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Abstract. In this paper, we mainly introduce some equivalent conditions for SEP matrices. Firstly, we
provide characterizations of SEP matrices in terms of projections. Secondly, we characterize SEP matrices by
the representations of group inverses and Moore-Penrose inverses. Finally, we propose characterizations
of SEP matrices, specifically by constructing three matrix equations and discussing whether they have
solutions in given sets to determine whether a group invertible matrix is a SEP matrix respectively.

1. Introduction

The present article concerns matrices belonging to the ring C"™", composed of square matrices of order

n with complex entries. Denotes the conjugate transpose matrix of A by AL, A € C"™" is called a group
invertible matrix if there exists a matrix X € C"™" such that

AXA =A, XAX =X, AX = XA.

If such X exists, then it is unique and is denoted by A*. A* is called the group inverse of A [3]. It is well
known that A is group invertible if and only if rank(A) = rank(A?) [11].

A € C"™" is said to be Moore-Penrose invertible if there exists X € C"™" such that
AXA = A, XAX =X, (AX)" = AX, (XA)! = XA.
Such X always exists and is uniquely determined [1, 2]. Itis denoted by A* and is called the Moore-Penrose
inverse of A.

A € C"™" is called an EP matrix if A is group invertible and A* = A* [13]. It is known that A is EP if and
only if AA* = A*A [4]. For the study of EP matrices, we can refer to [2, 5, 6, 12]. A is called a SEP matrix
if A* = A* = A [8,9]. A is called partial isometry (or PI for simplicity) if A = AA"A [6, 10]. Clearly, A
is PI if and only if A* = A, while A is SEP if and only if A is both EP and PI. A is called a projection if
A% = A = AH. Obviously, AA* and A*A are both projections.

Throughout of this paper, G,(C) stands for the set of all group invertible matrices in C™" and C3tF
stands for the set of all SEP matrices in C"".
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In this paper, we continue to study SEP matrices. In Section 2, we intend to develop some properties of
SEP matrices. More specifically, in Subsection 2.1 we propose characterizations of SEP matrices in terms of
projections; in Subsection 2.2 we produce a characterization of SEP matrices by proving that any A € G,,(C)
is SEP if and only if

(AHA+(A+)H(A#)H)# — A#AHA(A#)H;

while in Subsection 2.3 we provide characterizations of SEP matrices by demonstrating that for any A €
Gn(C), A is SEP if and only if

(A*ATAANT + E, — AAT) ! = ATAT(ANHA%AT + E, — AAY
and A is SEP if and only if
(AY(ANH + E, — AAT) ' = AATAPAT(AT)HA’AY + E, — AA™.

In Section 3, we are dedicated to proposing more characterizations of SEP matrices by constructing some
specific matrix equations involving A and A*, and discussing respectively whether they have solutions in
given sets to determine whether A is SEP.

2. Some properties of SEP matrices

In this section, we give new characterizations of SEP matrices. More specifically, in Subsection 2.1, we
characterize SEP matrices in terms of projections. In Subsection 2.2, we characterize SEP matrices by the
representations of group inverses and Moore-Penrose inverses of some matrices involving A, AH, A* and
A”". And in Subsection 2.3, we characterize SEP matrices by the representations of inverses of two matrices
involving A, AH, A* and A*.

2.1. Using projections to characterize SEP matrices

In this subsection, we intend to propose characterizations of SEP matrices in terms of projections. We
begin with some auxiliary lemmas.

It is known that A € C™" is partial isometry if and only if AA" is idempotent and A is EP if and only if
AA* is a projection [12, Theorem 1.1.3]. Hence we have the following lemma, the proof of which is routine.

Lemma 2.1.1. Let A € G,(C). Then the following conditions are equivalent:
(1) A € CSFF;
(2) AA* — AAH is a projection;
(3) (AAHH — AAH is a projection;
(4) AA* — AHA is a projection;
(5) (AAHH — AHA is a projection.

Note that A € C"™" is a projection if and only if A is idempotent and Hermitian. This induces the
following evident characterization.

Lemma 2.1.2. Let A € C"™". Then the following conditions are equivalent:
(1) A is a projection;
(2) A is idempotent and A — AAH is Hermitian;
(3) A is idempotent and A — A" A is Hermitian;
(4) A = AAH;
(5) A = AHA.

Lemma 2.1.3. [13] Let A € C™". Then A € G,(C) if and only if rank(A) = rank(A?).

The following lemma comes from [9].
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Lemma 2.1.4. Let A € G,(C). Then the following conditions are equivalent:
(1) A € CFF;
(2) AA* = AHLA;
(3) AAH = AA*.

Lemma 2.1.5. [12, Theorem 1.5.3] Let A € C"™". Then A € CE¥ if and only if A* = AHATA.

Lemma 2.1.6. Let A € C™". Then A € C3EF if and only if A = AHA*(A*)H.

PROOF. “ = " One has A* = A* = AH by the assumption. Thus,

AHAT (AN = APATA = A% = A,

We are done.

“ & ” From the assumption, one has A” = AHA(A")H. Since (A")H = (A*)HA* A, one gets

AHATA = AMAT(ANHATA = AHAY (AT = A, (2.1)
which implies that
rank(A) = rank(APA) = rank(A"A* A?) < rank(A?) < rank(A).

