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Abstract. In this paper, we mainly introduce some equivalent conditions for SEP matrices. Firstly, we
provide characterizations of SEP matrices in terms of projections. Secondly, we characterize SEP matrices by
the representations of group inverses and Moore-Penrose inverses. Finally, we propose characterizations
of SEP matrices, specifically by constructing three matrix equations and discussing whether they have
solutions in given sets to determine whether a group invertible matrix is a SEP matrix respectively.

1. Introduction

The present article concerns matrices belonging to the ring Cn×n, composed of square matrices of order
n with complex entries. Denotes the conjugate transpose matrix of A by AH. A ∈ Cn×n is called a group
invertible matrix if there exists a matrix X ∈ Cn×n such that

AXA = A, XAX = X, AX = XA.

If such X exists, then it is unique and is denoted by A#. A# is called the group inverse of A [3]. It is well
known that A is group invertible if and only if rank(A) = rank(A2) [11].

A ∈ Cn×n is said to be Moore-Penrose invertible if there exists X ∈ Cn×n such that

AXA = A, XAX = X, (AX)H = AX, (XA)H = XA.

Such X always exists and is uniquely determined [1, 2]. It is denoted by A+ and is called the Moore-Penrose
inverse of A.

A ∈ Cn×n is called an EP matrix if A is group invertible and A# = A+ [13]. It is known that A is EP if and
only if AA+ = A+A [4]. For the study of EP matrices, we can refer to [2, 5, 6, 12]. A is called a SEP matrix
if A# = A+ = AH [8, 9]. A is called partial isometry (or PI for simplicity) if A = AAHA [6, 10]. Clearly, A
is PI if and only if A+ = AH, while A is SEP if and only if A is both EP and PI. A is called a projection if
A2 = A = AH. Obviously, AA+ and A+A are both projections.

Throughout of this paper, Gn(C) stands for the set of all group invertible matrices in Cn×n and CSEP
n

stands for the set of all SEP matrices in Cn×n.
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In this paper, we continue to study SEP matrices. In Section 2, we intend to develop some properties of
SEP matrices. More specifically, in Subsection 2.1 we propose characterizations of SEP matrices in terms of
projections; in Subsection 2.2 we produce a characterization of SEP matrices by proving that any A ∈ Gn(C)
is SEP if and only if

(AHA+(A+)H(A#)H)# = A#AHA(A#)H;

while in Subsection 2.3 we provide characterizations of SEP matrices by demonstrating that for any A ∈
Gn(C), A is SEP if and only if

(A#AHA(A#)H + En − AA+)−1 = A+A+(A+)HA2A+ + En − AA+

and A is SEP if and only if

(A+(A#)H + En − AA+)−1 = AA+AHA+(A+)HA2A+ + En − AA+.

In Section 3, we are dedicated to proposing more characterizations of SEP matrices by constructing some
specific matrix equations involving A and A+, and discussing respectively whether they have solutions in
given sets to determine whether A is SEP.

2. Some properties of SEP matrices

In this section, we give new characterizations of SEP matrices. More specifically, in Subsection 2.1, we
characterize SEP matrices in terms of projections. In Subsection 2.2, we characterize SEP matrices by the
representations of group inverses and Moore-Penrose inverses of some matrices involving A, AH, A# and
A+. And in Subsection 2.3, we characterize SEP matrices by the representations of inverses of two matrices
involving A, AH, A# and A+.

2.1. Using projections to characterize SEP matrices

In this subsection, we intend to propose characterizations of SEP matrices in terms of projections. We
begin with some auxiliary lemmas.

It is known that A ∈ Cn×n is partial isometry if and only if AAH is idempotent and A is EP if and only if
AA# is a projection [12, Theorem 1.1.3]. Hence we have the following lemma, the proof of which is routine.

Lemma 2.1.1. Let A ∈ Gn(C). Then the following conditions are equivalent:
(1) A ∈ CSEP

n ;
(2) AA#

− AAH is a projection;
(3) (AA#)H

− AAH is a projection;
(4) AA#

− AHA is a projection;
(5) (AA#)H

− AHA is a projection.

Note that A ∈ Cn×n is a projection if and only if A is idempotent and Hermitian. This induces the
following evident characterization.

Lemma 2.1.2. Let A ∈ Cn×n. Then the following conditions are equivalent:
(1) A is a projection;
(2) A is idempotent and A − AAH is Hermitian;
(3) A is idempotent and A − AHA is Hermitian;
(4) A = AAH;
(5) A = AHA.

Lemma 2.1.3. [13] Let A ∈ Cn×n. Then A ∈ Gn(C) if and only if rank(A) = rank(A2).

The following lemma comes from [9].
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Lemma 2.1.4. Let A ∈ Gn(C). Then the following conditions are equivalent:
(1) A ∈ CSEP

n ;
(2) AA# = AHA;
(3) AAH = AA#.

Lemma 2.1.5. [12, Theorem 1.5.3] Let A ∈ Cn×n. Then A ∈ CSEP
n if and only if A+ = AHA+A.

Lemma 2.1.6. Let A ∈ Cn×n. Then A ∈ CSEP
n if and only if AH = AHA+(A+)H.

PROOF. “⇒ ” One has A# = A+ = AH by the assumption. Thus,

AHA+(A+)H = A#A+A = A# = AH.

We are done.
“⇐ ” From the assumption, one has AH = AHA+(A+)H. Since (A+)H = (A+)HA+A, one gets

AHA+A = AHA+(A+)HA+A = AHA+(A+)H = AH, (2.1)

which implies that
rank(A) = rank(AHA) = rank(AHA+A2) ≤ rank(A2) ≤ rank(A).

