq. (10). Then, when we apply the
Cauchy product using the series representations of ¢™ and Cy (bzt), and eq. (9), we obtain eq. (8). This
leads us to the generalization of Laguerre-based Appell polynomials with two parameters { Lﬂgﬁ’b)}. Thus
the proof is completed. [

Remark 2.3. It should be noted that we inspired from the two versions of the Hermite polynomials (physicist’s,
probabilistic’s) and define the polynomial family in (8) in terms of the two parameters a and b. This inspiration can
be easily observed from the equivalent definition (generating function) in (10). In the following sections, this point of
view can be examined from the generating functions given in the equations (38) and (46).

Remark 2.4. When x =0,z — —x and b = 1 are taken in eq. (10), it provides the following generating function

(o]

A6 w0 = Y () 1 )

m=0

which is given in [33].
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Remark 2.5. When in eq. (10) is written with B(t) instead of ¢ (y,t) and a = b = 1 is taken, we have the
twice-iterated Laguerre-based Appell polynomials in [17].

Remark 2.6. When we take g — 17 in the family of the polynomials in [2], we obtain the case of eq. (10) where
a=b=1

Remark 2.7. When we take m = 1, —r3 — bz and r1 — ax in the family of the polynomials in [36], we arrive at the
generating function given in eq. (10).

Theorem 2.8. The following statements are provided for the sequence of the generalization of Laguerre-based Appell
polynomials with two parameters:

(i) The generalization of Laguerre-based Appell polynomials with two parameters { Lﬂ%’b)} has the following determi-
nant representation:

®éa,b) ®§a,b) o @Eﬁ; e
Vo 141 T Vm-1 Vi
o GO [0 v O (e 12)
m.o (VO)m+1 0 0 mz— )Vm_3 (?)Vm_z
0 0 s Vo (mnil)Vl

) ,b) ¢ ) k b b
where Y oo @ﬁz ):W =™ (y,t) Co (bzt), fﬁ =Yoo vk and @)(m" ) = @)5,‘; )(x, Y,2).

(ii) The generalization of Laguerre-based Appell polynomials with two parameters {Lﬂﬁﬁ’b)} satisfies the following
derivative relations:

DX{L\?(%'I?)} = maLﬂiif;, (13)
-D.zD. (LAY} = mb AL, (14)

Proof. To show that (i), using the series representation of ﬁ as follows:

[ABO] = 3 v ﬁ
T Kk

using the generating function (10), we get

e (y,t) Co (bzt) = [Z Vk%] [Z Lﬂfﬁ’b)%] .

k=0 m=0
Hence
(o) (o] k o0 m
@h " _ [ @h "
2. ml kak! P ml |
m=0 k=0 m=0

Applying the Cauchy product and by comparing the coefficients of = from the polynomial equation, we
obtain
b _ N (m .
o’ = ( k)Vk Lﬂfnf]})c’ m € No.
k=0
From here we obtain the system of equations. Then, using Cramer’s rule followed by elementary row

operations, we obtain the determinantal form stated in (12).
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To show that (ii) firstly, when we apply the D, operator to the generating function (10) of LAY and basic

algebraic operations, we obtain the derivative relation given in eq. (13).

Secondly, when we apply the —D,zD, operator to the generating funciton (10) of LAY and basic algebraic

operations, we obtain the derivative relation given in eq. (14). Therefore, the proof is completed. [J

Theorem 2.9. The generalization of Laguerre-based Appell polynomials with two parameters has the following
recurrence relation

a, - m a a - m a — a
A = Y (fpatet sty + Y (Vo ot - v (15)
k=0 k=0
where
A, t) tk ¢t (]//
AW ="K ewn Zpk (y) o ¢yt = atqf)(y, t) and D' is the inverse of D.. (16)
Proof. Taking the derivative with respect to t on both sides of (10), we have
= " A (t -
Zbﬂ;ﬂ% = A((t))A () e™ ¢ (y,t) Co (bzt)
m=0
+axA (t) e™ ¢ (y,t) Co (bzt)
qbt (y/ ) +
A(t)e™ , 1) Co (bzt)
(P(y/ f) ¢(]/ ) 0
1 m+1 m+ 1 bZ m+1
Z( ) ( ") 4 s 4.
[(m + DI
Using (16), we have
o ) L AL
Z_;)L e = [Zykk,][z A ] [ZPk(]/)H](Z;) . m!J
L t ( 1)m+1 (m + 1) (bz)m+1
+ax Y AW b) ne™ o (y,t).
;) Z T Aty e™ (y, 1)
Hence, when use the Cauchy product, we obtain
o Y ap L2 Y @h) 1
Yo = LY (ipeAtne Y3 (o Al
m=0 m=0 k=0 m=0 k=0

At e™d (y,t).

