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About the uniqueness of generalized Drazin T-Riesz inverses
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Abstract. For two complex unital Banach algebras A and B and a homomorphism algebra T : A → B
having the strong Riesz property, we propose a new formula for generalized Drazin T-Riesz inverses, and
we give a new Laurent expansion for the resolvent of a given generalized Drazin T-Riesz invertible element.
Most importantly, necessary and sufficent conditions to have the uniqueness of generalized Drazin T-Riesz
inverse are given.

1. Introduction

Throughout this paper,A and B denote complex infinite dimensional Banach algebras with respective
units 1A and 1B. We denote by A−1, QN(A), and Idemp(A) the sets of all invertible, quasinilpotent, and
idempotent elements ofA, respectively.

For a ∈ A, the set of all elements commuting with a is defined as follows:

comm(a) = {x ∈ A : xa = ax}.

We define the spectrum and the resolvent of an element a ∈ B related to the closed unital subalgebra B
ofA respectively by

1. σB(a) = {λ ∈ C : (λ1B − a) < B−1
}, if B = A, then we write σ(a) instead of σA(a).

2. ρB(a) = {λ ∈ C : (λ1B − a) ∈ B−1
} = C \ σB(a), if B = A, we simply write ρ(a) rather than ρA(a).

In the case where p ∈ Idemp(A), we have that pAp is a Banach algebra of unit p. We recall that for a
complex subset K, the set of accumulation points of K, the set of isolated points of K and the frontier of K
are respectively denoted by acc K, iso K, and ∂K. We denote the disk and the circle of the center µ ∈ C and
of the radius r > 0 by D(µ, r) and C(µ, r) respectively.

The concept of Drazin invertible elements was introduced by M.P. Drazin in 1958 [9] in the context of
semigroups and associative rings. An element a ∈ A is said to be Drazin invertible if there exists b ∈ comm(a)
such that

bab = b, and aba − a is nilpotent.
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If such an element b exists, then it is unique and is called the Drazin inverse of a.
A non-invertible element a is Drazin invertible if and only if 0 is a pole of finite order of the resolvent

map of a.
The notion of generalized Drazin invertible elements was introduced by J.J. Koliha [14]. An element

a ∈ A is generalized Drazin invertible if there exists b ∈ comm(a) such that

bab = b, and aba − a is quasinilpotent.

If b exists, then it is unique, and is called the generalized Drazin inverse of a, we denote it by a1D. As a
characterization of non-invertible generalized Drazin invertible elements, a is generalized Drazin invertible
if and only if 0 ∈ iso σ(a) [14].

In what comes next, we focus our study on non-invertible elements of the given Banach algebraA. Recall
that a linear operator T : A→ B is called a homomorphism if T(ab) = TaTb for all a, b ∈ A and T(1A) = 1B.
Let H and K be two subsets ofA, following [22], we define and denote the subset of the sum of commuting
elements of H and K by

H +comm K = {h + k : (h, k) ∈ H × K , hk = kh}.

For a given homomorphism of Banach algebras T : A→ B, we recall the following definitions (see [18, 24]):

1. a ∈ A is T-Fredholm if a ∈ T−1(B−1).
2. The T-Fredholm spectrum is defined and denoted by

σT,e(a) = {λ ∈ C : λ1B − T(a) < B−1
} = σB(Ta).

3. The T-Fredholm resolvent set is defined and denoted by ρT,e(a) = C \ σT,e(a);
4. a ∈ A is T-Browder if a ∈ A−1 +comm T−1(0), the class of T-Browder elements is denoted by BT(A).
5. The T-Browder spectrum is defined by σT,b(a) = {λ ∈ C : λ1A − a is not T-Browder}, In the case where
A is a semi-simple Banach algebra, we use the notation σb(a).

6. The T-Browder resolvent set is defined by ρT,b(a) = C \ σT,b(a).
7. We say that d ∈ A is a T-Riesz element if T(d) ∈ QN(B), i.e, σT,e(a) = {0}.
8. We say that the homomorphism T has the Riesz property if for an arbitrary a ∈ A, we have a ∈ T−1(0)⇒

acc σ(a) ⊂ {0}.
9. We say that T possesses the strong Riesz property if the following inclusion holds for an arbitrary a ∈ A,
∂σ(a) ⊂ σT,e(a) ∪ iso σ(a).

Obviously, T has the strong Riesz property implies that T has the Riesz property. If T has the Riesz
property, we have by Corollary 3.6 [18] that σT,b(a) = σT,e(a) ∪ acc σ(a), hence we can define a T-Riesz point
µ of σ(a) as follows µ ∈ ρT,e(a) ∩ iso σ(a)(= σ(a) \ σT,b(a)). The set of all T-Riesz points of a is denoted by
πT,00(a) := σ(a) \ σT,b(a).

Let a ∈ A, we recall that a complex subset σ ⊂ σ(a) is a spectral set of a if it is both open and closed
(clopen) in σ(a) following the induced topology on σ(a) of C.
Now, assume that there exists a spectral set σ of a. Then the spectral idempotent pσ,a of a corresponding to σ is

pσ,a =
1

2πi

∫
Γ+

(λ − a)−1dλ,

where Γ+ is a positive (counter clockwise) oriented Cauchy contour surrounding σ and its exterior is
containg σ(a) \ σ, when there is no confusion, we simply write Γ instead of Γ+. Also, Γ− is meant to be the
negative (clockwise) oriented Cauchy contour Γ. We easily remark that pσ,a commutes with each element
which commutes with a.

Recently, S. C. Živković-Zlatanović introduced the concept of generalized Drazin T-Riesz invertible elements
in a Banach algebraA.
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Definition 1.1. [24, Definition 4.4] Let T : A → B be a homomorphism of Banach algebras. An element a ∈ A is
generalized Drazin T-Riesz invertible if there is b ∈ comm(a) such that

bab = b, and a − aba is T-Riesz.

In this case, p = 1 − ab is called the idempotent related to the generalized Drazin T-Riesz inverse b of a.

The concept of generalized Drazin T-Riesz invertibility generalizes the one of generalized Drazin-Riesz
invertibility introduced in [23] for bounded operators and in [2] for elements lying on a semisimple Banach
algebra. For a semi-simple Banach algebra A, we denote by SA the socle of A, in the case of a given
semi-simple Banach algebra A, the homomorphism T is the canonical projection π : A → A/SA. In this
case, generalized Drazin T-Riesz invertible elements are simply called generalized Drazin-Riesz invertible
elements.

Generalized Drazin T-Riesz invertible elements are characterized as follows.

Theorem 1.2. [24, Theorem 4.10] Let T : A→ B be a homomorphism having the strong Riesz property, and a ∈ A.
The following statements are equivalent:

(i) a is generalized Drazin T-Riesz invertible;
(ii) There exists an idempotent p ∈ comm(a)such that a + p is T-Browder and ap is T-Riesz;

(iii) There exists an idempotent p ∈ A such that a + p is invertible inA and ap is T-Riesz;
(iv) 0 < acc σT,b(a).

Definition 1.3. [2, Definition 4.1] Let a ∈ A be a non invertible element with a spectral set σ which contain 0. The
Drazin inverse of a relative to σ is defined by

aD,σ = (a − ξpσ,a)−1(1 − pσ,a),

for some ξ ∈ C such that |ξ| > 2r where r = sup
λ∈σ
|λ|.

As witnessed for the Drazin inverse and the generalized Drazin inverse, their existence implies automati-
cally their uniqueness, this is not the case of generalized Drazin-Riesz inverses in the context of bounded
operators. Indeed, if a bounded operator A is generalized Drazin-Riesz invertible such that 0 ∈ acc σ(A),
then A disposes automatically of infinitely many generalized Drazin-Riesz inverses by virtue of Theorem
2.3 [1]. Therefore, finding sufficient and necessary conditions to reach the uniqueness of generalized Drazin
T-Riesz inverses of an element a ∈ A in the case where 0 ∈ iso σ(a) turns out to be of crucial importance.

The purpose of this paper is to show when the uniqueness of the generalized Drazin T-Riesz inverse
of a given generalized Drazin T-Riesz invertible element holds. Section 2 is devoted to generalize some
results of [1] and [2] in order to give a new formula for generalized Drazin T-Riesz inverses, and to make
tools which will enable us to treat the uniqueness of generalized Drazin T-Riesz inverses. Also, we give a
counterexample that shows the existence of a non-spectral idempotent related to a generalized Drazin-Riesz
invertible bounded operator. In Section 3, we focus our interest on the uniqueness of generalized Drazin
T-Riesz inverses. Section 4 is devoted to study the uniqueness of generalized Drazin-Riesz inverses in the
case of unital semisimple complex Banach algebras, this will be done using in one hand algebraic geometry
notions of connectedness, on the other hand, we will use functional analysis notions of the connectedness
of the character set. Examples are provided for practical understanding of these characterizations. Finally,
in the last section, we apply the characterizations found in sections 3 and 4 to give more specific character-
izations of the uniqueness of generalized Drazin-Riesz inverses in the case of bounded operators acting on
a Banach space or a Hilbert space.
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2. Preliminary results

Here and elsewhere, the homomorphism T : A → B has the strong Riesz property. Most of the results
lying in this section are a generalization of some results of [2] that are made in the context of semi-simple
Banach algebras.