Hence, rank(A) = rank(A?). By Lemma 2.1.3, A is group invertible. And so, by [12, Theorem 1.2.1], A is EP.
Now, multiplying the equality AA*A = AA*(A*)" on the right by A, one obtains AFAH = AHA*. By [9,
Corollary 2.10], A is partial isometry. Thus, A € CEP. |

Theorem 2.1.7. Let A € G,(C). Then A € CSFF if and only if AHA*(AT)H(A*)H is a projection.

PROOF. “ = " It follows from the assumption and Lemma 2.1.6 that A = AA*(A*)H. This gives
AHAT(ANHH (AN = (AA*)H is a projection by [12, Theorem 1.1.3].
“ & ” From the assumption, B = AHA*(A")H(A*)H is a projection. Thus, B = BB by Lemma 2.1.2. Since

BHB = A#A+(A+)HAAHA+(A+)H(A#)H
— A#A+[AA#(A+)H]AAHA+(A+)H(A#)H
— A#A#(A+)HAAHA+(A+)H(A#)H,
one gets
A#A#(A+)HAAHA+(A+)H(A#)H — AHA+(A+)H(A#)H. (22)
Multiplying the equality (2.2) on the left by A2 and on the right by AFA"A yields
plymng q y y ght by y
(ANHHAARATA = A2AHATA.

Multiplying the equality on the right by (A*A*A)fA* yields (A*)" = A, that is, A* = A", Tt follows by (2.2)
that
AFAPAAARATAAHHE = AHATA(AME,

namely,
APAAT(AHH = AHAHH,

Multiplying the equality on the right by A*A yields A*(A*)f = A*A, thatis, A*A = AHA since A* = A" Tt
follows from [12, Theorem 1.5.3] that A € CSEF. |

Theorem 2.1.8. Let A € G,,(C). Then A € C3EF if and only if AA*A*(A*)H is a projection.
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PROOF. “ = ” By the assumption and Lemma 2.1.6, A = AHA*(A*)H. This gives AATAT(AH)H =

(AHHAHAT(ANH = (AY)HAH = AA™ is a projection.
“ < ” From the assumption and Lemma 2.1.2, one gets

[AA*A*(AT)I[AAT AT (AN = AA* AT (AN,
that is,

AATATANHHATANHAAT = AATAT(ANH,
Multiplying the equality (2.3) on the right by AA* yields

AATAH AN AT (AN = AATAT (AT,
Multiplying the equality on the left by (AA*) and on the right by A respectively yields
AHATHAY = A*,
Hence,
A=AATA = AAT[(ANHFATA] = AAT(ADHH = (AN,
that is, A" = A*. Now, one obtains by (2.3) that
AATAT(AATA)AAT = AATATA,
namely,
AATATAAAT = AATATA.

Multiplying the equality on the left by AA*(AA*)! yields AA* = AA*. Thus, A € CSEF.

2.3)

Observe that A is a projection if and only if A is. Since (AATAT(A")H)H = A*(AT)HAA™, one can get the

following corollary by Theorem 2.1.8.

Corollary 2.1.9. Let A € G,(C). Then A € C3E¥ if and only if A*(AYYHAA™ is a projection.

Lemma 2.1.10. Let A € C™". If A is a projection, then A* = A* and both of them are projections.

PROOE. By assumption, one has A2 = A = A, which implies that A is group invertible by Lemma

2.1.3. Now, one has
(AANHT = (A?AMT = AP = A = AAF,

which implies that A is EP by [12, Theorem 1.1.3], and so A™ = A*. Furthermore, one has
(A*)? = AHA*AAY) = (A*)PA = (AP A2 = A* = (AFYF = (A%)H,
which implies that A*(= A*) is a projection.
Lemma 2.1.11. Let A € G,(C). Then

(1) (AHA+(A+)H(A#)H # AHAHA(A#)H,'
(2) (AHAY(ANH(AMH)T = AATAHAHA(AMAT A.

PROOE. (1) For simplicity, let M = AHA*(A")H(A*) and B = AHAHA(A*)H. We prove that M* = B as

follows. Firstly, since
MB = AHA+(A+)H[(A#)HAHAH]A(A#)H
— AHA+(A+)HAHA(A#)H
— AHA+A(A#)H
= (A*A)!
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and
BM = AHAHA[(A#)HAHA+](A+)H(A#)H
— AHAH[AA+(A+)H](A#)H
— AHAH(A+)H(A#)H
= (A*A)T,

one has BM = MB.

Secondly, one has
MBM = (A*A)HAHA*(AH)H(AHH
— AHA+(A+)H(A#)H
=M

and

BMB = (A*A)HAHAHA(ANH

AHAHA(A#)H
B

Consequently, M* = B as desired.
(2) For simplicity, let D = AA*AHAHA(A")HA* A and M as in (1). It suffices to prove that M* = D.
Firstly, since

MD = ATAY(AHHAHTAATAHAHAAFHATA

— AHA+(A+)H(A2AA+A#)HA(A#)HA+A

AH[A+(A+)HAH]A(A#)HA+A
AH[ATA(AHH]ATA
= AH(AHHATA
=A*A,

one has MD = (MD)H.
Secondly, since
DM = AA*AHAHA(AHH[ATAAH]AT(AH)H(AMH
— AA+AHAHA[(A#)HAHA+](A+)H(A#)H
— AA+AHAHA[(AA#)HA+](A+)H(A#)H
— AA+AH[AHAA+](A+)H(A#)H
— AA+AHAH(A+)H(A#)H
— AA+AH(A#)H
= AA*,

one gets DM = (DM)™.
Finally, one has
DMD = AATAATATARAAHHEAYA = AATAHARAANHEAYA = D
and
MDM = ATAATAT (AN (AN = AHAT (AN (AN = M.
Consequently, M* = D as desired. [
By Lemma 2.1.10, 2.1.11 and Theorem 2.1.7, one can get the following corollary.