@ b)t > (=1 (m + 1) (bz)™H
+axZ A i [m=0 [(m+1)!]2

m=0

Taking the derivative of both sides of the last equation with respect to z, we get

iDz fZﬂ = ii( )VkD Lﬂ”b) +iZ( )pk(y)D L?‘(”b)}—!

m=0 m=0 k=0 m=0 k=0

+axZ‘DZ ﬂfﬂb) ——bZ ﬂ(”hm'

m=

8

(=}
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Applying DZ! to both sides oh the above equation, we get

0 (o) m (o) m
@n " _ m @ " @b t
Zbﬂm‘*l m ZAZ k Vk Lﬂm—km! + ZZ Pk (y) Lﬂm kml
m=0 m=0 k=0 m=0 k=0
b . b E"
+ax Z A ) -vY DL A" ﬁ. (17)
m=0

Thus, equating the coefficients of £; on both sides of the (17) completes the proof. [J

Theorem 2.10. The generalization of Laguerre-based Appell polynomials with two parameters satisfies the lowering
operator, integro-partial raising operator and integro-partial differential equation provided by

1
x = Xrs 1
Lp=—D (18)
«Ly, 1= kV_ * p}il(y) Dy +ax —bD", (19

lak

k=0 k=0
Z y_k k+l Z k'Ezk D51 4 axD, — bD;' Dy — ma | LAY = 0. (20)
k=0 k=0

Proof. Using the eq. (13), it is clear that the lowering operator is given as

_ 1
XLm = % Dx-

Applying the lowering operator k times to the term ;| A,, we can write it as follows:

b _ b
Lﬂ,(z—zl [ Ly xLygan -+ L Lﬂ(ﬂ )
1 1 1 o
= D D,...—D ’
[(m—k+1)a *m—-k+2)a 7 ma X]Lﬂm
(m —k)! ;
S DA e

Upon substituting from (21) in (15), we get

m m
LA = [ 2epi b Y AW by ozt A
k k

mtl klak klak
=0

Hence the raising operator is given by

s pe(y)

M k'ak T Df +ax-bD;L.

Then, we apply the factorization method to obtain the differential equation of the generalization of Laguerre
based Appell polynomials as follows

— b b
Lop1 xLoy (Lﬂ(ma )) =AY,

we get

@h _ Y Yk p pr(Y) A
LAY (m+1)a ]; D Z Foe D +ax =D
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and rearranging the terms we can write

m
2 pit Z P ;;(]Z)Dk“ +axD, = bD;' D, — ma| . ALY = 0
k=0

So the proof is completed. [J

3. Examples

In this section, the subpolynomial families of generalized Laguerre-based Appell polynomials formed
by special choices of A (f) and ¢ (y, t) functions are examined. For this newly obtained subpolynomial fam-
ily, the recurrence relation, lowering operator, integro-partial raising operator, integro-partial differential
equation and determinant represantation are obtained. Also 3D graphical plots of these subfamilies of
polynomials and the graph of the distribution of real roots are shown.

3.1. Generalization of Laguerre-based Hermite-Frobenius Euler polynomials

When a = b = 1 is taken in the eq. (10), the generalization of Laguerre-based Hermite-Frobenius Euler
polynomials are defined as follows EL, := LEL (x,v,2 A),

1-A xt+yt? _ - F . "
( t_/\)e +y CO(Zt) _;:OLEm (xry/Z,/\) %, /\GC, Ail (22)
where
1-
At) = and ¢ (y,1)=e". (23)

Corollary 3.1. The generalization of Laguerre-based Hermite-Frobenius Euler polynomials satisfies the following
recurrence relation

m

EF,, = Z ( ) Fef (A +x.Ef +2my, EF | - D' EF, (24)

where the coefficients e} () are connected by the Frobenius-Euler polynomials E} (x; A) via the following expansion
[21]

1
eF (M) = - ZO: %(i)Ef_i (%/\) (25)

1=l

We note that Ef (x, A) have the generating function from [21]

0 1
=Y B () f—' (26)
1=0

Corollary 3.2. The generalization of Laguerre-based Hermite-Frobenius Euler polynomials satisfies the lowering
operator, integro-partial raising operator and integro-partial differential equation as follows

(L) : = %Dx, 27)

)

— AZ +x+2yD -DY, (28)

)
) ZD"’ k”(’” k B+ Ds +2yD? - D;'Dy — m|EE, = 0. (29)
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Corollary 3.3. The generalization of Laguerre-based Hermite-Frobenius Euler polynomials satisfies the following
determinant representation