Let a ∈ A be generalized Drazin T-Riesz invertible, and 0 ∈ acc σ(a). By [24, Corollary 4.13], we have
ω(a) = {0} ∪ {λn : n ∈ N} is a closed set, where λn are non-zero T-Riesz points of a, and σ = σ(a) \ ω(a) is a
spectral set of σ(a).

Hence σn = ω(a) \ {λ1, ..., λn} = {0, λn+1, λn+2, ....} and σ′n = σ ∪ {λ1, ..., λn} form two spectral sets of
σ(a) = σn ⊔ σ′n, where ⊔means a disjoint union.

Following the proof of [24, Theorem 2.2] and asBT(A) forms a regularity, we have aD,σn = (a−pσn,a)−1(1−
pσn,a) is a generalized Drazin T-Riesz inverse of a.

We mean by appropriate n0 ∈ N in the case where 0 ∈ iso σT,b(a), that for a large enough n0, σn0 will be
contained on a given disk D(0, rn0 ) where rn0 < min( 1

4 ,
1

||(a+pσn0
)−1 ||

), and D(0, rn0 ) ∩ σ′n0
= ∅.

Theorem 2.1. Let 0 ∈ iso σT,b(a), and let aD,σn0 be a generalized Drazin T-Riesz inverse of a with σn0 is a spectral set
for some appropriate n0. Then, for all λ ∈ D(0, r) \ σn0 , we have

(λ − a)−1(1 − pσn0 ,a) = −
+∞∑
k=0

λk(aD,σn0 )k+1. (2.1)

Proof. Let pσn0 ,a be the spectral idempotent of a relative to σn0 . Hence, by choosing ξ = −1 in Definition 1.3,
we get

aD,σn0 = (a + pσn0 ,a)−1(1 − pσn0 ,a).

Let λ ∈ D(0, r) \ σn0 , then (λ − a) is invertible inA. Also, it is easy to conclude that (λ − 1) ∈ ρ(apσn0 ,a) since
|λ| < 1

4 and σ(apσn0 ,a) ⊊ D(0, 1
4 ). Thus (λ − 1) − apσn0 ,a is invertible inA. From

λ − (a + pσn0 ,a) = ((λ − 1) − a)pσn0 ,a + (λ − a)(1 − pσn0 ,a)

= ((λ − 1) − apσn0 ,a)pσn0 ,a + (λ − a)(1 − pσn0 ,a), (⋆)

and according to [8, Lemma 2.1], it follows that λ − (a + pσn0 ,a) is invertible inA.
We have for all λ ∈ D(0, r) \ σn0

(1 − λ(a + pσn0 ,a
)−1)

q∑
k=0

λk(a + pσn0 ,a)−k

=

q∑
k=0

λk(a + pσn0 ,a)−k
−

q∑
k=0

λk+1(a + pσn0 ,a)−k−1

= 1 − λq+1(a + pσn0 ,a)−q−1.

As ||λ(a + pσn0 ,a)−1
|| < 1, it follows that

||λq(a + pσn0 ,a)−q
|| −→

q−→∞
0.
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From (⋆), we obtain for all λ ∈ D(0, r) \ σn0 ,

(λ − a)−1(1 − pσn0 ,a) = (λ − (a + pσn0 ,a))−1(1 − pσn0 ,a)

= −

+∞∑
k=0

λk(a + pσn0 ,a)−k(a + pσn0 ,a)−1(1 − pσn0 ,a)

= −

+∞∑
k=0

λk((a + pσn0 ,a)−1(1 − pσn0 ,a))k+1

= −

+∞∑
k=0

λk(aD,σn0 )k+1.

Corollary 2.2. Let 0 ∈ iso σT,b(a) and let aD,σn0 be a generalized Drazin T-Riesz inverse of some appropriate n0, with
its corresponding spectral idempotent pσn0 ,a of a, with 0 < rn0 <

1
4 . Then

aD,σn0 = lim
λ−→0

λ∈D(0,rn0 )\σn0

(a − λ)−1(1 − pσn0 ,a).

Proof. As λ −→ 0, we have |λ| < 1
||(a+pσn0

)−1 ||
, hence, Multiplying by (1 − pσn0 ,a) both sides of equality

(λ − a)−1 = (λ − apσn0 ,a)−1pσn0 ,a −

+∞∑
k=0

λk(aD,σn0 )k+1,

we obtain

(λ − a)−1(1 − pσn0 ,a) = −
+∞∑
k=0

λk(aD,σn0 )k+1(1 − pσn0 ,a),

for all λ ∈ D(0, r) \ σn0 . We deduce that

aD,σn0 = lim
λ−→0

λ∈D(0,r)\σn0

(a − λ)−1(1 − pσn0 ,a).

Remark 2.3. 1. The last theorem is a revision of [1, Theorem 2.12].
2. [1, Theorem 2.12] is valid as shown in the last corollary.

Theorem 2.4. Let 0 ∈ iso σT,b(a), and let aD,σn0 be a generalized Drazin T-Riesz inverse of a. Then, for all
λp ∈ (σn0 \ {0})∩D(0, r), there exists rλp > 0 provided that D(λp, rλp )∩σn0 = {λp}. Then for all µ ∈ D(λp, rλp ) \ {λp},
we have

(µ − a)−1 =

∞∑
k=1

(µ − λp)−k(apσn0 ,a
− λp)k−1pσn0 ,ap{λp},a (2.2)

−

∞∑
k=0

(µ − λp)k((a − λp)1D)k+1pσn0 ,a −

+∞∑
k=0

µk(aD,σn0 )k+1.

Proof. Letλp andµbe two complex numbers satisfying the conditions of the theorem, following [15, Example
2.1], there exists a radius rλp , provided that ((µ − λp) − (apσn0 ,a − λp)p{λp},a) and (µ − λp) − (p{λp},a + apσn0 ,a − λp)
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are invertible for all 0 < |λp − µ| < rλp < min( 1
4 ,

1
||(a+pσn0 ,a

)−1 ||
). We have

(µ − a)pσn0 ,a = (µ − apσn0 ,a)pσn0 ,a

=
(
(µ − λp) − (apσn0 ,a − λp)p{λp},a

)
p{λp}+(

(µ − λp) − (p{λp},a + apσn0 ,a − λp

)
(pσn0 ,a − p{λp}).

Taking into account that µ ∈ D(λp, rp) \ {λp}, pσn0 ,ap{λp},a = p{λp},apσn0 ,a = p{λp},a, and (p{λp},a + apσn0 ,a − λp) is
invertible , we obtain by virtue of [8, Lemma 2.1]

(µ − a)−1pσn0 ,a = (µ − apσn0 ,a)−1pσn0 ,a

=
(
(µ − λp) − (apσn0 ,a − λp)p{λp},a

)−1
p{λp},a+(

(µ − λp) − (p{λp},a + apσn0 ,a − λp)
)−1

(pσn0 ,a − p{λp},a)

=

∞∑
k=1

(µ − λp)−k(apσn0 ,a
− λp)k−1p{λp},a

−

∞∑
k=0

(µ − λp)k((a − λp)1D)k+1pσn0 ,a

Now, by Theorem 2.1 and as µ ∈ D(λp, rp) \ {λp}(⊂ D(0, 1
||(a+pσn0 ,a

)−1 ||
) \ σn0 ), we get

(µ − a)−1(1 − pσn0 ,a) = −
+∞∑
k=0

µk(aD,σn0 )k+1.

Finally, another application of [8, Lemma 2.1] allows us to have

(µ − a)−1 =

∞∑
k=1

(µ − λp)−k(apσn0 ,a
− λp)k−1p{λp},a

−

∞∑
k=0

(µ − λp)k((a − λp)1D)k+1pσn0 ,a −

+∞∑
k=0

µk(aD,σn0 )k+1.

The next theorem states that if a is generalized Drazin T-Riesz invertible and 0 ∈ acc σ(a), a has infinitely
many generalized Drazin-Riesz inverses because there is infinite Riesz points of a lying in σn0 .

Theorem 2.5. Let a ∈ A be generalized Drazin T-Riesz invertible with 0 ∈ acc σ(a), and let n0,n1 ∈ N such that
n0 < n1 and rn0 <

1
2 . Then

aD,σn0 , aD,σn1 .

Namely, the generalized Drazin T-Riesz inverse of a is not unique.

Proof. It is a direct consequence of [24, Remark 2.4 and Corollary 4.13].

We give a new formula that expresses all the generalized Drazin T-Riesz inverses related to their idempotents
by virtue of the subclass of generalized Drazin T-Riesz inverses related to spectral sets. We start by the case
where 0 is a limit point of the spectrum of the generalized Drazin T-Riesz invertible element.

But first, we shall construct the spectral sets related to p. Suppose that p is an idempotent inA such that
ap = pa, a + p is invertible and ap is T-Riesz. Without loss of generalities, there exists 0 < ϵ < 1

2 such that

D(0, ϵ) ∩ σ(a + p) = ∅,
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hence
(D(0, ϵ) \ {0}) ∩ σ(a(1 − p)) = ∅.