Corollary 2.1.12. Let A € G,(C). Then the following conditions are equivalent.
(1) A € CSEP:
(2) AHAHA(AMH is a projection;
(3) AATAHAHA(AYH A* A is a projection;
(4) A*AHA? is a projection;
(5) A*AHASA™ is a projection.



S. Liu,Y. Zhang / Filomat 39:26 (2025), 9035-9051 9040

PROOFEF. It suffices to prove that (1) implies (5) and (5) implies (1), since the others are followed directly
by Lemma 2.1.10, 2.1.11 and Theorem 2.1.7.

“(1) = (5)” By the assumption, one has A* = A* = AH. Hence, ATAHASA* = APAPASA* = APA = A*A'is
a projection.

“(5) = (1)” By assumption, one has

A+AHA3A+A+AHA3A+ — (A+AHA3A+)2 — A+AHA3A+.
Multiplying the last equality on the right by A, (A*)?, A* and (A*)" successively yields
ATAHASATAY = AT,
Hence,
(A+)H (A+AHA3A+A+)H (A+)H(A+AHA3A+)H (A+) (A+AHA3A+).

Multiplying the equality on the right by A* and on the left by A™ respectively yields

plymg q y g y y P Yy

ATAA* = ATARA. (2.4)
It follows that

(A+)H — (A+)HA+AHA3A+ — (A+)HA+AA#A2A+ — (A+)HA+A2A+ — (AA+A+)H,

thatis, A* = AA*A*, which implies that A is EP. By (2.4), one gets A* = A*AHA. Asaresult, AYA* = A*A* =
A*AHAAY = A*AH Tt follows from [12, Theorem 1.5.3] that A € CSFF,
[

2.2. Using the representations of group inverses and Moore-Penrose inverses to characterize SEP matrices
Inspired by Lemma 2.1.11, we propose the following theorem.

Theorem 2.2.1. Let A € G,(C). Then A € C3FF if and only if (AHAT(AT)H(A*)H)* = A*AHA(AM)H.

PROOF. “ = " It follows directly by Lemma 2.1.11.

“ & ” By Lemma 2.1.11 and the assumption, one has A*YAHA(A*) = AHAHA(A*)H. Multiplying the
equality on the right by (A*AA)H, A* and (A*) successively yields A*A*A = AHAYA, thatis, A* = AHATA.
Hence, A € CSFF by [12, Theorem 1.5.3]. |

Note that A* = B if and only if B* = A. Hence, one gets the following corollary.
Corollary 2.2.2. Let A € G,(C). Then A € CSF¥ if and only if (A*AHA(A*)H)* = AHA*(AT)H(A#)H.
Lemma 2.2.3. Let A € G,,(C). Then A* AHA(A*) is EP and (A* AHA(AM)T)* = (A*AHA(AMT)T = AATAHAT(AT)HAZAY,

PROOE. Let D = A*AHA(A" and M = AATAHAT(AT)HA?A" for simplicity. It suffices to prove that
D¥=D* =M.
Firstly,
MD = AA*AHA*(A*)HA(AA* A*)AH A(A#)H
= AA*AHA*[(AHYHAA*]AH A(A*)H
— AA+AH[A+(A+)HAH]A(A#)H
= AA*AH[A* A(A)]
— AA+AH(A#)H
= AA*,
which tells us that (MD)" = MD.

Secondly,
DMD = A*AHA[(A")TAAY] = APAPAAHE = D
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and
MDM = AATAATATAT(ANIA?AT = AATAHAT(ANHAZAY = M.

Finally, since
DM = A*AHA[(AHHAATIAHA*(ATYHAZAY
— A#AHA[(A#)HAHA+](A+)HA2A+
— A#AH[AA+(A+)H]A2A+
— [A#AH(A+)H]A2A+
= AAY,

one has (DM)" = DM = MD.
Consequently, D¥ = D* = M as desired.
The following corollary is a direct result of Lemma 2.2.3.
Corollary 2.2.4. Let A € C3EP. Then A*AHA(A*)H € CSFP.
The following corollary follows directly by Corollary 2.2.2 and Lemma 2.2.3.
Corollary 2.2.5. Let A € G,(C). Then A € C3F¥ if and only if AATAHAY(ATYHAZAY = AHAT(AMH(AMH.
Inspired by Corollary 2.2.5, we propose the following theorem.
Theorem 2.2.6. Let A € G,(C). Then A € CSEY if and only if A¥(AN)HA2AY = AY(AH)H(AMH.
PROOF. “ = ” By the assumption, one has A* = A* = A" Thus,
AHATYAZAT = AT (AMTAAY = AY(AHTA = AH(AT)H (AN

“ & ” From the assumption, one obtains A*(A")FA2A* = A*(A™)H(A*)H. Multiplying the equality on
the left by A yields

(AYTAZAT = (AN AN (2.5)

Thus,

A#(A+)HA2A+ — A+(A+)HA2A+.
Multiplying the last equality on the right by A*, AH and A successively, one obtains A*A = A*A, which tells
that A is EP. Hence, (A")FA = (A*A*)H by (2.5). Multiplying the equality on the left by A yields A = (A*),
that is, A* = A™. Tt follows that A € CSFF. [ |

The following corollary is induced by Theorem 2.2.6.