Hence, rank(A) = rank(A2). By Lemma 2.1.3, A is group invertible. And so, by [12, Theorem 1.2.1], A is EP.
Now, multiplying the equality AHA+A = AHA+(A+)H on the right by AH, one obtains AHAH = AHA+. By [9,
Corollary 2.10], A is partial isometry. Thus, A ∈ CSEP

n .

Theorem 2.1.7. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if AHA+(A+)H(A#)H is a projection.

PROOF. “ ⇒ ” It follows from the assumption and Lemma 2.1.6 that AH = AHA+(A+)H. This gives
AHA+(A+)H(A#)H = (AA#)H is a projection by [12, Theorem 1.1.3].

“⇐ ” From the assumption, B = AHA+(A+)H(A#)H is a projection. Thus, B = BBH by Lemma 2.1.2. Since

BHB = A#A+(A+)HAAHA+(A+)H(A#)H

= A#A+[AA#(A+)H]AAHA+(A+)H(A#)H

= A#A#(A+)HAAHA+(A+)H(A#)H,

one gets

A#A#(A+)HAAHA+(A+)H(A#)H = AHA+(A+)H(A#)H. (2.2)

Multiplying the equality (2.2) on the left by A2 and on the right by AHAHA yields

(A+)HAAHA+A = A2AHA+A.

Multiplying the equality on the right by (A+A#A)HA# yields (A+)H = A, that is, A+ = AH. It follows by (2.2)
that

A#A#AAAHA+A(A#)H = AHA+A(A#)H,

namely,
A#AA+(A#)H = AH(A#)H.

Multiplying the equality on the right by A+A yields A#(A+)H = A+A, that is, A#A = AHA since A+ = AH. It
follows from [12, Theorem 1.5.3] that A ∈ CSEP

n .

Theorem 2.1.8. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if AA+A+(A+)H is a projection.



S. Liu,Y. Zhang / Filomat 39:26 (2025), 9035–9051 9038

PROOF. “ ⇒ ” By the assumption and Lemma 2.1.6, AH = AHA+(A+)H. This gives AA+A+(A+)H =
(A+)HAHA+(A+)H = (A+)HAH = AA+ is a projection.

“⇐ ” From the assumption and Lemma 2.1.2, one gets

[AA+A+(A+)H][AA+A+(A+)H]H = AA+A+(A+)H,

that is,

AA+A+(A+)HA+(A+)HAA+ = AA+A+(A+)H. (2.3)

Multiplying the equality (2.3) on the right by AA# yields

AA+A+(A+)HA+(A+)H = AA+A+(A+)H.

Multiplying the equality on the left by (AA#)H and on the right by AH respectively yields

A+(A+)HA+ = A+.

Hence,
A = AA+A = AA+[(A+)HA+A] = AA+(A+)H = (A+)H,

that is, AH = A+. Now, one obtains by (2.3) that

AA+A+(AA+A)AA+ = AA+A+A,

namely,
AA+A+AAA+ = AA+A+A.

Multiplying the equality on the left by AA#(AA#)H yields AA+ = AA#. Thus, A ∈ CSEP
n .

Observe that A is a projection if and only if AH is. Since (AA+A+(A+)H)H = A+(A+)HAA+, one can get the
following corollary by Theorem 2.1.8.

Corollary 2.1.9. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if A+(A+)HAA+ is a projection.

Lemma 2.1.10. Let A ∈ Cn×n. If A is a projection, then A+ = A# and both of them are projections.

PROOF. By assumption, one has A2 = A = AH, which implies that A is group invertible by Lemma
2.1.3. Now, one has

(AA#)H = (A2A#)H = AH = A = AA#,

which implies that A is EP by [12, Theorem 1.1.3], and so A+ = A#. Furthermore, one has

(A#)2 = A#(A#AA#) = (A#)3A = (A#)3A2 = A# = (AH)# = (A#)H,

which implies that A#(= A+) is a projection.

Lemma 2.1.11. Let A ∈ Gn(C). Then
(1) (AHA+(A+)H(A#)H)# = AHAHA(A#)H;
(2) (AHA+(A+)H(A#)H)+ = AA+AHAHA(A#)HA+A.

PROOF. (1) For simplicity, let M = AHA+(A+)H(A#)H and B = AHAHA(A#)H.We prove that M# = B as
follows. Firstly, since

MB = AHA+(A+)H[(A#)HAHAH]A(A#)H

= AHA+(A+)HAHA(A#)H

= AHA+A(A#)H

= (A#A)H
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and
BM = AHAHA[(A#)HAHA+](A+)H(A#)H

= AHAH[AA+(A+)H](A#)H

= AHAH(A+)H(A#)H

= (A#A)H,

one has BM =MB.