We put
σ = (σ(ap) ∩D(0, ϵ)) \ (σ(ap) ∩ σ(a(1 − p)) = {0, µ1, µn, ...},

then σ is a spectral set composed of 0 and a sequence of T-Riesz points of a converging to 0, hence for all
n ∈Nwe consider the following spectral sets

σn = σ \ {µ1, ..., µn}.

The next theorem will consider the above spectral sets σn.

Theorem 2.6. Let a ∈ A be generalized Drazin T-Riesz invertible such that 0 ∈ acc σ(a). For all p ∈ comm(a) ∩
Idemp(A) such that a + p is invertible and ap is T-Riesz. Then for all n ∈N, we have

(a + p)−1(1 − p) = aD,σn (1 − p).

Proof. For all λ ∈ ρ(a) we have by [8, Lemma 2.1]

(λ − a)−1 = (λ − a)−1p + (λ − a)−1(1 − p).

Thus, taking into consideration [4, page 27], for a well chosen Cauchy countour Γn for every n we have

pσn,a =
1

2πi

∫
Γn

(λ − a)−1dλ

=
1

2πi

∫
Γn

(λ − a)−1pdλ +
1

2πi

∫
Γn

(λ − a)−1(1 − p)dλ

=
1

2πi

∫
Γn

(λ − a)−1dλp +
1

2πi

∫
Γn

(λ − a(1 − p))−1(1 − p)dλ

=
1

2πi

∫
Γn

(λ − a)−1dλp

= p
1

2πi

∫
Γn

(λ − a)−1dλ

= pσn,ap = ppσn,a.

Thus, we have for all n ∈N

a + pσn,a = a + p + (pσn,a − p) = (a + p)(1 − pσn,a) + (a + p)pσn,a + (pσn,a − p).

Consequently
(a + pσn,a)(1 − p) = (a + p)(1 − p)(1 − pσn,a).

Therefore, for all n ∈Nwe obtain

(a + p)−1(1 − p) = (a + pσn,a)−1(1 − pσn,a)(1 − p) = aD,σn (1 − p).

Question How about the existence of the limit lim
n→+∞

aD,σn ? If it exists, then we can consider the following
expression in the last theorem

(a + p)−1(1 − p) = ( lim
n→+∞

aD,σn )(1 − p).

We close this section by giving an example that shows that the idempotent related to every generalized
Drazin T-Riesz inverse is not necessarily a spectral idempotent. Therefore, we conclude that the class of
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generalized Drazin T-Riesz inverses does not only contain generalized Drazin T-Riesz inverses related to
spectral sets that contain 0 and Riesz points of the given generalized Drazin T-Riesz invertible element.

Following [17], we recall that the quasinilpotent part of a bounded operator A is defined by

H0(A) := {x ∈ X : lim
n→+∞

||Anx||
1
n = 0}.

Example 2.7. We consider A1 the bilateral unweighted shift operator defined on ℓ2(Z). We know that

σ(A1) = {λ ∈ C : |λ| = 1}.

Let H be a complex Hilbert space and {en}n≥0 be an orthonormal basis in H . Let (λn) be a sequence of non-zero
complex numbers converging to 0, such that supn |λn| < 1

2 . Consider A3 to be the operator defined by A3(en) = λnen,
A3 is a compact operator, hence it is a Riesz operator.

Also, consider the operator A2 : H0(λ1I − A3) 7→ H0(λ1I − A3), A2 = (A3)H0(λ1I−A3).
Hence, if we put A = (A1 ⊕ A2) ⊕ A3 over the space X = ℓ2(Z) ⊕ H0(λ1I − A3)) ⊕ H , we obtain that A is

generalized Drazin-Riesz invertible, one of its inverses is

S = (A1 ⊕ A2)−1
⊕ 0H .

The projection related to S is P = 0ℓ2(Z)⊕0H0(λ1I−A3)⊕ IH , which is not a spectral projection of A, since σ(AP) = σ(A3),
and σ(A(I − P)) = {λ ∈ C : |λ| = 1} ∪ {λ1}, with σ(AP) ∩ σ(A(I − P)) = {λ1} , ∅.

Exploiting Theorem 2.6, we obtain for all n ∈N

S = (A + P)−1(I − P) = AD,σn (I − P), with σn = {0, λn+1, λn+2, ...}.

3. Uniqueness of generalized Drazin T-Riesz inverses

The aim of this section is to prove when the uniqueness of generalized Drazin T-Riesz inverses holds in
the case of Banach algebras with a homomorphism T having the strong Riesz property using (topological)
functional analysis tools.

The following definitions represent the cornerstones of the topological tools used to characterize the
uniqueness of generalized Drazin T-Riesz inverses in this section, also to give a topological characterization
of the uniqueness of generalized Drazin-Riesz inverses in the context of semi-simple Banach algebras in
Section 4.

Definition 3.1. [16, Definition 7.1 and Definition 7.3] Let E be an algebra. Then, by a character of E, we mean a
non-zero (complex) morphism of E into C. The set of all characters of E is denoted by Char(E).

Also, the Gelfand transform of x denoted by x̂ is defined to be the map x̂ : Char(E) 7→ C, f 7→ x̂( f ) = f (x).
Thus, if F(Char(E),C) denotes the set of all complex-valued maps on Char(E), the resulting map GE : E 7→

F(Char(E),C), x 7→ GE(x) = x̂ is called the Gelfand transform of the given algebra E, and GE(E) = E∧ is called the
Gelfand transform algebra of E.

The next theorem is an analogue of Theorem 2.6, in the case where 0 is not an accumulation point of the
spectrum of the given generalized Drazin T-Riesz invertible element.

Theorem 3.2. Let a ∈ A be generalized Drazin T-Riesz invertible such that 0 ∈ iso σ(a). For all p ∈ comm(a) ∩
Idemp(A) such that a + p is invertible and ap is T-Riesz. Then

(a + p)−1(1 − p) = a1D(1 − p).

Proof. For an idempotent p ∈ A such that ap = pa, a + p is invertible and ap is T-Riesz, we have

σ(a) = σ(1−p)A(1−p)(a(1 − p)) ∪ σ(ap),

with σ(ap) = {0, µ1, ..., µk}.
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As {0} is a spectral set of a, we show that pp{0},a = p{0},ap = p{0},a. For all λ ∈ ρ(a), we have

(λ − a)−1 = (λ − a)−1p + (λ − a)−1(1 − p).

With the same argument and for a convenient ϵ > 0 allowing us to take the circle C(0, ϵ) instead of Γn in the
proof of Theorem 2.6, we get

p{0},a =
1

2πi

∫
C(0,ϵ)

(λ − a)−1dλ

=
1

2πi

∫
C(0,ϵ)

(λ − a)−1pdλ +
1

2πi

∫
C(0,ϵ)

(λ − a)−1(1 − p)dλ

=
1

2πi

∫
C(0,ϵ)

(λ − a)−1dλp +
1

2πi

∫
C(0,ϵ)

(λ − a(1 − p))−1(1 − p)dλ

=
1

2πi

∫
C(0,ϵ)

(λ − a)−1dλp

= p
1

2πi

∫
C(0,ϵ)

(λ − a)−1dλ

= p{0},ap = pp{0},a.

Now, as pp{0},a = p{0},ap = p{0},a, we obtain

a + p{0},a = a + p + (p{0},a − p)
= (a + p)p{0},a + (a + p)(1 − p{0},a) + (p{0},a − p).

Therefore (a + p{0},a)(1 − p) = (a + p)(1 − p)(1 − p{0},a). Thus we conclude that

(a + p)−1(1 − p) = a1D(1 − p).

Remark 3.3. Theorem 3.2 gives an important insight in the case where the generalized Drazin T-Riesz inverse may
be unique, it is sufficient to determinate when the idempotent p which satisfies conditions of Theorem 3.2 is equal to
p{0},a, in order to find the uniqueness of the generalized Drazin T-Riesz inverse.

Theorem 3.4. Let a ∈ A be generalized Drazin T-Riesz invertible such that 0 ∈ σ(a). If a has a unique generalized
Drazin T-Riesz inverse, this implies that σ(a) = σT,b(a) ∪ {0}. In this case, the only generalized Drazin T-Riesz
inverse is the generalized Drazin inverse.

Proof. Suppose that a has a unique generalized Drazin T-Riesz inverse. By way of contradiction, suppose
that σ(a) , σT,b(a) ∪ {0}. Then πT,00(a) , ∅.
Case 1. πT,00(a) ∪ {0} is finite: then card(πT,00(a) ∪ {0}) ≥ 2. Using [24, Theorem 4.10] 0 < acc σT,b(a), we have
πT,00(a) ∪ {0} and σT,b(a) \ {0} are disjoint clopen sets in σ(a), with

σ(a) = (σT,b(a) \ {0}) ⊔ (πT,00(a) ∪ {0}).