Corollary 2.2.7. Let A € G,,(C). Then the following conditions are equivalent.
(1) A € CFF;
(2) AHANTA = AT (AT (AN,
(3) (ANTA2AT = (AHH(AMT,
(4) AA*AHAY = A A,
PROOF. “(1) = (2)” Itis evident since AH = A* = A*.
“(2) = (3)” By the assumption one has A*(A*)1A = A*(A")"(A*)H. Multiplying the equality on the left
by A and on the right by AA™ respectively yields (A")7A2A* = (A")(A*)H. Note that

A#(A+)HA — A+(A+)H(A#)H — A+A(A+(A+)H(A#)H) — A+AA#(A+)HA — A+(A+)HA.
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Thus,
A#AA+ — A#(A+)HAH — A#(A+)HAA#AH — A+(A+)HAA#AH — A+(A+)HAH - A+,
which implies that A is EP by [12, Theorem 1.2.1]. Hence, (A")7A2A* = (A*)(A*)H.
“(3) = (4)” From the assumption, one has (A")HA2A* = (A")H(A*)H. Applying the involution on the
equality yields AA*AHAY = A*A*,
“(4) = (1)” The condition AATAHAT = A*A* gives
APAY = AATABAY = (AATAHATAAT = ATAPAAT = ATAT,

Hence, A is EP by [12, Theorem 1.2.1]. It follows that A*A* = A*A* = AA*AHA* = AHA*. By [9, Corollary
2.10], A is partial isometry. Thus, A € C5EF.
[

2.3. Using the inverses of matrices involving group inverses and Moore-Penrose inverses to characterize SEP matrices
Inspired by Lemma 2.2.3, we propose the following lemma.

Lemma 2.3.1. Let A € G,(C). Then A*AHA(A")H + E,, — AA* is invertible and
(A*ATAANHE + E, — AAT) L = AATAHAT(ANHA2AT + E, — AAT.
PROOF. Let D = A*¥AHA(A"H and M = AA*AHA*(A*)HA2A*. Then D = D* = M by Lemma 2.2.3.
Since
DAAY = A*AHA[(AHHAAT] = A*AHAHAAHE = D,
AATM = AATAATATATAT(ATHAZAY = AATAHAT(ATHA’AT = M,
and DM = AA™* by the proof of Lemma 2.2.3, one gets
(D+E,—AA")YM+E, — AAY)
= DM+D—-DAAT"+M+E,—AA" — AA*M — AA* + AATAA*
= AA*"+D-D+M+E,—AA" —M - AA"T + AAT
= E}’l/
which implies that (D + E,, — AAY) ' =M+ E, — AA*. That is,

(A*ATAANH + E, — AAT) ! = AATAHAT(ANHA’AT + E, — AAT.

The following theorem is inferred by Lemma 2.3.1.
Theorem 2.3.2. Let A € G,(C). Then A € CSE¥ if and only if

(A*ATAANT + E, — AAT)! = ATAT(ANHA?AT + E, — AAT.
PROOE. “ = ” By the assumption, A* = A* = A", Thus

AATAFAT (AT AZA* = (AA*A*)AT(AT)HAZAT = AT A (AT)HAZA*.
It follows by Lemma 2.3.1 that

(A*AHFAAHT + E, — AAT) 1 = ATAY(ATHA’AT + E, — AAT.

“ & ” From the assumption, one has

(A*AHAANE + E, — AAT) L = ATAT(ANHA?AT + E, — AA™.
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Thus, by Lemma 2.3.1, one gets
AATAPAT (AN AZA* = A*AT(AT)LA2A".
Multiplying the equality on the right by AfAH yields AATAHAT = A*A*. Hence,
AATAT = (AATAHADAAR (AN = AT[ATAAR(AHH] = AT (APA)T = AT,

which implies that A € C3F' as desired.

Lemma 2.3.3. Let A € G,(C). Then A € CSEP if and only if A*AHA(A*)H = A*(A%)H.

PROOE. “ = " lItisevident.
“ & ” By the assumption, one has A*ATA(A*)H = A*(A*)H. Hence,

At = [A+(A#)H]AH — A#AHA(A#)HAH — AA+[A#AHA(A#)H]AH
= AAT[AT(AMHAH] = AA*AY,

which implies that A is EP. It follows that
AT = AT(AAHT = [AT(AHTAH = ATAHA[(AFHAR] = APARA.
Therefore, A € CSEF by [12, Theorem 1.5.3]. |
Theorem 2.3.4. Let A € G,(C). Then A € C3E¥ if and only if A*(A*) + E,, — AA* is invertible and
(AYAHT + E, — AAT) L = AATATAT(ANHA?AT + E, — AAY.

PROOF. “ = ” Assume that A € C3fF, then A*AHA(A*)H = A*(A*) by Lemma 2.3.3. As in the proof
of Lemma 2.3.1, we denote A*¥AHA(A")H = A*(A*) by D and denote AATATAT(A*)HA2A* by M. Then
D¥ = D* =M, DM = AA*, DAA* = D and AA*M = M. Hence,

(D + E, — AA*)(M + E, — AA*)
= DM+D-DAA*+M+E,-AAT - AA™M - AA" + AATAA"
= AA*+D-DAA*+M+E, - AA* — AATM — AA* + AA*
= El’l/

which implies that (D + E, - AA")™! = M + E, - AA*. Namely, A*(A*) + E, — AA* is invertible and
(AT AN + E, — AAT)L = AATATAT(ANHA?AT + E, — AAY.
“ & ” Using the assumption and Lemma 2.3.1, one has
APAHAANE + E, — AAT = AY(ANHE + E, — AAT,
which implies that A*AHA(A*)T = A*(A*)H. Hence, A € C3F¥ by Lemma 2.3.3.