© O o fOp O
! _ﬁ - ;/\(1"11 1) _1A+(1m)
0 1 S 7 S
F _ (_1\ym A=TA 1 A-1\1
LE, =07 o 0 LY -4 (30)
L R
where Y, 1O, = Y Cy ().
m=0

The 3D surface plots of the generalization of Laguerre-based Hermite-Frobenius Euler polynomials . E} (x, y, z; 3)
(Figure 1(a)) and the graph of the distribution of real roots for the this polynomials | E} (x, y,z; 3) (Figure
1(b)) are shown in Figure 1.

y
4+
2.
y
0 X
-2
-4
-6
-4 -2 0 2 4
—z=-1 z=0 — z=1
(@ (b)

Figure 1: Figures related to LEg (%, v,2;3)

The 3D surface plots of the generalization of Laguerre-based Hermite-Frobenius Euler polynomials
LEL (x,y, 2 3) (Figure 2(a)) and the graph of the distribution of real roots for the this polynomials  Ef (x, y, z; 3)
(Figure 2(b)) are shown in Figure 2.
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y
10F j ' J
5_ .
y |
0 X
-5l i
-10L, b
-10 -5 0 5 10
—_—z=-1 z=0 — z=1
(@) (b)

Figure 2: Figures related to LE§ (%, v,23)

3.2. Generalization of Laguerre-based Miller-Lee polynomials

Whena = b = 1is taken in the eq. (10), the generalization of Laguerre-based Miller-Lee polynomials are
defined as follows | My, := M, (x, y,z; 1),

(o8]

1 xt+yt? £
—e Co(zt)y = Yy Myu— (31)
(1-1) +1 mZ=O m!
where
A0= ﬁ and ¢ (y,t) = e (32)

Corollary 3.4. The generalization of Laguerre-based Miller-Lee polynomials satisfies the following recurrence relation

m

M1 = Z (TZ)k! m+1) My +x M, + Zm]/LMm_1 — Dz_lLMm. (33)

k=0

Corollary 3.5. The generalization of Laguerre-based Miller-Lee polynomials satisfies the lowering operator, integro-
partial raising operator and integro-partial differential equation as follows

-1
(L) = —Dy, (34)
(LAY =Y (1 +1) DE +x +2yD, - D7, (35)
k=0
m
Y 1+ 1) D+ x Dy + 2yD2 - DI'Dy = m| 1 My, = 0. (36)

k=0
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Corollary 3.6. The generalization of Laguerre-based Miller-Lee polynomials satisfies the following determinant

representation
M© MO M©O2 e MO
1 —-(n+1) nmn+1) - D" [n+1],
10 1 D+ - (DED" 1]
M= (1" o 0 1 e (D" 4 1],
0o 0 0 ()@t

where [n],, =nm-1)...(n—m+Dwith[nly =1 and ¥, mOuL; = eV Cy (2t).
m=0

(37)

The 3D surface plots of the generalization of Laguerre-based Miller-Lee polynomials ; M, (x, y, z; 3) (Figure
3(a)) and the graph of the distribution of real roots for the this polynomials | M; (x, y, z; 3) (Figure 3(b)) are

shown in Figure 3.

10F T T

(a) (b)

Figure 3: Figures related to 1 My (x, y, z; 3)

The 3D surface plots of the generalization of Laguerre-based Miller-Lee polynomials ; Ms (x, y,z;3)
(Figure 4(a)) and the graph of the distribution of real roots for the this polynomials ; M3 (x, y, z; 3) (Figure

4(b)) are shown in Figure 4.
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—z=-1 z=0 — z=1
(@) (b)

Figure 4: Figures related to ;M3 (x, y,2;3)

3.3. Generalizations of Laguerre-based Hermite polynomials

e Whena = b = listakenintheeq. (10), the Laguerre-based probabilist’s bivariate Hermite polynomials
are defined as follows Hey, := | Hey, (x, Y, 2),

=5 0 (2f) = ZLHem% (38)
m=0 :
where
A = % and ¢ (y,t) = e (39)

Remark 3.7. We should point out here that when we take a(t) = e‘%, Yy — x+yand x — z in the generating
function in (7), we obtain eq. (38) and write the following relation:

LAn (x+y,2) = Hey (x,y,2). (40)

Corollary 3.8. The Laguerre-based probabilist’s bivariate Hermite polynomials satisfies the following recurrence
relation

tHey1 = —mpHey—1 + x Hey, + y Hey, — Dz_lLHem. (41)

Corollary 3.9. The Laguerre-based probabilist’s bivariate Hermite polynomials satisfies the lowering operator, integro-
partial raising operator and integro-partial differential equation as follows

(L) = =Dy, (42)
(<Lt ) :=-D,+y+x-D, (43)
[-D2 + (x + y) Dy - D' Dy — m| L He, = 0. (44)