Therefore, taking into account that σn = πT,00(a) ∪ {0} = {0, λ1, λ2, ..., λn}, and σ′n = (σT,b(a) \ {0}), we obtain
that a = apσn,a + apσ′n,a, and the element s1 = (a+ pσn,a)−1(1− pσn,a) is a generalized Drazin T-Riesz inverse of a.
Additionally, as 0 ∈ iso σ(a), in light of Theorem 3.2, we have s1 = a1D(1 − pσn,a), set s2 = a1D.
Then

s1 − s2 = a1D(1 − pσn,a) − a1D

= a1D
(
(1 − p{0},a) + (p{0},a − pσn,a)

)
− a1D

= a1D + a1D(p{0},a − pσn,a) − a1D

= a1D(p{0},a − pσn,a) , 0
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Hence s1 , s2, which is a contradiction.
Case 2. πT,00(a) is infinite: If 0 ∈ accπT,00(a), then 0 ∈ acc σ(a). Since a is generalized Drazin T-Riesz invertible,
by Theorem 2.5, we conclude that the generalized Drazin T-Riesz inverse of a is not unique, which forms
a contradiction. Next, if 0 < accπT,00(a), then we consider the following spectral sets σn = {0, λ1, λ2, ..., λn},
where (λi) is a finite family of non-zero T-Riesz points, and σ′n = (σT,b(a) \ {0}) ∪ ((πT,00(a) ∪ {0}) \ σn). Hence
we get the desired decompositions by manipulating σn and σ′n as in the case where πT,00(a) is finite, and we
obtain different generalized Drazin T-Riesz inverses for a, which is a contradiction.

Finally σ(a) = σT,b(a)∪{0}. Subsequently, a is generalized Drazin T-Riesz invertible, then by [24, Theorem
4.10], 0 < acc σT,b(a) (= acc σ(a)), thus a is generalized Drazin invertible.

Remark 3.5. The last theorem is a revised version of [1, Theorem 2.10].

Notice that if a has a unique Drazin T-Riesz inverse, this is similar to say that the idempotent p related to
the Drazin T-Riesz inverse of a is unique and is equal to p = p{0},a.

We have to search for necessary and sufficient conditions to find the uniqueness of p.

Lemma 3.6. Let a ∈ A be generalized Drazin T-Riesz invertible such that
σ(a) = σT,b(a) ∪ {0}, and p is the idempotent related to a generalized Drazin T-Riesz inverse of a. Then, there exists
k ∈N, such that ∀i ∈ {1, ..., k}, µi ∈ πT,00(ap), such that

p = p{0},a +
k∑

i=1

p{µi},ap, and σ(1−p)A(1−p)(a(1 − p)) = σT,b(a) \ {0}.

Proof. We have σ(a) = σ(1−p)A(1−p)(a(1 − p)) ∪ σpAp(ap). As a is generalized Drazin T-Riesz invertible and
σ(a) = σT,b(a) ∪ {0}, we get 0 ∈ iso σ(a). Hence 0 ∈ iso σpAp(ap), and taking in account that ap is T-Riesz, we
conclude that there is no accumulation point in σpAp(ap). Hence, there exists k ∈ N such that ∀i ∈ {1, ..., k},
µi ∈ πT,00(ap) and σpAp(ap) = σ(ap) = {0, µ1, ..., µk}. Since we have σ(a) = σT,b(a) ∪ {0}, it follows that
πT,00(a) ⊂ {0}. Hence, µi < πT,00(a), for all i ∈ {1, ..., k}.
Now, if there exists i0 ∈ {1, ..., k} such that µi0 < σ(1−p)A(1−p)(a(1 − p)), then µi0 ∈ ρ(1−p)A(1−p)(a(1 − p)) ⊂
ρT,b,(1−p)A(1−p)(a(1 − p)), and µi0 ∈ ρT,b,pAp(ap), from which we obtain that µi0 ∈ ρT,b(a) ∩ σ(a) = πT,00(a),
which is absurd. Therefore, for each i ∈ {1, ..., k}, µi ∈ σ(1−p)A(1−p)(a(1 − p)). This implies that σ(a) =
σ(1−p)A(1−p)(a(1 − p)) ⊔ {0}, hence

σ(1−p)A(1−p)(a(1 − p)) = σ(a) \ {0} = σT,b(a) \ {0}.

Finally, as σpAp(ap) = {0, µ1, . . . , µk}, then, it is straightforward to obtain the following

p = p{0},ap +

k∑
i=1

p{µi},ap.

And since we have 0 ∈ iso σ(a), with 0 ∈ σpAp(ap) and 0 < σ(1−p)A(1−p)(a(1− p)), we conclude that p{0},ap = p{0},a.
Finally we get

p = p{0},a +
k∑

i=1

p{µi},ap.

Remarks 3.7. The following observations will be of wide use in the sequel.
(1) For each i ∈ {1, ..., k},

p{µi},ap =
1

2πi

∫
Γi

(λ − ap)−1pdλ.
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On one hand, since σB(T(ap)) = {0}, we conclude that the Cauchy domain Di = D(µi, ϵi) surrounded by Γi = C(µi, ϵi)
is in the exterior of σB(T(ap)), hence

1
2πi

∫
Γi

(λ1B − T(ap))−1T(p)dλ = 0 for all i ∈ {1, ..., k}. (3.1)

Indeed, consider the Cauchy domain Ki = D(µi, ri)\D(µi, ϵi) such that (D(µi, ϵi)\ {µi})∩σ(ap) = ∅, and 0 ∈ D(µi, ri).
Hence, 0 ∈ Ki. Now, Considering Ci = C(µi, ri)+ ∪ C(µi, ϵi)−, with C(µi, ϵi)− = Γ−i , then, on the Banach subalgebra
T(p)BT(p) ofB, and in light of functional calculus applied on T(ap) through the constant holomorphic function 1, we
have

T(p) = 1(T(ap)) =
1

2πi

∫
Ci

(λ1B − T(ap))−1T(p)dλ

=
1

2πi

∫
C(µi,ri)+

(λ1B − T(ap))−1T(p)dλ

−
1

2πi

∫
C(µi,ϵi)+

(λ1B − T(ap))−1T(p)dλ

= T(p) −
∫

C(µi,ϵi)+
(λ1B − T(ap))−1T(p)dλ,

for all i ∈ {1, ..., k}, as desired.
On another hand, following the proof of Proposition 2.1 [11], let CA and CB be the respective maximal commutative

subalgebras of A and B such that ap ∈ CA, T(ap) ∈ CB, and T(CA) ⊂ CB. If Φ is a multiplicative linear form on
CB, then Φ ◦ T is a continuous multiplicative form on CA. Therefore, for every Cauchy domain Di containing µi and
surrounded by Γi, due to (3.1), we have

(Φ ◦ T)(p{µi},ap) = Φ ◦ T(
1

2πi

∫
Γi

(λ − ap)−1pdλ)

=
1

2πi

∫
Γi

(λ −Φ ◦ T(ap))−1Φ ◦ T(p)dλ

= Φ(
1

2πi

∫
Γi

(λ − T(ap))−1T(p)dλ) = Φ(0) = 0.

Now, as Tp{µi},ap is an idempotent and from the calculcation made above, we find that Tp{µi},ap is in the radical of CB,
this is equivalent by [19, Corollary 2.3.6] to say that

lim
n−→∞

||(Tp{µi},ap)n
||

1
n
CB
= lim

n−→∞
||Tp{µi},ap||

1
n
CB
= 0,

where ||.||CB is the norm induced by ||.||B in the subalgebra CB. Therefore, Tp{µi},ap = 0. Hence, we conclude for every
i ∈ {1, ..., k} that p{µi},ap ∈ T−1(0).

Thus p − p{0},a =
∑k

i=1 p{µi},ap is in T−1(0). Also, p{µi},ap ∈ comm(a) and 1 − p{0},a = 1 − p +
∑k

i=1 p{µi},ap with

(1 − p)(p − p{0},a) = (p − p{0},a)(1 − p) = 0;

(2) We have
∑k

i=1 p{µi},ap = p − p{0},a ∈ (1 − p{0},a)A(1 − p{0},a). Thus,

p − p{0},a ∈ comm(a) ∩ (1 − p{0},a)A(1 − p{0},a);

(3) comm(a) ∩ (1 − p{0},a)A(1 − p{0},a) is both an algebra and a ring with unit 1 − p{0},a.

The next theorem is a starting point to prove when the uniqueness of the generalized Drazin T-Riesz
inverse occurs.
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Theorem 3.8. Let p ∈ A an idempotent related to a generalized Drazin T-Riesz inverse of a generalized Drazin
T-Riesz invertible element a ∈ A. The following assertions are equivalent:

(i) p is unique;
(ii) σ(a) = σT,b(a) ∪ {0} and Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)) ∩ T−1(0) = {0}.

Proof. (i)⇒(ii) Suppose that p is unique, then by Theorem 3.4 p = 1 − aa1D = p{0},a, because a1D is the
unique generalized Drazin T-Riesz inverse of a. For the sake of a contradiction, suppose that there exists
q ∈ Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)) ∩ T−1(0) such that q is proper in comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)
(different from 0 or 1 − p{0},a).