Secondly, one has
MBM = (A#A)HAHA+(A+)H(A#)H

= AHA+(A+)H(A#)H

=M

and
BMB = (A#A)HAHAHA(A#)H

= AHAHA(A#)H

= B

Consequently, M# = B as desired.
(2) For simplicity, let D = AA+AHAHA(A#)HA+A and M as in (1). It suffices to prove that M+ = D.
Firstly, since

MD = AHA+(A+)H(A#)HAA+AHAHA(A#)HA+A
= AHA+(A+)H(A2AA+A#)HA(A#)HA+A
= AH[A+(A+)HAH]A(A#)HA+A
= AH[A+A(A#)H]A+A
= AH(A#)HA+A
= A+A,

one has MD = (MD)H.
Secondly, since

DM = AA+AHAHA(A#)H[A+AAH]A+(A+)H(A#)H

= AA+AHAHA[(A#)HAHA+](A+)H(A#)H

= AA+AHAHA[(AA#)HA+](A+)H(A#)H

= AA+AH[AHAA+](A+)H(A#)H

= AA+AHAH(A+)H(A#)H

= AA+AH(A#)H

= AA+,

one gets DM = (DM)H.
Finally, one has

DMD = AA+AA+AHAHA(A#)HA+A = AA+AHAHA(A#)HA+A = D

and
MDM = A+AAHA+(A+)H(A#)H = AHA+(A+)H(A#)H =M.

Consequently, M+ = D as desired.

By Lemma 2.1.10, 2.1.11 and Theorem 2.1.7, one can get the following corollary.

Corollary 2.1.12. Let A ∈ Gn(C). Then the following conditions are equivalent.
(1) A ∈ CSEP

n ;
(2) AHAHA(A#)H is a projection;
(3) AA+AHAHA(A#)HA+A is a projection;
(4) A#AHA2 is a projection;
(5) A+AHA3A+ is a projection.



S. Liu,Y. Zhang / Filomat 39:26 (2025), 9035–9051 9040

PROOF. It suffices to prove that (1) implies (5) and (5) implies (1), since the others are followed directly
by Lemma 2.1.10, 2.1.11 and Theorem 2.1.7.

“(1)⇒ (5)” By the assumption, one has A+ = A# = AH.Hence, A+AHA3A+ = A#A#A3A# = A#A = A+A is
a projection.

“(5)⇒ (1)” By assumption, one has

A+AHA3A+A+AHA3A+ = (A+AHA3A+)2 = A+AHA3A+.

Multiplying the last equality on the right by A, (A#)2, A+ and (A#)H successively yields

A+AHA3A+A+ = A+.

Hence,
(A+)H = (A+AHA3A+A+)H = (A+)H(A+AHA3A+)H = (A+)H(A+AHA3A+).

Multiplying the equality on the right by A# and on the left by AH respectively yields

A+AA# = A+AHA. (2.4)

It follows that

(A+)H = (A+)HA+AHA3A+ = (A+)HA+AA#A2A+ = (A+)HA+A2A+ = (AA+A+)H,

that is, A+ = AA+A+,which implies that A is EP. By (2.4), one gets A# = A+AHA.As a result, A+A# = A#A+ =
A+AHAA+ = A+AH. It follows from [12, Theorem 1.5.3] that A ∈ CSEP

n .

2.2. Using the representations of group inverses and Moore-Penrose inverses to characterize SEP matrices
Inspired by Lemma 2.1.11, we propose the following theorem.

Theorem 2.2.1. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if (AHA+(A+)H(A#)H)# = A#AHA(A#)H.

PROOF. “⇒ ” It follows directly by Lemma 2.1.11.
“ ⇐ ” By Lemma 2.1.11 and the assumption, one has A#AHA(A#)H = AHAHA(A#)H. Multiplying the

equality on the right by (A+AA)H, A+ and (A+)H successively yields A#A+A = AHA+A, that is, A# = AHA+A.
Hence, A ∈ CSEP

n by [12, Theorem 1.5.3].

Note that A# = B if and only if B# = A. Hence, one gets the following corollary.

Corollary 2.2.2. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if (A#AHA(A#)H)# = AHA+(A+)H(A#)H.

Lemma 2.2.3. Let A ∈ Gn(C).Then A#AHA(A#)H is EP and (A#AHA(A#)H)# = (A#AHA(A#)H)+ = AA+AHA+(A+)HA2A+.

PROOF. Let D = A#AHA(A#)H and M = AA+AHA+(A+)HA2A+ for simplicity. It suffices to prove that
D# = D+ =M.

Firstly,
MD = AA+AHA+(A+)HA(AA+A#)AHA(A#)H

= AA+AHA+[(A+)HAA#]AHA(A#)H

= AA+AH[A+(A+)HAH]A(A#)H

= AA+AH[A+A(A#)H]
= AA+AH(A#)H

= AA+,

which tells us that (MD)H =MD.
Secondly,

DMD = A#AHA[(A#)HAA+] = A#AHA(A#)H = D
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and
MDM = AA+AA+AHA+(A+)HA2A+ = AA+AHA+(A+)HA2A+ =M.

Finally, since
DM = A#AHA[(A#)HAA+]AHA+(A+)HA2A+

= A#AHA[(A#)HAHA+](A+)HA2A+

= A#AH[AA+(A+)H]A2A+

= [A#AH(A+)H]A2A+

= AA+,

one has (DM)H = DM =MD.
Consequently, D# = D+ =M as desired.

The following corollary is a direct result of Lemma 2.2.3.

Corollary 2.2.4. Let A ∈ CSEP
n . Then A#AHA(A#)H

∈ CSEP
n .

The following corollary follows directly by Corollary 2.2.2 and Lemma 2.2.3.

Corollary 2.2.5. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if AA+AHA+(A+)HA2A+ = AHA+(A+)H(A#)H.

Inspired by Corollary 2.2.5, we propose the following theorem.

Theorem 2.2.6. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if A#(A+)HA2A+ = A+(A+)H(A#)H.

PROOF. “⇒ ” By the assumption, one has A# = A+ = AH. Thus,

A#(A+)HA2A+ = A+(A+)HA2A# = A+(A+)HA = A+(A+)H(A#)H.