Lemma 2.3.5. Let A € G,(C). Then A*(AH + E,, — (AAMH is invertible and
AT AHT + E, — (AAHT) ! = AHAAAHT + E, — (AAHH.
PROOF. ltis followed by the fact that

[AY (AT + E, — (AAHTNATAAAYT + E, — (AAM)T]

= (AFA) + AT(ATY - AT(ARYH 4 AHAAARY + E, — (AAFYT — AHA(AARH
—(AARYH 4+ (AAFYH

= E.

The following theorem is induced by Theorem 2.3.4 and Lemma 2.3.5.
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Theorem 2.3.6. Let A € G,(C). Then A € C5FF if and only if
(AATAHATANHA?AT + E, - AAY) T = AYADY + E, — (AAHH.

PROOF. “ = ”Itis an immediate result of Lemma 2.3.4 and Lemma 2.3.5.
“ & ” By the assumption one obtains

(AATAHATANHA?AT + E, - AAY) L = ATADE + E, — (AAHH,

Thus,
E, = [AATATAT(ANHA2AT — AAY + E,JJAT(ADE + E, — (AAHH].

It follows that
AATAFATANHTAZATAT AN + AT(ADH = (AAHT + AATAT(ADHH. (2.6)

Multiplying the equality on the right by AA*, one yields (AA*)f = (AA*)"AA*. Hence, A is EP, which
implies A2ATAT(AT) = AA*(ATH = (AH)H, AATAH = AH and AATA* = A*. Tt follows by (2.6) that

AHA+(A+)H(A+)H — (AA#)H

Applying the involution, one gets A*A*(A*)7A = AA*, which furtherimplies that A% = ASA* = A2ZA*AY(AY)1A =
(A")HA. Hence, A is partial isometry and so A € CSEP.
[

3. Characterizations of SEP matrices by the general solutions of matrix equations

In [7], some equivalent conditions for SEP matrix are proposed by constructing some specific matrix
equations and discussing whether these matrix equations have solutions in given sets to determine whether
a group invertible matrix A is in C3E. Inspired by [7], we intend to construct several matrix equations
involving but not limit to A, A* or A* and either prove that they have solutions in given sets if and only if
A € CFP, or prove that A € C>FF if and only if some of these matrix equations have general solutions of
specific forms.

3.1. Characterizations of SEP matrices by the general solutions of matrix equation of the type AXB = C.
The following lemma is well known [11].

Lemma 3.1.1. Let A,B and C be matrices in C™". Then the following Eq.(3.1) has solutions if and only if
C =AA*CB*B.

AXB=_C. (3.1)
In the case that Eq.(3.1) is consistent, the general solution is given by
X = A*CB* + U - A*AUBB*, where U € C"™". (3.2)
Inspired by Lemma 2.1.3, we construct the following matrix equation:
APX(ATH = AH, (3.3)

Theorem 3.1.2. Let A € G,(C). Then A € CSFF if and only if Eq.(3.3) is consistent and the general solution is
given by

X = A" + U - AATUAA", U e C™". (3.4)
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PROOF. “ = ” By the assumption and Lemma 2.1.6, one has AA*(A*)! = A", which says that A" is
a solution of Eq.(3.3). We prove that the general solution of Eq.(3.3) is given by (3.4) as follows.
On one hand, YU € C™", since A € C;FF, one has

AH(A* + U — AA*UAA*) A

AHAH (AN + AHU(ANH — AHAAYUAA*(AH)H
AH 4+ AHU(AHH — AHU(A)H

AH,

which implies that any matrix given by (3.4) is a solution of Eq.(3.3).

On the other hand, let X = X, be any solution of Eq.(3.3), then AZX,(A")H = A, Thus, AA*XoAAY =
(AHHAHEX (ANHAH = (AH)HAHAH = AH = A%, since A € CSFP. As a result,

Xo = At + Xo — AA+XOAA+,

which tells that any solution of Eq.(3.3) is given by (3.4).

Consequently, the general solution of Eq.(3.3) is given by (3.4) provided that A is SEP.

“ < ” By the assumption, any matrix given by (3.4) is a solution of Eq.(3.3). In particular, let U = —A*.
Then Xy = AATA*AAT = AATA" is a solution of Eq.(3.3), that is,

Al = AHAT(ANH, (3.5)

By Lemma 2.1.6, A € CSFF,

[
Now, we construct a new equation as follows, which has the general solution given by (3.4).
AFXAAAHHE = AH, (3.6)
Lemma 3.1.3. Let A € G,(C). Then Eq.(3.6) is consistent and the general solution is given by (3.4).
PROOE. VYU € C™", since
AH(AT + U - AATUAAY)A(AAHH
= AHATA(AAMH + AHUA(AAMH — AHAATUAATA(AATH
= AH + AHUAAAMH — AHUAAANH
= AH
any matrix given by (3.4) is a solution of Eq.(3.6).
On the other hand, let X, be any solution of Eq.(3.6), that is, ATX,A(AA*)T = AH. Hence,
AAT X AAT
= (AHHAHX (AAT)AAT
= (AHHAHX,A(ATAHAY
— (A+)H[AHX0A(AA#)H]AH(A+)HA+
— (A+)HAHAH(A+)HA+
— (A+)HAHA+
= AAYA*.
Let Uy = Xo — A*. Then one has
AATUYAAY = AATX)AAT — AATATAAY = AATAT —AATAT =0,
which implies that
Xo = At + Xo —At =A%+ Uy = AT+ Uy —AA+U()AA+.
Consequently, the general solution of Eq.(3.6) is given by (3.4). [

The following theorem can be induced by Theorem 3.1.2 and Lemma 3.1.3.
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Theorem 3.1.4. Let A € G,(C). Then A € C3FF if and only if Eq.(3.3) and Eq.(3.6) share the same solutions.