We have 1 − p{0},a = q + (1 − p{0},a − q). As a and 1 − p{0},a − q commute, by [8, Lemma 2.1], we have
a(1− p{0},a − q) is invertible in (1− p{0},a − q)A(1− p{0},a − q). Also, by virtue of [3, R.1.2 Theorem], as ap{0},a and
aq commute and are T-Riesz elements, therefore, a(p{0},a+q) is a T-Riesz element. By uniqueness of p we have
p = p{0},a + q = p{0},a, which is absurd. Thus, Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)) ∩ T−1(0) ⊂ {0, 1 − p{0},a}.
Again, seeking for contradiction, suppose that q = 1 − p{0},a, and p{0},a , 1. In this case, we have p{0},a is an
idempotent related to the following generalized Drazin T-Riesz inverse

(a(1 − p{0},a))−1
(1−p{0},a)A(1−p{0},a) = a1D of a,

and p{0},a + 1 − q = 1 is related to the generalized Drazin T-Riesz inverse 0A of a. As a = aq + ap{0},a, we
conclude that a is T-Riesz which is a contradiction.
Hence, we conclude that Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)) ∩ T−1(0) = {0}.
(ii)⇒(i) Suppose that (ii) is satisfied. By way of contradiction, suppose also that there exists an idempotent
p related to a generalized Drazin T-Riesz inverse of a such that p , p{0},a.

In light of Lemma 3.6, there exists k ∈ N such that for every i ∈ {1, ...., k}, µi ∈ πT,00(ap), and p =
p{0},a +

∑k
i=1 p{µi},ap. Hence p − p{0},a ∈ Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)) ∩ T−1(0) = {0}. Therefore,

p − p{0},a ∈ {0}, a contradiction with p , p{0},a. Finally, we conclude that p = p{0},a, as desired.

Remark 3.9. As comm(a)∩(1−p{0},a)A(1−p{0},a)∩T−1(0) is an algebra, it may have a unit, let us denote it by e when
it exists. But in the case where a ∈ A is generalized Drazin T-Riesz invertible and has a unique idempotent p = p{0},a
which is related to its generalized Drazin T-Riesz inverse a1D, we show that comm(a)∩ (1−p{0},a)A(1−p{0},a)∩T−1(0)
does not have a unit e. Indeed, suppose that p is unique, and for the sake of a contradiction, suppose also that
comm(a) ∩ (1 − p{0},a)A(1 − p{0},a) ∩ T−1(0) has a unit e. We have 1 − p{0},a = (1 − e − p{0},a) + e, it is easy to
verify that (1 − e − p{0},a) is an idempotent. Thus by Lemma 2.1 [8], as a(1 − p{0},a) is invertible, e and 1 − p{0},a − e
commute with a and are orthogonal, therefore, ae and a(1− p{0},a − e) are invertible each in their respective subalgebras
eAe and (1 − p{0},a − e)A(1 − p{0},a − e). Also, as e ∈ T−1(0) ∩ comm(a), therefore ae is a T-Riesz element in
A. Thus, by uniqueness of p we have e = p = p{0},a, a contradiction, due to e ∈ (1 − p{0},a)A(1 − p{0},a), and
p{0},a , 0 taking into accoun that 0 ∈ iso σ(a). The same reasoning can be done on the algebra generated by
Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a) ∩ T−1(0)) to deduce that this algebra does not have a unit in the case where
a ∈ A is generalized Drazin T-Riesz invertible and has a unique idempotent p = p{0},a related to its generalized Drazin
inverse a1D.

The next theorem describes when a has a unique generalized Drazin T-Riesz inverse.

Theorem 3.10. Let a ∈ A be generalized Drazin T-Riesz invertible such that 0 ∈ σ(a). The following statements are
equivalent:

(i) a has a unique generalized Drazin T-Riesz inverse;
(ii) 0 ∈ iso σ(a) and Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)) ∩ T−1(0) = {0};

(iii) σ(a) = σT,b(a) ∪ {0} and Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)) ∩ T−1(0) = {0}.

Proof. (i)⇒(ii). Since a has a unique generalized Drazin T-Riesz inverse, and in light of Theorem 3.4, we get
σ(a) = σT,b(a) ∪ {0}. As 0 ∈ iso σT,b(a), therefore 0 ∈ iso σ(a). Also, the idempotent p related to the generalized
Drazin T-Riesz inverse of a is unique, because there is a unique generalized Drazin T-Riesz inverse of a
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which is the generalized Drazin inverse a1D. As σ(a) = σT,b(a)∪{0} and a has a unique Drazin T-Riesz inverse,
the only idempotent related to a generalized Drazin T-Riesz inverse of a is p{0},a. We have by Theorem 3.8
that

Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)) ∩ T−1(0) = {0}.

(ii)⇒(i). Suppose that (ii) is satisfied. As 0 ∈ iso σ(a) then a = a(1 − p{0},a) + ap{0},a, and

(a(1 − p{0},a))−1
(1−p{0},a)A(1−p{0},a) = a1D.

Seeking for a contradiction, suppose that there exists p ∈ Awhich is related to a generalized Drazin T-Riesz
inverse of a and different from p{0},a.

We have σ(ap) = {0, λ1, ..., λn} (otherwise, 0 ∈ acc σ(ap), hence 0 ∈ acc σ(a) and this is absurd with
0 ∈ iso σ(a)). Thus p = p{0},a +

∑n
i=1 p{λi},ap and for every i ∈ {1, ...,n}, p{λi},ap ∈ T−1(0), hence p − p{0},a ∈ T−1(0).

On the other hand, we have p{0},ap = pp{0},a = p{0},a and (1 − p{0},a)(1 − p) = (1 − p)(1 − p{0},a) = 1 − p, which
implies (p − p{0},a)(1 − p) = (1 − p)(p − p{0},a) = 0 with (p − p{0},a) is an idempotent.
Thus p − p{0},a ∈ Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)) ∩ T−1(0) = {0}, a contradiction. Hence, the only
idempotent related to a generalized Drazin T-Riesz inverse of a is p{0},a. Consequently, the only generalized
Drazin T-Riesz inverse is a1D.
(iii)⇔(i). Suppose that σ(a) = σT,b(a)∪ {0} and Idemp(comm(a)∩ (1− p{0},a)A(1− p{0},a))∩ T−1(0) = {0} together
hold with the initial condition that a is generalized Drazin T-Riesz invertible, this is equivalent to say that
a possesses a unique idempotent p related to the generalized Drazin T-Riesz inverses of a by Theorem 3.8,
and having a unique idempotent p related to the generalized Drazin T-Riesz inverse of a is equivalent with
a having a unique generalized Drazin T-Riesz inverse. As desired.

Corollary 3.11. LetA be an infinite dimensional Banach algebra with a one-to-one homomorphism T, and let a ∈ A.
The following assertions are equivalent

(i) a is generalized Drazin invertible;
(ii) a has a unique generalized Drazin T-Riesz inverse.

Proof. Either a is generalized Drazin invertible or a has a unique generalized Drazin T-Riesz inverse, the
spectral idempotent p{0},a of a related to 0 exists. Also, as T is one-to-one, therefore T−1(0) = {0}. Hence

Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)) ∩ T−1(0) = {0},

we apply Theorem 3.10 to find the desired equivalence between (i) and (ii).

Remark 3.12. We shall say that a unital algebra E is strongly connected if the only idempotents lying in E are 0 and
1.

Corollary 3.13. LetA be an infinite dimensional unital complex Banach algebra. Let a be generalized Drazin T-Riesz
invertible inA, with comm(a)∩ (1− p{0},a)A(1− p{0},a) is a commutative and strongly connected Banach algebra, and
(1 − p{0},a) < T−1(0). The following assertions are equivalent:

(i) a has a unique generalized Drazin T-Riesz inverse;
(ii) a is generalized Drazin invertible;

(iii) σ(a) = σT,b(a) ∪ {0}.

Proof. As (1−p{0},a) < T−1(0) andQ = comm(a)∩ (1−p{0},a)A(1−p{0},a) is a commutative and connected Banach
algebra, therefore the only idempotents lying in Q are 0 and (1 − p{0},a), hence the only idempotent lying in
Q ∩ T−1(0) is 0. Finally, in order to find all the equivalences between (i), (ii) and (iii), we apply Theorem
3.10.
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For a generalized Drazin invertible element a ∈ A, we consider the algebraZ generated by

Q1 = Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a) ∩ T−1(0)).

Z is not unital in our case ( if so, the generalized Drazin T-Riesz inverse of a will not be unique as shown
in Remark 3.9), so we have to consider Z♯ = Z × C with its respective laws for all x, y ∈ Z, and for all
α, β, λ ∈ C such that (x, α) + λ(y, β) = (x + λy, α + λβ),

(x, α).(y, β) = (αy + βx + xy, αβ).

Z is naturally embedded inZ♯, alsoZ
♯
= Z× C is a complex unital Banach algebra.

Theorem 3.14. Let a be a generalized Drazin invertible element inA. The following assertions are equivalent:

(i) a has a unique generalized Drazin T-Riesz inverse;

(ii) Z = {0};

(iii) Char(Z
♯
) is connected (i.e: does not split into two disjoint closed sets under the weak topology σ((Z

♯
)′,Z

♯
));

(iv) Z
♯

is strongly connected (i.e: The only idempotents lying inZ
♯

are (0, 0) and (0, 1)).

Proof. (i)⇒(ii). a has a unique generalized Drazin T-Riesz inverse implies by Theorem 3.8 that Q1 = {0},
henceZ = {0}, thereforeZ = {0}.

(ii)⇒(iii). AsZ = {0}, therefore Char(Z
♯
) is connected, by virtue of the negation of [12, (1)⇔ (5) Theorem

3.12 ].
(iii)⇒(iv). By the negation of [12, (3)⇒ (6) Theorem 3.12], we find the desired result.