“ ⇐ ” From the assumption, one obtains A#(A+)HA2A+ = A+(A+)H(A#)H. Multiplying the equality on
the left by A yields

(A+)HA2A+ = (A+)H(A#)H. (2.5)

Thus,
A#(A+)HA2A+ = A+(A+)HA2A+.

Multiplying the last equality on the right by A#, AH and A successively, one obtains A#A = A+A,which tells
that A is EP. Hence, (A+)HA = (A#A#)H by (2.5). Multiplying the equality on the left by AH yields A = (A#)H,
that is, A# = AH. It follows that A ∈ CSEP

n .

The following corollary is induced by Theorem 2.2.6.

Corollary 2.2.7. Let A ∈ Gn(C). Then the following conditions are equivalent.
(1) A ∈ CSEP

n ;
(2) A#(A+)HA = A+(A+)H(A#)H;
(3) (A+)HA2A+ = (A#)H(A#)H;
(4) AA+AHA+ = A#A#.

PROOF. “(1)⇒ (2)” It is evident since AH = A# = A+.
“(2)⇒ (3)” By the assumption one has A#(A+)HA = A+(A+)H(A#)H.Multiplying the equality on the left

by A and on the right by AA+ respectively yields (A+)HA2A+ = (A+)H(A#)H. Note that

A#(A+)HA = A+(A+)H(A#)H = A+A(A+(A+)H(A#)H) = A+AA#(A+)HA = A+(A+)HA.
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Thus,
A#AA+ = A#(A+)HAH = A#(A+)HAA#AH = A+(A+)HAA#AH = A+(A+)HAH = A+,

which implies that A is EP by [12, Theorem 1.2.1]. Hence, (A+)HA2A+ = (A#)H(A#)H.
“(3) ⇒ (4)” From the assumption, one has (A+)HA2A+ = (A#)H(A#)H. Applying the involution on the

equality yields AA+AHA+ = A#A#.
“(4)⇒ (1)” The condition AA+AHA+ = A#A# gives

A#A# = AA+AHA+ = (AA+AHA+)AA+ = A#A#AA+ = A#A+.

Hence, A is EP by [12, Theorem 1.2.1]. It follows that A+A+ = A#A# = AA+AHA+ = AHA+. By [9, Corollary
2.10], A is partial isometry. Thus, A ∈ CSEP

n .

2.3. Using the inverses of matrices involving group inverses and Moore-Penrose inverses to characterize SEP matrices
Inspired by Lemma 2.2.3, we propose the following lemma.

Lemma 2.3.1. Let A ∈ Gn(C). Then A#AHA(A#)H + En − AA+ is invertible and

(A#AHA(A#)H + En − AA+)−1 = AA+AHA+(A+)HA2A+ + En − AA+.

PROOF. Let D = A#AHA(A#)H and M = AA+AHA+(A+)HA2A+. Then D# = D+ = M by Lemma 2.2.3.
Since

DAA+ = A#AHA[(A#)HAA+] = A#AHAHA(A#)H = D,

AA+M = AA+AA+AHA+A+(A+)HA2A+ = AA+AHA+(A+)HA2A+ =M,

and DM = AA+ by the proof of Lemma 2.2.3, one gets

(D + En − AA+)(M + En − AA+)
= DM +D −DAA+ +M + En − AA+ − AA+M − AA+ + AA+AA+

= AA+ +D −D +M + En − AA+ −M − AA+ + AA+

= En,

which implies that (D + En − AA+)−1 =M + En − AA+. That is,

(A#AHA(A#)H + En − AA+)−1 = AA+AHA+(A+)HA2A+ + En − AA+.

The following theorem is inferred by Lemma 2.3.1.

Theorem 2.3.2. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if

(A#AHA(A#)H + En − AA+)−1 = A+A+(A+)HA2A+ + En − AA+.

PROOF. “⇒ ” By the assumption, A# = A+ = AH. Thus

AA+AHA+(A+)HA2A+ = (AA#A#)A+(A+)HA2A+ = A+A+(A+)HA2A+.

It follows by Lemma 2.3.1 that

(A#AHA(A#)H + En − AA+)−1 = A+A+(A+)HA2A+ + En − AA+.

“⇐ ” From the assumption, one has

(A#AHA(A#)H + En − AA+)−1 = A+A+(A+)HA2A+ + En − AA+.
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Thus, by Lemma 2.3.1, one gets

AA+AHA+(A+)HA2A+ = A+A+(A+)HA2A+.

Multiplying the equality on the right by A#AH yields AA+AHA+ = A+A+. Hence,

AA+AH = (AA+AHA+)AAH(A#)H = A+[A+AAH(A#)H] = A+(A#A)H = A+,

which implies that A ∈ CSEP
n as desired.

Lemma 2.3.3. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if A#AHA(A#)H = A+(A#)H.

PROOF. “⇒ ” It is evident.
“⇐ ” By the assumption, one has A#AHA(A#)H = A+(A#)H. Hence,

A+ = [A+(A#)H]AH = A#AHA(A#)HAH = AA+[A#AHA(A#)H]AH

= AA+[A+(A#)HAH] = AA+A+,

which implies that A is EP. It follows that

A+ = A+(AA#)H = [A+(A#)H]AH = A#AHA[(A#)HAH] = A#AHA.

Therefore, A ∈ CSEP
n by [12, Theorem 1.5.3].

Theorem 2.3.4. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if A+(A#)H + En − AA+ is invertible and

(A+(A#)H + En − AA+)−1 = AA+AHA+(A+)HA2A+ + En − AA+.