PROOF. “ = " Itis evident since Eq.(3.3) and Eq.(3.6) are exactly the same under the assumption.
“ & 7 Itis a direct result of Theorem 3.1.2 and Lemma 3.1.3. [

Now we construct the following matrix equation:
ATXAAT = AHAY, (3.7)
Lemma 3.1.5. Let A € G,(C). Then Eq.(3.6) and Eq.(3.7) share the same solutions.

PROOFEF. It suffices to prove that the general solution of Eq.(3.7) is also given by (3.4).
On one hand, for any U € C*", one has

AH(A* + U — AA*UAAY)AA*
= AMA*AA* + AMUAA* — AHAAYUAAYAA*
= AMA* + AFUAAT — AHUAA*
= AHA*,

which tells that any matrix given by (3.4) is a solution of Eq.(3.7).
On the other hand, let X, be any solution of Eq.(3.7), that is, A”X,AA* = A”A™. Thus, one has

AATX AAY = (AHTAEXAAY = (AHHAPAT = AAT AT
Let Uy = Xo — A*. Then one obtains
AATUGAAT = AATX0AAT — AATATAAT = AAT X AAT — AATAT = 0.

It follows that Xp = A* + Xg — A" = A* + Uy — AATUpAA™, namely, any solution of Eq.(3.7) is of the form
given by (3.4). Consequently, Eq.(3.6) and Eq.(3.7) share the same solutions.
[ |

The following theorem is an immediate result of Theorem 3.1.4 and Lemma 3.1.5.

Theorem 3.1.6. Let A € G,(C). Then A € C3FF if and only if Eq.(3.3) and Eq.(3.7) have exactly the same
solutions.

3.2. Characterizations of SEP matrices by univariate matrix equations involving A* and A*
To begin with, we construct the following matrix equation:

ATX(ANHH = X. (3.8)

Theorem 3.2.1. Let A € G,(C). Then A € C5EF if and only if Eq.(3.8) has at least one solution in the following
set
Ca = A, AT AT, AT (AT)T, (ATYT, (AT)", (A7), AAT, AAT AAT, (AAT)H).

PROOE. “ = ” Assume that A € C3FF, then ATA(A")! = A*AA = A, thatis, X = A is a solution of
Eq.(3.8).
“ & ” The proof is divided into several cases as follows.
Case 1. Ifany X € {A, A*, A+, AH, (A")H, (A*)H} is a solution of Eq.(3.8), then A is SEP by [8, Theorem 2.7].
Case 2. If X = (A*)* = ATA3A* is a solution of Eq.(3.8), then
ATATASAT (AT = ATASAT, (3.9)
Multiplying the equality (3.9) on the right by AA*, one gets

ATABAT = ATAZ.
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This gives AA* = A*A*ASA* = A*A*A? = AA*. Hence, A is EP, which implies that X = (A*)* = (A*)" = A
is a solution. By Case 1, A is SEP.
Case 3. If X = (A")* = (AA*)HA(AA")M is a solution of Eq.(3.8), then

ATAAHTAAAH (AT = (AAHTAAAHE,

that is,
(AAHTANT = (AAf)TAAAN,
Multiplying the equality on the left by A* yields A*(A*)" = (AA*)H, which implies AA* = (AA*)!. Hence
A is EP by [12, Theorem 1.1.3], which induces that X = (A*)* = (A#)# A is a solution. Thus, A is SEP by
Case 1.
Case 4. If X = AA" is a solution of Eq.(3.8), then AT(AA*)(A")H = AA*, that is,

AT(ANH = AA™. (3.10)

This gives
AA* = AATAAY = AT(ANHAAY = AT(ANHE = AA™.
Hence, A is EP and so A = A2A™ = AAT(A") = (A")H by (3.10). Therefore, A is SEP.
Case 5. If X = AAH is a solution of Eq.(3.8), then AT(AAM)(A)H = AAH, thatis, A*A = AAM. Thus, A is
SEP by [12, Theorem 1.5.3].
Case 6. If X = AA" is a solution of Eq.(3.8), then A*(AA*)(A")H = AA*, that is, AT(A")H = AA*. This
gives AA* = (AA*)H. Hence, A is EP and X = AA* = AA*. By Case 4, A is SEP.
Case 7. If X = (AA*)H is a solution of Eq.(3.8), then AT (AA")H(A")H = (AA")H, thatis, A*(AT)H = (AA™)H.
Hence, A is EP and X = (AA*) = AA*. By Case 6, A is SEP.
[ |

Now we construct a matrix equation similar to Eq.(3.8) as follows.
ATXAA* = XAH, (3.11)
Theorem 3.2.2. Let A € G,(C). Then A € CSFF if and only if Eq.(3.11) has at least one solution in Ca.