(iv)⇒(i). As (0, 0) and (0, 1) are the only idempotents lying in Z
♯
, therefore the only idempotent lying in

Z is 0. Hence Q1 = {0}. So, by Theorem 3.10, we conclude that a has a unique generalized Drazin T-Riesz
inverse.

Corollary 3.15. LetA be a Banach algebra with a homomorphism T having the strong Riesz property. Let a
be generalized Drazin invertible inA, (1−p{0},a)A(1−p{0},a) is a Banach space with Char((1−p{0},a)A(1−p{0},a))
is connected, and 1 − p{0},a < T−1(0) . Then we have

(i) a has a unique generalized Drazin T-Riesz inverse.

(ii) Char(Z
♯
) is connected.

Moreover, (i) and (ii) are equivalent. Hence, under these conditions, every generalized Drazin invertible
element inA has a unique generalized Drazin-Riesz inverse which is its generalized Drazin inverse.

Proof. Since Char((1−p{0},a)A(1−p{0},a)) is connected and (1−p{0},a)A(1−p{0}) is a Banach algebra, by applying
the negation of the implication (1)⇒ (3) [12, Theorem 3.12], we find that (1− p{0},a)A(1− p{0},a) is connected
in the sense that the only idempotents are 0 and (1 − p{0},a). As 1 − p{0},a < T−1(0), we conclude that Q1 = {0},
henceZ = {0}. Therefore by applying Theorem 3.14 we find that a has a unique generalized Drazin T-Riesz
inverse.

The equivalence between (i) and (ii) is also found by applying Theorem 3.14.
Hence, under the conditions of this corollary, every generalized Drazin invertible element has a unique
generalized Drazin T-Riesz inverse which is of course its generalized Drazin inverse.
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4. The case of semi-simple Banach algebras

This section is meant to show when the uniqueness of generalized Drazin-Riesz inverses holds in the case
of semisimple Banach algebras, using both algebraic geometry tools and functional analysis (topological)
tools. This will allow us to also construct non trivial examples.
Recall the following algebraic geometry notions.

Let R be an associative unital ring and Spec(R) be the set of all prime ideals of R, recall that a proper
(two-sided) ideal P is a prime ideal of R if for all a, b ∈ R, aRb ⊂ P, implies that a ∈ P or b ∈ P. We say that a
commutative ring R is connected if its spectrum is connected under the Zariski topology [21].

An idempotent e in R is said to be clopen if e < P implies 1− e ∈ P for any prime ideal P of R. In the case
where R is a commutative ring, every idempotent in R is a clopen idempotent [21].

In order to characterize the connectedness in an algebraic sense of a given associative ring, we shall use
the next theorem.

Theorem 4.1. [21, Theorem 3.11] Let R be an associative unital ring. The following statements are equivalent:

1. R is connected;
2. The only clopen idempotents in R are 0 and 1.

Remark 4.2. Theorem 4.1 allows us to define the connectedness of a given unital algebra E by saying that the only
clopen idempotents lying in E are 0 and 1, hence we do not need the Zariski Topology to define the connectedness of E.

The next theorem will enable us to construct several examples in the case of semi-simple Banach algebras.

Theorem 4.3. Let A be an infinite dimensional unital complex semi-simple Banach algebra. Let a be generalized
Drazin-Riesz invertible in A, with Q = comm(a) ∩ (1 − p{0},a)A(1 − p{0},a) is an infinite dimensional commutative
and connected Banach algebra. The following assertions are equivalent:

(i) a has a unique generalized Drazin-Riesz inverse;
(ii) a is generalized Drazin invertible;

(iii) σ(a) = σb(a) ∪ {0}.

Proof. As in the proof of Corollary 3.13, we conclude that Q has only 0 and (1 − p{0},a) as idempotents, as Q
is an infinite dimensional Banach algebra, 1 − p{0},a is not therefore a minimal idempotent of A (otherwise
(1 − p{0},a)A(1 − p{0},a) = C(1 − p{0},a), absurd ). Hence

Q ∩ SA = {0}.

Finally, taking into account that T = π, we apply Theorem 3.10 to find the desired equivalences.

Remark 4.4. Staying in the case of semi-simplicity, we can say that if a is generalized Drazin-Riesz invertible and
has a unique generalized Drazin-Riesz inverse, this is equivalent to say that the only idempotent of finite rank lying
in (1 − p{0},a)A(1 − p{0},a) which commute with a is 0. This is similar to have Scomm(a)∩(1−p{0},a)A(1−p{0},a) = {0}, since
Scomm(a)∩(1−p{0},a)A(1−p{0},a) is formed by the minimal idempotents of comm(a) ∩ (1 − p{0},a)A(1 − p{0},a) which form the
idempotents of finite rank that are in (1 − p{0},a)A(1 − p{0},a) and that commute with a. Hence for X an infinite
dimensional Banach space, if A ∈ L(X) has a unique generalized Drazin-Riesz inverse, this is equivalent to say that
the only finite rank operator on comm(A) ∩ (I − P{0},A)L(X)(I − P{0},A) is 0, where P{0},A is the spectral projection of
A related to {0}.

The last remark combined with the negation of Theorem 3.10 allow us to state when a generalized Drazin
invertible element does have at least two generalized Drazin-Riesz invertible elements, notice that in the
case where an element a is not generalized Drazin invertible, 0 ∈ acc σ(a), and a is generalized Drazin-Riesz
invertible, then by virtue of Theorem 2.5, a has infinite generalized Drazin-Riesz inverses. We say that an
element f ∈ A is a finite rank element if f ∈ SA.
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Theorem 4.5. Let A be an infinite dimensional complex unital semi-simple Banach algebra, and a ∈ A such that
0 ∈ iso σ(a). The following statements are equivalent:

(i) a has at least a generalized Drazin-Riesz inverse that is different from the generalized Drazin inverse of a;
(ii) there exists a finite rank element f ∈ (1 − p{0},a)A(1 − p{0},a) such that a f = f a , 0;

Proof. (i)⇒(ii). Let a be generalized Drazin invertible having b as a generalized Drazin-Riesz inverse which
is different from a1D.
Hence, there exists an idempotent p ∈ A different from p{0},a related with b.
We have

σ(a) = σ(1−p{0},a)A(1−p{0},a)(a(1 − p{0},a)) ∪ σp{0},aAp{0},a (ap{0},a)
= σ(1−p)A(1−p)(a(1 − p)) ∪ σpAp(ap),

where p = p{0},a + q, with q ∈ SA such that q2 = q , 0, aq = qa , 0, and p{0},aq = qp{0},a = 0.
This implies that q ∈ (1− p{0},a)A(1− p{0},a)∩ SA ∩ comm(a), q is then a finite rank element that commutes

with a and aq = qa , 0.
(ii)⇒(i). Now suppose that there exists a finite rank element f ∈ (1 − p{0},a)A(1 − p{0},a) \ {0} such that
a f = f a , 0.
As f ∈ SA ∩ (1 − p{0},a)A(1 − p{0},a), there exists minimal idempotents q1, ..., qn ∈ (1 − p{0},a)A(1 − p{0},a) such
that f =

∑n
1 λiqi.

Hence, as a f = f a , 0, there exists k ∈ {1, ...,n} such that aqk = qka , 0.
Thus by the minimality of qk and aqk = qka , 0, there exists λk ∈ C \ {0} such that aqk = qka = λkqk.
We put p = p{0},a + qk to find that ap = pa, ap is a Riesz element, and by Lemma 2.1 [8], a(1 − p) is invertible
in (1 − p)A(1 − p).

Finally, we have 0 ∈ iso σ(a) and Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)) ∩ SA , {0}, and by applying the
negation of Theorem 3.10, we find that a has at least two different generalized Drazin-Riesz inverses, hence
a1D is not the only generalized Drazin-Riesz inverse for a.

The last theorem gives a practical way to see if a does not have a unique generalized Drazin-Riesz inverse,
it suffices to find one finite rank element f in (1 − p{0},a)A(1 − p{0},a) such that a f = f a , 0.

Example 4.6. Let a be a quasinilpotent element in A. a has a unique generalized Drazin-Riesz inverse which is 0.
We have p{0},a = 1A, thus 1 − p{0},a = 0, hence comm(a) ∩ (1 − p{0},a)A(1 − p{0},a) ∩ SA = {0}, with σ(a) = {0}, as
desired.

We consider the algebra (it is also a ring) R = comm(a)∩ (1− p{0},a)A(1− p{0},a)∩ SA, notice thatZ = R in this
case, because T = π, and hence, SA = T−1(0).
Therefore, R does not have a unit. Then, we consider the unitization R♯ = R × C of R as defined in the last
part of Section 3. Notice that R

♯
= R × C is a complex semi-simple unital Banach algebra.

We can confuse every idempotent p ∈ R with (p, 0) ∈ R♯ ((p, 0).(p, 0) = (p, 0)). Also if the only clopen
idempotents of R♯ are (0, 0) and (0, 1), then the only clopen idempotent lying in R is 0.

The next result shows that for every minimal idempotent e ofA in R, the idempotent (e, 0) is clopen in
R♯.

Lemma 4.7. Let e ∈ A be a minimal idempotent such that e ∈ R. Then (e, 0) is a clopen idempotent in R♯.