PROOF. “⇒ ” Assume that A ∈ CSEP
n , then A#AHA(A#)H = A+(A#)H by Lemma 2.3.3. As in the proof

of Lemma 2.3.1, we denote A#AHA(A#)H = A+(A#)H by D and denote AA+AHA+(A+)HA2A+ by M. Then
D# = D+ =M, DM = AA+, DAA+ = D and AA+M =M. Hence,

(D + En − AA+)(M + En − AA+)
= DM +D −DAA+ +M + En − AA+ − AA+M − AA+ + AA+AA+

= AA+ +D −DAA+ +M + En − AA+ − AA+M − AA+ + AA+

= En,

which implies that (D + En − AA+)−1 =M + En − AA+. Namely, A+(A#)H + En − AA+ is invertible and

(A+(A#)H + En − AA+)−1 = AA+AHA+(A+)HA2A+ + En − AA+.

“⇐ ” Using the assumption and Lemma 2.3.1, one has

A#AHA(A#)H + En − AA+ = A+(A#)H + En − AA+,

which implies that A#AHA(A#)H = A+(A#)H. Hence, A ∈ CSEP
n by Lemma 2.3.3.

Lemma 2.3.5. Let A ∈ Gn(C). Then A+(A#)H + En − (AA#)H is invertible and

(A+(A#)H + En − (AA#)H)−1 = AHA(AA#)H + En − (AA#)H.

PROOF. It is followed by the fact that

[A+(A#)H + En − (AA#)H][AHA(AA#)H + En − (AA#)H]
= (A#A)H + A+(A#)H

− A+(A#)H + AHA(AA#)H + En − (AA#)H
− AHA(AA#)H

−(AA#)H + (AA#)H

= En.

The following theorem is induced by Theorem 2.3.4 and Lemma 2.3.5.
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Theorem 2.3.6. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if

(AA+AHA+(A+)HA2A+ + En − AA+)−1 = A+(A+)H + En − (AA#)H.

PROOF. “⇒ ” It is an immediate result of Lemma 2.3.4 and Lemma 2.3.5.
“⇐ ” By the assumption one obtains

(AA+AHA+(A+)HA2A+ + En − AA+)−1 = A+(A+)H + En − (AA#)H.

Thus,
En = [AA+AHA+(A+)HA2A+ − AA+ + En][A+(A+)H + En − (AA#)H].

It follows that

AA+AHA+(A+)HA2A+A+(A+)H + A+(A+)H = (AA#)H + AA+A+(A+)H. (2.6)

Multiplying the equality on the right by AA#, one yields (AA#)H = (AA#)HAA#. Hence, A is EP, which
implies A2A+A+(A+)H = AA#(A+)H = (A+)H, AA+AH = AH and AA+A+ = A+. It follows by (2.6) that

AHA+(A+)H(A+)H = (AA#)H.

Applying the involution, one gets A+A+(A+)HA = AA#,which further implies that A2 = A3A# = A2A+A+(A+)HA =
(A+)HA. Hence, A is partial isometry and so A ∈ CSEP

n .

3. Characterizations of SEP matrices by the general solutions of matrix equations

In [7], some equivalent conditions for SEP matrix are proposed by constructing some specific matrix
equations and discussing whether these matrix equations have solutions in given sets to determine whether
a group invertible matrix A is in CSEP

n . Inspired by [7], we intend to construct several matrix equations
involving but not limit to A,A+ or A# and either prove that they have solutions in given sets if and only if
A ∈ CSEP

n , or prove that A ∈ CSEP
n if and only if some of these matrix equations have general solutions of

specific forms.

3.1. Characterizations of SEP matrices by the general solutions of matrix equation of the type AXB = C.

The following lemma is well known [11].

Lemma 3.1.1. Let A,B and C be matrices in Cn×n. Then the following Eq.(3.1) has solutions if and only if
C = AA+CB+B.

AXB = C. (3.1)

In the case that Eq.(3.1) is consistent, the general solution is given by

X = A+CB+ +U − A+AUBB+, where U ∈ Cn×n. (3.2)

Inspired by Lemma 2.1.3, we construct the following matrix equation:

AHX(A+)H = AH. (3.3)

Theorem 3.1.2. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if Eq.(3.3) is consistent and the general solution is

given by

X = A+ +U − AA+UAA+, U ∈ Cn×n. (3.4)



S. Liu,Y. Zhang / Filomat 39:26 (2025), 9035–9051 9045

PROOF. “⇒ ” By the assumption and Lemma 2.1.6, one has AHA+(A+)H = AH,which says that A+ is
a solution of Eq.(3.3). We prove that the general solution of Eq.(3.3) is given by (3.4) as follows.

On one hand, ∀U ∈ Cn×n, since A ∈ CSEP
n , one has

AH(A+ +U − AA+UAA+)(A+)H

= AHA+(A+)H + AHU(A+)H
− AHAA+UAA+(A+)H

= AH + AHU(A+)H
− AHU(A+)H

= AH,

which implies that any matrix given by (3.4) is a solution of Eq.(3.3).
On the other hand, let X = X0 be any solution of Eq.(3.3), then AHX0(A+)H = AH. Thus, AA+X0AA+ =

(A+)HAHX0(A+)HAH = (A+)HAHAH = AH = A+, since A ∈ CSEP
n . As a result,

X0 = A+ + X0 − AA+X0AA+,

which tells that any solution of Eq.(3.3) is given by (3.4).
Consequently, the general solution of Eq.(3.3) is given by (3.4) provided that A is SEP.
“⇐ ” By the assumption, any matrix given by (3.4) is a solution of Eq.(3.3). In particular, let U = −A+.