PROOF. “ = ” From the hypothesis, one gets A* = A" = A* Thus, AYAAA* = A*A = AAY, which
tells that X = A is a solution of Eq.(3.11).

“ & ” Suppose that some X € (4 is a solution of Eq.(3.11). It is divided into twelve cases as follows.

Case 1. If X = A, then AYAAA* = AAH, thatis, ATA = AAH. Hence A is SEP by [12, Theorem 1.5.3].

Case 2. If X = A*, then A*A*AA* = AAH that is, A*A" = A*AH. Hence, AAT = A2APAH = A2A+AY =
AA*, which implies that A is SEP by [12, Theorem 1.5.3].

Case 3. If X = A", then AYATAA* = A*AH. By [9, Lemma 2.11], one gets A*AA* = AH. Hence, A is SEP
by [12, Theorem 1.5.3].

Case 4. If X = AH, then ATAHAA* = AHAH. Hence,

AH — AHAH(A+)HAH(A#)H
— A+AHAA#(A+)HAH(A#)H
— A+[AH(A+)HAH(A#)H]
= AT(A*PA)H
= A*.
Therefore, A € C3EF by Case 3.
Case 5. If X = (A", then AT(A")HAA* = (A")HAH, that is, AT(A*)! = AA*. Hence, A is SEP by Case 4

of Theorem 3.2.1.
Case 6. If X = (A")H, then

AT(AHTAAY = (AMHHAH, (3.12)
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Multiplying the equality on the right by (A")" and A”AM successively yields A* = AH. Thus, one has
AHAHHAA? = (AHHAH by (3.12). Tt follows that

AAT = AAHAHHAE = AAHAH(AHHAA* = AAHAAY = AATAAY = AAF,

which tells that A is SEP by [12, Theorem 1.5.3].
Case 7. If X = (A*)* = ATA3A*, then A*ATASATAA* = A*ASA*AH. As a result,

ATATA? = ATASATAT = ATASATAHAAY = ATATABAT.

By [9, Lemma 2.11], one yields ATA? = ATASAT. By the proof of Case 2 of Theorem 3.2.1, A is EP, which
implies X = (A*)* = A. Hence, A is SEP by Case 1.
Case 8. If X = (A*)* = (AAHTA(AAHH, then

AT AAHTAAANHAAY = (AAHTAAAHHAH

that is,
(AAHAA* = (AAHHAAR,

Thus,
ATAA* = AT(AAHTAAT = AY(AAHHAAR = ATAAH = AH,

Hence, A is SEP by [12, Theorem 1.5.3].

Case 9. If X = AA™, then AT(AAY)AA* = AATAH, that is, ATAA* = AA*AY. Multiplying the equality on
the right by AA* yields A* = AA*A!. Hence A is SEP by [12, Theorem 1.5.3].

Case 10. If X = AAY, then AYAAHAA* = AAHAH. Multiplying the equality on the right by (A")" and
(AAMH successively yields (A*A) = AAH, that is, AA* = AAH. Hence, A is SEP by Lemma 2.1.4.

Case 11. If X = AA*, then AT(AA*)(AA*) = AA*AH, that is, ATAA* = AA*AH. Multiplying the equality
on the left by A yields AA* = AAH, which implies that A is SEP by Lemma 2.1.4.

Case 12. If X = (AA"), then AT(AAHHAA* = (AAMHAH, that is, ATAA* = AH, which further implies
that AA* = AAY. Hence, A is SEP by Lemma 2.1.4.

[ |

Now we construct the following matrix equation:
XAY AT+ A* = X + A", (3.13)

Theorem 3.2.3. Let A € C™". Then A € CE¥ if and only if Eq.(3.13) has at least one solution in the set
xa ={A A% AT AT (AN, (AN,

PROOE. “ = ” By the assumption, A* = A* = AH. Thus, AAT(A") + A* = AATA+ A* = A + A,
which tells that X = A is a solution of Eq.(3.13).

“ & ” Suppose that some X € x4 is a solution of Eq.(3.13).

Case 1. If X = A, then AA*(AH)H + A* = A + A", that is,

AN+ AP = A+ A", (3.14)

Multiplying the equality on the left by AA* yields (A*)f + A* = A+ AA*A*. By (3.14), one has A" = AA*A*.
By [12, Theorem 1.2.1], A is EP. It follows by (3.14) that (A*)" = A. Consequently, A is SEP.
Case 2. If X = A* then A*A*(A")T + A* = A* + AT, that is,

AFAT(ANHE = AT, (3.15)

Multiplying the equality on the left by A? and on the right by AA* respectively yields (A")H = A, namely,
A* = AH . Hence, one has A* = A*A*A = A* by (3.15). It follows that A is SEP.
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Case 3. If X = A", then
ATATANHT + A* = 247, (3.16)

Multiplying the equality on the right by AA* yields ATAT(A") + A* = 2A*AA*. Hence, onehas A* = ATAA*
by (3.16), which implies that A is EP, and so X = A* = A*. Tt follows by Case 2 that A is SEP.
Case 4. If X = AH, then

APAT AN + A% = AH 1+ A*. (3.17)

Multiplying the equality on the left by A*A yields AFA*(A")H + A*AA* = AH + A*. Hence, one obtains
A* = AYAA*. Asaresult, A"A = ATAA*A = AT A, which tells that A is EP. By (3.17) one gets AHA*T(A™)H = AH.
Hence, A is SEP by Lemma 2.1.6.