Proof. Let (x, α) ∈ R♯, and e ∈ R such that e is a minimal idempotent ofA. Consider (e, 0) < P♯ for an arbitrary
two-sided prime ideal P♯ of R♯.

We have

(e, 0).(x, α).(−e, 1) = (e, 0).(−αe + x − xe, α)
= (αe − αe + ex − exe, 0)
= (ex − exe, 0)
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As x ∈ SA, there exists λi ∈ C and ei minimal idempotents such that x =
∑n

i=1 λiei, hence by minimality of e
and ei, as well as eie j = 0 for i , j, it is easy to conclude that (e, 0).(x, α).(−e, 1) = (0, 0) ∈ P♯. As P♯ is a two
sided prime ideal of R♯ and (e, 0) < P♯, then (−e, 1) ∈ P♯. Hence (e, 0) is a clopen idempotent of R♯.

The last lemma allows us to state that if R♯ is connected, this is equivalent to say, using Theorem 4.1, that
the only clopen idempotents of R♯ are (0, 0) and (0, 1). Consequently, the only minimal idempotent ofA in
R is 0.
Thus Idemp(R) = {0} (this is equivalent to say that R♯ is connected in the sense that the only idempotents of
R♯ are (0, 0) and (0, 1)) because R ⊂ SA. The latter will enable us to give the next characterizations about the
uniqueness of generalized Drazin-Riesz inverse by mean of connectedness in the algebraic geometry sense
characterized in Theorem 4.1.

Theorem 4.8. Let A be an infinite dimensional unital complex semi-simple Banach algebra. Let a be generalized
Drazin-Riesz invertible inA with 0 ∈ σ(a). The following assertions are equivalent:

(i) a has a unique generalized Drazin-Riesz inverse;
(ii) a is generalized Drazin invertible and R♯ is connected;

(iii) σ(a) = σb(a) ∪ {0} and R♯ is connected;
(iv) σ(a) = σb(a) ∪ {0} and R = {0};
(v) a is generalized Drazin invertible and R = {0}.

Proof. (i)⇒(ii). as a has a unique generalized Drazin-Riesz inverse, then a is generalized Drazin invertible
and by Theorem 3.8 Idemp(R) = {0}, therefore, R♯ is connected since the only idempotents of R♯ are (0, 0) and
(0, 1).
(ii)⇒(iii). As a is generalized Drazin invertible and R♯ is connected, then a is generalized Drazin invertible
and Idemp(R) = {0}. Thus, we have by Theorem 3.10 σ(a) = σb(a)∪{0} and Idemp(R) = {0}, which is equivalent
to say that σ(a) = σb(a) ∪ {0} and R♯ is connected.
(iii)⇒(iv). Since R♯ is connected, and since all the idempotents of R are a sum of minimal idempotents which
are clopen by Lemma 4.7, we conclude that the only idempotents of R♯ are 0R♯ = (0, 0) and 1R♯ = (0, 1). Hence
the only idempotent of R is 0, therefore R = {0}, because every element of R is a finite linear combination of
minimal idempotents. Finally, R = {0}.
(iv)⇒(v). It suffices to see that 0 < acc σb(a), because a is generalized Drazin-Riesz invertible, hence
0 ∈ iso σ(a), because σ(a) = σb(a) ∪ {0}, and by hypotheses of (iv), R = {0}.
(v)⇒(i). As a is generalized Drazin invertible and R = {0}, we get that a is generalized Drazin invertible
and Idemp(comm(a) ∩ (1 − p{0},a)A(1 − p{0},a)) ∩ SA = {0}. Hence, by virtue of Theorem 3.10 we conclude that
a has a unique generalized Drazin-Riesz inverse.

The next Theorem gives characterizations of the uniqueness of generalized Drazin T-Riesz inverses follow-
ing notions that are topological using the connectedness of the set of Characters.

Theorem 4.9. Let A be an infinite dimensional unital complex semi-simple Banach algebra. Let a be generalized
Drazin-Riesz invertible inA with 0 ∈ σ(a). The following assertions are equivalent:

(i) a has a unique generalized Drazin-Riesz inverse;

(ii) a is generalized Drazin invertible and Char(R
♯
) is connected (i.e: does not split into two disjoint closed sets

under the weak topology σ((R
♯
)′,R

♯
));

(iii) a is generalized Drazin invertible and (R
♯
)∧ is strongly connected;

(iv) σ(a) = σb(a) ∪ {0} and (R
♯
)∧ is strongly connected.

Proof. (i) ⇒ (ii). By the equivalence (i) ⇔ (v) of Theorem 4.8, we have R = {0}, hence R
♯
= {0} × C is a

semi-simple unital and finite dimensional algebra, therefore its Gelfand map G
R
♯ is continuous (because
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R
♯

is finite dimensional, also it is a unital semisimple Banach algebra and this is equivalent to say that G
R
♯

is one-to-one, for more details see [16, Definitions 3.2 and 6.2, Corollary 7.3]), and its Gelfand transform

algebra (R
♯
)∧ is complete ( (R

♯
)∧ ⊂ (R

♯
)′ and (R

♯
)′ is finite dimensional, hence (R

♯
)∧ is finite dimensional,

thus complete), we are then able to apply the negation of [12, (1)⇔ (5) Corollary 3.14] to find that Char(R
♯
)

is connected.
(ii)⇒(iii). We apply on Char(R

♯
) the negation of the implication (3) ⇒ (6) [12, Theorem 3.12] to find that

(R
♯
)∧ is strongly connected.

(iii)⇒(iv). As 0 ∈ σ(a) and a is generalized Drazin invertible, then 0 ∈ iso σ(a), also by assumptions of (iii),

(R
♯
)∧ is connected, and by the negation of the implications [12, (1)⇒ (3)⇔ (4) Theorem 3.12], we conclude

that R
♯

is strongly connected, which implies that Idemp(R) = {0}. Now, as 0 ∈ iso σ(a) and Idemp(R) = {0},
we conclude by Theorem 3.10 that σ(a) = σb(a) ∪ {0}, and by assumptions of (iii), we already have that a is
generalized Drazin invertible.

(iv)⇒(i). (R
♯
)∧ is strongly connected implies through the negation of the implication (1) ⇒ (3) of [12,

Theorem 3.12] that R
♯

is strongly connected. This is equivalent to say that Idemp(R) = {0}, hence Idemp(R) =
{0} ( R does not possess a unit and (0, 0) is identified with 0), combined with σ(a) = σb(a) ∪ {0}, we get by
applying Theorem 3.10 that a has a unique generalized Drazin-Riesz inverse.

The importance of having these equivalences considering the connectedness of Char(R
♯
) lies in the next

corollary.

Corollary 4.10. LetA be a semi-simple Banach algebra. Let a be generalized Drazin-Riesz invertible inA such that
0 ∈ iso σ(a), and (1− p{0},a)A(1− p{0},a) is an infinite dimensional Banach space with Char((1− p{0},a)A(1− p{0},a)) is
connected. Then we have

(i) a has a unique generalized Drazin-Riesz inverse.

(ii) Char(R
♯
) is connected.

Moreover, (i) and (ii) are equivalent. Also, every generalized Drazin-Riesz invertible element in A has a unique
generalized Drazin-Riesz inverse which is its generalized Drazin inverse.

Proof. Since Char((1 − p{0},a)A(1 − p{0},a)) is connected and (1 − p{0},a)A(1 − p{0},a) is a Banach algebra, by
applying the negation of the implication (1) ⇒ (3) [12, Theorem 3.12], we find that (1 − p{0},a)A(1 − p{0},a)
in the sense that the only idempotents are 0 and (1 − p{0},a), as (1 − p{0},a)A(1 − p{0},a) is infinite dimensional,
then 1− p{0},a < SA, hence Idemp(R) = {0}, hence R♯ is connected, therefore by applying Theorem 4.8 we find
that a has a unique generalized Drazin-Riesz inverse.

The equivalence between (i) and (ii) is also found by applying Theorem 4.9. Hence, in this case, every
generalized Drazin-Riesz invertible element has a unique generalized Drazin-Riesz inverse which is of
course its generalized Drazin inverse.

Now, we propose some examples in the case of semi-simple Banach algebras that are generated by Theorem
4.3.

Example 4.11. Consider the commutative semi-simple Banach algebra Ea[−1, 1] called extremal algebra [5, Section
24 p. 53]. We have char(Ea[−1, 1]) = [−1, 1] (see [10]), hence it is connected, therefore the only idempotents of
Ea[−1, 1] are 0 and 1Ea[−1,1].
Now consider the semi-simple Banach algebraA = Ea[−1, 1] ⊕ L(ℓ2(N)).
Take a = 1Ea[−1,1] ⊕ B such that

B(x1, x2, x3, . . .) = (0,
x1

2
,

x2

22 ,
x3

23 , . . .), ∀(x1, x2, x3, . . .) ∈ ℓ2(N).
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a is generalized Drazin invertible, because 1Ea[−1,1] is invertible in Ea[−1, 1] and B is quasinilpotent inL(ℓ2(N)),
thus it is generalized Drazin-Riesz invertible.

As the only idempotents of Ea[−1, 1] are 0 and 1Ea[−1,1] and σ(a) = {0; 1} = σT,b(a) ∪ {0}, also, 1Ea[−1,1] < SA,
because Ea[−1, 1] is infinite dimensional, we have Idemp(Ea[−1, 1]) ∩ SA = {0}. Consequently, a has a unique
generalized Drazin-Riesz inverse which is b = 1Ea[−1,1] ⊕ 0.