Then X0 = AA+A+AA+ = AA+A+ is a solution of Eq.(3.3), that is,

AH = AHA+(A+)H. (3.5)

By Lemma 2.1.6, A ∈ CSEP
n .

Now, we construct a new equation as follows, which has the general solution given by (3.4).

AHXA(AA#)H = AH. (3.6)

Lemma 3.1.3. Let A ∈ Gn(C). Then Eq.(3.6) is consistent and the general solution is given by (3.4).

PROOF. ∀U ∈ Cn×n, since

AH(A+ +U − AA+UAA+)A(AA#)H

= AHA+A(AA#)H + AHUA(AA#)H
− AHAA+UAA+A(AA#)H

= AH + AHUA(AA#)H
− AHUA(AA#)H

= AH,

any matrix given by (3.4) is a solution of Eq.(3.6).
On the other hand, let X0 be any solution of Eq.(3.6), that is, AHX0A(AA#)H = AH. Hence,

AA+X0AA+

= (A+)HAHX0(AA+)AA+

= (A+)HAHX0A(A+A)HA+

= (A+)H[AHX0A(AA#)H]AH(A+)HA+

= (A+)HAHAH(A+)HA+

= (A+)HAHA+

= AA+A+.

Let U0 = X0 − A+. Then one has

AA+U0AA+ = AA+X0AA+ − AA+A+AA+ = AA+A+ − AA+A+ = 0,

which implies that
X0 = A+ + X0 − A+ = A+ +U0 = A+ +U0 − AA+U0AA+.

Consequently, the general solution of Eq.(3.6) is given by (3.4).

The following theorem can be induced by Theorem 3.1.2 and Lemma 3.1.3.
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Theorem 3.1.4. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if Eq.(3.3) and Eq.(3.6) share the same solutions.

PROOF. “⇒ ” It is evident since Eq.(3.3) and Eq.(3.6) are exactly the same under the assumption.
“⇐ ” It is a direct result of Theorem 3.1.2 and Lemma 3.1.3.

Now we construct the following matrix equation:

AHXAA+ = AHA+. (3.7)

Lemma 3.1.5. Let A ∈ Gn(C). Then Eq.(3.6) and Eq.(3.7) share the same solutions.

PROOF. It suffices to prove that the general solution of Eq.(3.7) is also given by (3.4).
On one hand, for any U ∈ Cn×n, one has

AH(A+ +U − AA+UAA+)AA+

= AHA+AA+ + AHUAA+ − AHAA+UAA+AA+

= AHA+ + AHUAA+ − AHUAA+

= AHA+,

which tells that any matrix given by (3.4) is a solution of Eq.(3.7).
On the other hand, let X0 be any solution of Eq.(3.7), that is, AHX0AA+ = AHA+. Thus, one has

AA+X0AA+ = (A+)HAHX0AA+ = (A+)HAHA+ = AA+A+.

Let U0 = X0 − A+. Then one obtains

AA+U0AA+ = AA+X0AA+ − AA+A+AA+ = AA+X0AA+ − AA+A+ = 0.

It follows that X0 = A+ + X0 − A+ = A+ + U0 − AA+U0AA+, namely, any solution of Eq.(3.7) is of the form
given by (3.4). Consequently, Eq.(3.6) and Eq.(3.7) share the same solutions.

The following theorem is an immediate result of Theorem 3.1.4 and Lemma 3.1.5.

Theorem 3.1.6. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if Eq.(3.3) and Eq.(3.7) have exactly the same

solutions.

3.2. Characterizations of SEP matrices by univariate matrix equations involving A+ and A#

To begin with, we construct the following matrix equation:

A+X(A+)H = X. (3.8)

Theorem 3.2.1. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if Eq.(3.8) has at least one solution in the following

set
ζA = {A,A#,A+,AH, (A+)H, (A#)H, (A#)+, (A+)#,AA+,AAH,AA#, (AA#)H

}.

PROOF. “ ⇒ ” Assume that A ∈ CSEP
n , then A+A(A+)H = A#AA = A, that is, X = A is a solution of

Eq.(3.8).
“⇐ ” The proof is divided into several cases as follows.
Case 1. If any X ∈ {A,A#,A+,AH, (A+)H, (A#)H

} is a solution of Eq.(3.8), then A is SEP by [8, Theorem 2.7].
Case 2. If X = (A#)+ = A+A3A+ is a solution of Eq.(3.8), then

A+A+A3A+(A+)H = A+A3A+. (3.9)

Multiplying the equality (3.9) on the right by AA#, one gets

A+A3A+ = A+A2.
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This gives AA+ = A#A+A3A+ = A#A+A2 = AA#. Hence, A is EP, which implies that X = (A#)+ = (A+)+ = A
is a solution. By Case 1, A is SEP.

Case 3. If X = (A+)# = (AA#)HA(AA#)H is a solution of Eq.(3.8), then

A+(AA#)HA(AA#)H(A+)H = (AA#)HA(AA#)H,

that is,
(AA#)H(A+)H = (AA#)HA(AA#)H.

Multiplying the equality on the left by A+ yields A+(A+)H = (AA#)H, which implies AA# = (AA#)H. Hence
A is EP by [12, Theorem 1.1.3], which induces that X = (A+)# = (A#)# = A is a solution. Thus, A is SEP by
Case 1.