N. Biricik Hepsisler et al. / Filomat 39:26 (2025), 9347-9362 9358

Corollary 3.10. The Laguerre-based probabilist’s bivariate Hermite polynomials satisfies the following determinant
representation

W 1O1 1O R C ] 1Om

1 0 1 Vm-1 Vm

o1 ez (e
en=CD"0 0 1 " ms (yme (45)

0 0 1 (" )ym

b m . e . . . 2
where Y, 1Ot = e(ICy (2t) and V1,72, - -, Vm are the coefficients of the Maclaurin series of the function e™ 7.
m=0 ’

The 3D surface plots of the Laguerre-based probabilist’s bivariate Hermite polynomials ;He; (x, y,z; 3)
(Figure 5(a)) and the graph of the distribution of real roots for the this polynomials ;He; (¥, y, z; 3) (Figure
5(b)) are shown in Figure 5.

N X
) \ -

Figure 5: Figures related to 1 He; (x, y,z; 3)

The 3D surface plots of Laguerre-based probabilist’s bivariate Hermite polynomials ;Hes (x,y,z;3)
(Figure 6(a)) and the graph of the distribution of real roots for the this polynomials ;Hes (¥, y, z; 3) (Figure
6(b)) are shown in Figure 6.
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Figure 6: Figures related to  Hes (x, y,z; 3)

e Whena = 2,b = listakenintheeq. (10), the Laguerre-based physicist’s bivariate Hermite polynomials
are defined as follows  Hy, := 1Hy, (x, Y, 2),

e(2x+y)tco (Zt) — ZLHM% (46)
m=0 :
where
A()=e" and ¢ (y,t) = e (47)

Corollary 3.11. The Laguerre-based physicist’s bivariate Hermite polynomials satisfies the following recurrence
relation

LHyi1 = =2mpHyq +2x 1 Hyy + yHy — D' Hy. (48)

Corollary 3.12. The Laguerre-based physicist’s bivariate Hermite polynomials satisfies the lowering operator, integro-
partial raising operator and integro-partial differential equation as follows

(<Lhr) = (49)
(xL) = 2D, +y +2x - D, (50)
[-2D2 + (2x + y) Dy - D;'Dy = m| L Hyy = 0. (51)

Corollary 3.13. The Laguerre-based physicist’s bivariate Hermite polynomials satisfies the following determinant
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representation
H®y HO1 HO o HOm HOp,
1 0 2 tee Tllm—l Nm
o 1 0 " M=z (P
tHe, = (-1)"| o 0 1 " Nmes (N2 (52)
0 0 0 e 1 G )M

where Y, HO, % = e(z"*y)tCo (zt) and m, 12, ...,y are the coefficients of the Maclaurin series of the function et
m=0 ’

The 3D surface plots of the Laguerre-based physicist’s bivariate Hermite polynomials | H, (x, y, z; 3) (Figure

7(a)) and the graph of the distribution of real roots for the this polynomials H> (x, y, z; 3) (Figure 7(b)) are
shown in Figure 7.

y
4 \
y ok
0 \\ X
-2
_4_
-4 -2 0 2 4
H z=-1 m z=0 W z=1
—_—z=-1 z2=0 — z=1
() (b)

Figure 7: Figures related to  H (x, y,2;3)

The 3D surface plots of the Laguerre-based physicit’s bivariate Hermite polynomials ;Hs (x,y,z;3)
(Figure 8(a)) and the graph of the distribution of real roots for the this polynomials ;H3 (x, y,z; 3) (Figure
8(b)) are shown in Figure 8.
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Yy

4_

y
2_
0 X
-2
_4,

x 0 -4 -2 0 2 4

H z=-1 B0 z=0 W z=1 —_—z=-1 z=0 — z=1

(@) (b)

Figure 8: Figures related to 1 H3 (x, y, z; 3)

4. Conclusion

In this study, a new generalization of Laguerre-based Appell polynomials with two parameters has
been introduced, and various properties of this structure have been examined. The recurrence relation,
lowering operator, integro-partial raising operators, integro-partial differential equation and determinant
representation obtained for the polynomial family provide opportunities for further theoretical and ap-
plied investigations. In addition, several special subfamilies derived from the general structure such
as Laguerre-based Hermite-Frobenius-Euler and Miller-Lee polynomials have been defined, and sample
graphical representations of these families have been presented. The results obtained suggest that this poly-
nomial family can be examined from broader perspectives. In particular, by introducing new parameters,
more general hybrid polynomial families may be constructed. The generating functions and determinant
forms presented in this study may contribute to the development of new polynomial identities. Moreover,
considering their relationship with classical g-polynomial sequences, these structures may offer potential
applications in combinatorics and symbolic computation.
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