Example 4.12. We consider the infinite dimensional semi-simple commutative Banach algebra C([−1, 1]) of all
continuous functions on [−1, 1] overC, by [16, Corollary 1.2 p. 221], Char(C([−1, 1])) = [−1, 1], thus Char(C[−1, 1])
is connected, as C([−1, 1]) is a commutative algebra, then for every a ∈ C([−1, 1]), comm(a)∩C([−1, 1]) = C([−1, 1]),
C([−1, 1]) being infinite dimensional, we conclude that 1C([−1,1]) does not belong to SC([−1,1]), hence the only idempotent
lying in SC([−1,1]) is 0, therefore SC([−1,1]) = {0} ( this is already known, but we give a new demonstration using the
tools we have employed in the last theorem). Consider B the operator defined in the last example in L(ℓ1(N)), and
consider A = C([−1, 1]) ⊕ L(ℓ1(N)), and a = f ⊕ B where ∀x ∈ [−1, 1], f (x) , 0, a is generalized Drazin-Riesz
invertible, in particular it is generalized Drazin invertible.
Thus, by virtue of Theorem 4.8 considering that SC([−1,1]) = {0} or by virtue of Theorem 4.9 taking into account that
Char(C[−1, 1]) is connected, we have a has a unique generalized Drazin-Riesz inverse which is a1D = f−1

⊕ 0.
We also conclude by Corollary 4.10 that every generalized Drazin-Riesz invertible element on C([−1, 1]) has a

unique generalized Drazin-Riesz inverse, that is f is generalized Drazin-Riesz invertible in C([−1, 1]) if and only if
f is generalized Drazin invertible (this is easily seen without using Corollary 4.10, because SC([−1,1]) = {0}).

5. Application in the case of bounded operators

Theorem 5.1. Let X be an infinite dimensional Banach space, let A be bounded operator A : X→ X, such that A is
generalized Drazin-Riesz invertible and 0 ∈ σ(A). The following assertions are equivalent:

(i) A has a unique generalized Drazin-Riesz inverse;
(ii) 0 ∈ iso σ(A) and there exists no non-zero finite rank operator inL(R(I−P{0},A)) which commutes with A|R(I−P{0},A);

(iii) 0 ∈ iso σ(A) and there exists no non-zero finite rank idempotent in L(R(I − P{0},A)) which commutes with
A|R(I−P{0},A);

(iv) 0 ∈ iso σ(A), dim(R(I−P{0},A)) = ∞, and for every non-trivial idempotent P inL(R(I−P{0},A)) which commutes
with A|R(I−P{0},A), dim(R(P)) = dim(N(P)) = ∞.

Proof. (i)⇒(ii). As A has a unique generalized Drazin-Riesz inverse and by virtue of Remark 4.4, we have
σb(A) ∪ {0} = σ(A) and comm(A) ∩ (I − P{0},A)L(X)(I − P{0},A) ∩ F (X) = {0}, hence (2) is satisfied.
(ii)⇒(iii) and (iii)⇒(iv) are obvious.
(iv)⇒(i). Suppose that (iv) holds. I − P{0},A is not a finite rank projection because dim(R(I − P{0},A)) = ∞.
We have A = A(I − P{0},A) + AP{0},A = A|R(I−P{0},A) ⊕ A|R(P{0},A), with A|R(I−P{0},A) is invertible, let P be an arbitrary
idempotent described in (iv). Hence

A|R(I−P{0},A) = (A|R(I−P{0},A))|R(P) ⊕ (A|R(I−P{0},A))|N(P),

as A|R(I−P{0},A) is invertible, this implies that

A−1
|R(I−P{0},A) = (A|R(I−P{0},A))−1

|R(P) ⊕ (A|R(I−P{0},A))−1
|N(P).

Taking into account that dim(R(P)) = dim(N(P)) = ∞, we conclude that (A|R(I−P{0},A))|R(P) and (A|R(I−P{0},A))|N(P)
cannot be Riesz operators, because if it is the case, consider for example that (A|R(I−P{0},A))|R(P) is a Riesz
operator, there exists µ , 0 ∈ σ((A|R(I−P{0},A))|R(P)) such that (P{µ},(A|R(I−P

{0},A ) )|R(P))) is a finite rank projection
which commutes with A|R(I−P{0},A).
Hence dim(R((P{µ},(A|R(I−P

{0},A ) )|R(P)))) < ∞, absurd with the assumption made in (iv).

As an application of Theorem 4.5, we give its analogue in the case of L(X).
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Corollary 5.2. Let X be an infinite dimensional Banach space, let A be a bounded operator A : X→ X, such that A
is generalized Drazin invertible. The following assertions are equivalent:

(i) A possesses at least two distinct generalized Drazin-Riesz inverses;
(ii) There exists a finite rank operator F such that AF = FA, and AF(I − P{0},A) = FA(I − P{0},A) , 0.

Proof. (i)⇒(ii) we apply directly the implication (i)⇒ (ii) of Theorem 4.5 by consideringA = L(X).
(ii)⇒(i) Taking into account that P{0},A ∈ comm2(A) and AF = FA, then Q = F(1 − P{0},A) ∈ (I − P{0},A)L(X)(I −
P{0},A), and we have AQ = QA , 0, with Q a finite rank operator in (I−P{0},A)L(X)(I−P{0},A) = L(R(I−P{0},A)).
Thus by applying the implication (ii)⇒ (i) of Theorem 4.5, we obtain the desired result.

We give a specific characterization for the uniqueness of generalized Drazin-Riesz inverses of bounded
operators which act on a Hilbert space H. We denote by F (H), the set of finite rank operators.

Theorem 5.3. Let H be a Hilbert space and A ∈ L(H) such that A is generalized Drazin-Riesz invertible and 0 ∈ σ(A).
T has a unique generalized Drazin-Riesz inverse if and only if A is generalized Drazin invertible and there exists no
non-zero eigenvalue λ ∈ σ(A(I−P{0},A)) related to the projection I−Q defined to beR(I−Q) = N((λI−A)(I−P{0},A))
andN(I −Q) = N((λI − A)(I − P{0},A))⊥ such that A(I − P{0},A)(I −Q) is a finite rank operator.

Proof. Theorem 3.4 ensures that if A has a unique generalized Drazin-Riesz inverse, then A is generalized
Drazin invertible. By way of contradiction, we suppose that A(I − P{0},A) has a non-zero eigenvalue λ ∈
σ(A(I − P{0},A)) related to the projection I −Q defined to be R(I −Q) = N((λI −A)(I − P{0},A)) andN(I −Q) =
N((λI − A)(I − P{0},A))⊥ such that A(I − P{0},A)(I −Q) is a finite rank operator. Without loss of generality, we
have AQ = QA so (I − P{0},A)Q = Q(I − P{0},A) and A = A(I − P{0},A)Q+A(I − P{0},A)(I −Q)+AP{0},A.Hence, by
considering A1 = AR((I−P{0},A)Q), which is invertible, A2 = AR((I−P{0},A)(I−Q)) which is invertible and of finite rank
at the same time, and A3 = AR(P{0},A) which is Riesz, we obtain A = A1 ⊕ A2 ⊕ A3. From this reduction of A,
we get two distinct generalized Drazin-Riesz inverses S1 = A−1

1 ⊕ A−1
2 ⊕ 0 and S2 = A−1

1 ⊕ 0 ⊕ 0, which is a
contradiction.

Conversely, suppose that 0 ∈ iso σ(A) and there exists no non-zero eigenvalue λ ∈ σ(A(I − P{0},A)) related
to the projection I−Q defined to be R(I−Q) = N((λI−A)(I−P{0},A)), andN(I−Q) = N((λI−A)(I−P{0},A))⊥,
such that A(I − P{0},A)(I − Q) is a finite rank operator. By way of contradiction, suppose that there exists
P , P{0},A a projection such that AP = PA, A + P is invertible and AP is Riesz. Thus there exists µ ∈ σ(A)
provided that µ is a Riesz point (hence an eigenvalue) of AP. Consequently, there exists a non-zero vector
x ∈ R(P) such that APx = µx = µPx. Hence Px is an eigenvector of A, therefore µ is an eigenvalue of
A. Now, we prove that A(I − P{0},A)P{µ},AP is a finite rank operator which will lead us to the contradiction.
Indeed, P{µ},AP ∈ F (H), as it commutes with I − P{0},A and A, therefore A(I − P{0},A)P{µ},AP ∈ F (H), notice that
R(P{µ},AP) = N((µI−A)(I−P{0},A)), andN(P{µ},AP) = N((µI−A)(I−P{0},A))⊥, a contradiction (put P{µ},AP = I−Q).

We conclude that A has a unique generalized Drazin-Riesz inverse, as desired.

As a direct consequence of the last theorem, we give the following result.

Corollary 5.4. Let H be a Hilbert space and A ∈ L(H) such that A is generalized Drazin-Riesz invertible, A has no
non-zero eigenvalue and 0 ∈ σ(A).

A has a unique generalized Drazin-Riesz inverse if and only if A is generalized Drazin invertible.
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