Case 4. If X = AA+ is a solution of Eq.(3.8), then A+(AA+)(A+)H = AA+, that is,

A+(A+)H = AA+. (3.10)

This gives
AA# = AA+AA# = A+(A+)HAA# = A+(A+)H = AA+.

Hence, A is EP and so A = A2A+ = AA+(A+)H = (A+)H by (3.10). Therefore, A is SEP.
Case 5. If X = AAH is a solution of Eq.(3.8), then A+(AAH)(A+)H = AAH, that is, A+A = AAH. Thus, A is

SEP by [12, Theorem 1.5.3].
Case 6. If X = AA# is a solution of Eq.(3.8), then A+(AA#)(A+)H = AA#, that is, A+(A+)H = AA#. This

gives AA# = (AA#)H. Hence, A is EP and X = AA# = AA+. By Case 4, A is SEP.
Case 7. If X = (AA#)H is a solution of Eq.(3.8), then A+(AA#)H(A+)H = (AA#)H, that is, A+(A+)H = (AA#)H.

Hence, A is EP and X = (AA#)H = AA#. By Case 6, A is SEP.

Now we construct a matrix equation similar to Eq.(3.8) as follows.

A+XAA# = XAH. (3.11)

Theorem 3.2.2. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if Eq.(3.11) has at least one solution in ζA.

PROOF. “ ⇒ ” From the hypothesis, one gets A+ = AH = A#. Thus, A+AAA# = A+A = AAH, which
tells that X = A is a solution of Eq.(3.11).

“⇐ ” Suppose that some X ∈ ζA is a solution of Eq.(3.11). It is divided into twelve cases as follows.
Case 1. If X = A, then A+AAA# = AAH, that is, A+A = AAH. Hence A is SEP by [12, Theorem 1.5.3].
Case 2. If X = A#, then A+A#AA# = A#AH, that is, A+A# = A#AH. Hence, AAH = A2A#AH = A2A+A# =

AA#,which implies that A is SEP by [12, Theorem 1.5.3].
Case 3. If X = A+, then A+A+AA# = A+AH. By [9, Lemma 2.11], one gets A+AA# = AH. Hence, A is SEP

by [12, Theorem 1.5.3].
Case 4. If X = AH, then A+AHAA# = AHAH. Hence,

AH = AHAH(A+)HAH(A#)H

= A+AHAA#(A+)HAH(A#)H

= A+[AH(A+)HAH(A#)H]
= A+(A#A)H

= A+.

Therefore, A ∈ CSEP
n by Case 3.

Case 5. If X = (A+)H, then A+(A+)HAA# = (A+)HAH, that is, A+(A+)H = AA+. Hence, A is SEP by Case 4
of Theorem 3.2.1.

Case 6. If X = (A#)H, then

A+(A#)HAA# = (A#)HAH. (3.12)
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Multiplying the equality on the right by (A+)H and AHAH successively yields A+ = AH. Thus, one has
AH(A#)HAA# = (A#)HAH by (3.12). It follows that

AAH = AAH(A#)HAH = AAHAH(A#)HAA# = AAHAA# = AA+AA# = AA#,

which tells that A is SEP by [12, Theorem 1.5.3].
Case 7. If X = (A#)+ = A+A3A+, then A+A+A3A+AA# = A+A3A+AH. As a result,

A+A+A2 = A+A3A+AH = A+A3A+AHAA+ = A+A+A3A+.

By [9, Lemma 2.11], one yields A+A2 = A+A3A+. By the proof of Case 2 of Theorem 3.2.1, A is EP, which
implies X = (A#)+ = A. Hence, A is SEP by Case 1.

Case 8. If X = (A+)# = (AA#)HA(AA#)H, then

A+(AA#)HA(AA#)HAA# = (AA#)HA(AA#)HAH

that is,
(AA#)HAA# = (AA#)HAAH.

Thus,
A+AA# = A+(AA#)HAA# = A+(AA#)HAAH = A+AAH = AH.

Hence, A is SEP by [12, Theorem 1.5.3].
Case 9. If X = AA+, then A+(AA+)AA# = AA+AH, that is, A+AA# = AA+AH.Multiplying the equality on

the right by AA+ yields A+ = AA+AH. Hence A is SEP by [12, Theorem 1.5.3].
Case 10. If X = AAH, then A+AAHAA# = AAHAH. Multiplying the equality on the right by (A+)H and

(AA#)H successively yields (A#A)H = AAH, that is, AA# = AAH. Hence, A is SEP by Lemma 2.1.4.
Case 11. If X = AA#, then A+(AA#)(AA#) = AA#AH, that is, A+AA# = AA#AH.Multiplying the equality

on the left by A yields AA# = AAH,which implies that A is SEP by Lemma 2.1.4.
Case 12. If X = (AA#)H, then A+(AA#)HAA# = (AA#)HAH, that is, A+AA# = AH, which further implies

that AA# = AAH. Hence, A is SEP by Lemma 2.1.4.

Now we construct the following matrix equation:

XA+(A+)H + A# = X + A+. (3.13)

Theorem 3.2.3. Let A ∈ Cn×n. Then A ∈ CSEP
n if and only if Eq.(3.13) has at least one solution in the set

χA = {A,A#,A+,AH, (A+)H, (A#)H
}.

PROOF. “ ⇒ ” By the assumption, A# = A+ = AH. Thus, AA+(A+)H + A# = AA+A + A# = A + A+,
which tells that X = A is a solution of Eq.(3.13).