Case 5. If X = (A*)H, then

(ANHHATANHHE + A* = (ANHHE 1+ AT, (3.18)
Multiplying the equality one the right by AA* yields
(AHHAT AT + A* = (AHH + ATAAY
Hence, A* = A*AA", which tells that A is EP. As a result, one has (AY)HA*(AT)H = (A*)H by (3.18). It follows
that AT(A")HA* = A* = A*AA*. Multiplying the equality on both sides by A respectively yields A = (A")H,
namely, AH = A*. Consequently, A is SEP.

Case 6. If X = (A", then (AHTAT (AN + A* = (A" + A*. Pre-multiplying the equality by A*A yields
A* = A*AA*. Hence A is EP, which implies X = (A*)H = (A*")H. By Case 5, A is SEP.

[
3.3. Characterizations of SEP matrix by general solutions of bivariate matrix equations involving A* and A*
To begin with we construct the following matrix equation
ATX(ANHHE =Y. (3.19)
Theorem 3.3.1. Let A € G,(C). Then the general solution of Eq.(3.19) is given as follows:
{ i: ijp(ti:)ﬁ.m UAA™, b 11 e omon, (3.20)

PROOF. On one hand, since VP, U € C"™", one has
A*(P+ U - AATUAAT)(ANH

ATP(AMH + ATU(ANH — AT U(AMH
A+P(A+)H,

any (X, Y) given by (3.20) is a solution of Eq.(3.19).
On the other hand, suppose that (Xo, Y) is any solution of Eq.(3.19), then A*Xo(A")f = Y. Let U =
Xo, P = AA*XyAA*. Then one has

Xo =P+ U-AATUAAY;
Yy = AT Xo(AHH = ATAATX AAT (AT = ATPAHH.

Consequently, the general solution of Eq.(3.19) is given by (3.20).
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Theorem 3.3.2. Let A € G,(C). Then A € C3EF if and only if the general solution of Eq.(3.19) is given as follows:

Y - A*PA. P,UeC™. (3.21)

{ X =P+ U-AATUAAY;
PROOF. “ = ” It follows directly by Theorem 3.3.1.

“ & ” By the assumption, one has A*P(A*) = A*PA, VP € C™". In particular, let P = A and one obtains

ATAANT = A. Thus, A = A*AA = APAATA(ATH = APA(ATH = (AM)H, namely, A* = A" Tt follows that

ATA? = ATA(A)T = A. As aresult, A is EP. Consequently, A is SEP. [

Theorem 3.3.2 tells that the general solution of Eq.(3.19) is given by (3.21) provided that A is SEP. One
may be curious to know in the case that A is not SEP, which equation has the general solution given by
(3.21). Motivated by this, we construct a new matrix equation as follows.

AHAANEXA = Y. (3.22)
Theorem 3.3.3. Let A € G,(C). Then the general solution of Eq.(3.22) is given as follows.

— _ + +.
X: P#+ U - AATUAATY, PUe C™  and ATP = ATATAP. (3.23)
Y = A"PA.

PROOF. On one hand, we prove that any (X, Y) given by (3.23) is a solution of Eq.(3.22). In fact, one
has
AHAAHH(P + U - AATUAANA
= AYAAHHPA + AHAAHHUA — AHAAHHAATUAATA
AHAAHHPA
AHAHH(AATAYHPA
AHAHHAHA(ATP)A
AHAAHHA(A*ATAP)A
AHATAAATAAPHPA
A*A*APA
= A*PA

as desired.
On the other hand, let (Xo, Yo) be any solution of Eq.(3.22), that is, A*(AA")HXpA = Y. Let P =
(AAHHXoAA* and U = Xy + AA*X,AA* — P. Then, one has

ATP = AY(AANHEX,AAT = ATXAAT
and
ATATAP = AYATA(AAHHX,AAY
= AY(AA*ATAHXAAY
= AY(A*A)MX AAY
= ATX)AA*,

which implies that A*P = A*A*AP. Since
A*PA = AHAAHTX\AATA = AHAAHI XA = Y,

and
AATUAAT

AA*(Xo + AA*XoAA* — P)AA*

= 2AA*X,AA* — AA*PAA*

2AA* X AA* — AAT[(AAYHX,AAY]AA*
2AA*XpAA* — AA*XoAA*

= AA*X,AA*,
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one obtains
X, = — AATUAA:
{ o=P~+U u " where A*P=A*ATAP.

Yo = A*PA,
Consequently, the general solution of Eq.(3.22) is given by (3.23). [
Theorem 3.3.4. Let A € G,(C). Then A € CSE¥ if and only if Eq.(3.22) and (3.19) share the same solutions.

PROOF. “ = ” It is evident since Eq.(3.22) and (3.19) are exactly the same equation under the
assumption that A is SEP.
“ < ” By the assumption, any (X, Y) given by (3.20) is a solution of Eq.(3.22). Hence, VP, U € C"™", one
has
AHAAHT (P + U - AATUAAT)A = ATP(AH,

namely,
AHAAHTPA = ATP(ATHT. (3.24)

In particular, letting P be A" yields A*AHA = A*AH(AM)H = A*A*A. Hence, A*A" = A*AHAAY =
ATAYAAT = ATA". Letting P be A in (3.24), one obtains

AHAAHHA? = ATAAE. (3.25)

Multiplying the equality on the left by AA* yields A*(AA*)HA? = (A")H. As a result, ATA(A") = (A")H,
thatis, AYATA = A*. Hence, A is EP. It follows by (3.25) that A = (A*)!, namely, A* = AH. Consequently, A
is SEP.
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