“⇐ ” Suppose that some X ∈ χA is a solution of Eq.(3.13).
Case 1. If X = A, then AA+(A+)H + A# = A + A+, that is,

(A+)H + A# = A + A+. (3.14)

Multiplying the equality on the left by AA# yields (A+)H +A# = A+AA#A+. By (3.14), one has A+ = AA#A+.
By [12, Theorem 1.2.1], A is EP. It follows by (3.14) that (A+)H = A. Consequently, A is SEP.

Case 2. If X = A#, then A#A+(A+)H + A# = A# + A+, that is,

A#A+(A+)H = A+. (3.15)

Multiplying the equality on the left by A2 and on the right by AA# respectively yields (A+)H = A, namely,
A+ = AH. Hence, one has A# = A#A+A = A+ by (3.15). It follows that A is SEP.
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Case 3. If X = A+, then

A+A+(A+)H + A# = 2A+. (3.16)

Multiplying the equality on the right by AA# yields A+A+(A+)H+A# = 2A+AA#.Hence, one has A+ = A+AA#

by (3.16), which implies that A is EP, and so X = A+ = A#. It follows by Case 2 that A is SEP.
Case 4. If X = AH, then

AHA+(A+)H + A# = AH + A+. (3.17)

Multiplying the equality on the left by A+A yields AHA+(A+)H + A+AA# = AH + A+. Hence, one obtains
A# = A+AA#.As a result, A#A = A+AA#A = A+A,which tells that A is EP. By (3.17) one gets AHA+(A+)H = AH.
Hence, A is SEP by Lemma 2.1.6.

Case 5. If X = (A+)H, then

(A+)HA+(A+)H + A# = (A+)H + A+. (3.18)

Multiplying the equality one the right by AA# yields

(A+)HA+(A+)H + A# = (A+)H + A+AA#.

Hence, A+ = A+AA#,which tells that A is EP. As a result, one has (A+)HA+(A+)H = (A+)H by (3.18). It follows
that A+(A+)HA+ = A+ = A+AA#.Multiplying the equality on both sides by A respectively yields A = (A+)H,
namely, AH = A+. Consequently, A is SEP.

Case 6. If X = (A#)H, then (A#)HA+(A+)H +A# = (A#)H +A+. Pre-multiplying the equality by A+A yields
A# = A+AA#. Hence A is EP, which implies X = (A#)H = (A+)H. By Case 5, A is SEP.

3.3. Characterizations of SEP matrix by general solutions of bivariate matrix equations involving A+ and A#

To begin with we construct the following matrix equation

A+X(A+)H = Y. (3.19)

Theorem 3.3.1. Let A ∈ Gn(C). Then the general solution of Eq.(3.19) is given as follows:{
X = P +U − AA+UAA+,
Y = A+P(A+)H.

P,U ∈ Cn×n. (3.20)

PROOF. On one hand, since ∀P,U ∈ Cn×n, one has

A+(P +U − AA+UAA+)(A+)H

= A+P(A+)H + A+U(A+)H
− A+U(A+)H

= A+P(A+)H,

any (X,Y) given by (3.20) is a solution of Eq.(3.19).
On the other hand, suppose that (X0,Y0) is any solution of Eq.(3.19), then A+X0(A+)H = Y0. Let U =

X0,P = AA+X0AA+. Then one hasX0 = P +U − AA+UAA+;

Y0 = A+X0(A+)H = A+AA+X0AA+(A+)H = A+P(A+)H.

Consequently, the general solution of Eq.(3.19) is given by (3.20).
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Theorem 3.3.2. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if the general solution of Eq.(3.19) is given as follows:{

X = P +U − AA+UAA+;
Y = A#PA. P,U ∈ Cn×n. (3.21)

PROOF. “⇒ ” It follows directly by Theorem 3.3.1.
“⇐ ” By the assumption, one has A+P(A+)H = A#PA,∀P ∈ Cn×n. In particular, let P = A and one obtains

A+A(A+)H = A. Thus, A = A#AA = A#AA+A(A+)H = A#A(A+)H = (A+)H, namely, A+ = AH. It follows that
A+A2 = A+A(A+)H = A. As a result, A is EP. Consequently, A is SEP.

Theorem 3.3.2 tells that the general solution of Eq.(3.19) is given by (3.21) provided that A is SEP. One
may be curious to know in the case that A is not SEP, which equation has the general solution given by
(3.21). Motivated by this, we construct a new matrix equation as follows.

A#(AA#)HXA = Y. (3.22)

Theorem 3.3.3. Let A ∈ Gn(C). Then the general solution of Eq.(3.22) is given as follows.{
X = P +U − AA+UAA+;
Y = A#PA. P,U ∈ Cn×n and A+P = A+A+AP. (3.23)

PROOF. On one hand, we prove that any (X,Y) given by (3.23) is a solution of Eq.(3.22). In fact, one
has

A#(AA#)H(P +U − AA+UAA+)A
= A#(AA#)HPA + A#(AA#)HUA − A#(AA#)HAA+UAA+A
= A#(AA#)HPA
= A#(A#)H(AA+A)HPA
= A#(A#)HAHA(A+P)A
= A#(AA#)HA(A+A+AP)A
= A#(A+AAA+AA#)HPA
= A#A+APA
= A#PA

as desired.
On the other hand, let (X0,Y0) be any solution of Eq.(3.22), that is, A#(AA#)HX0A = Y0. Let P =

(AA#)HX0AA+ and U = X0 + AA+X0AA+ − P. Then, one has

A+P = A+(AA#)HX0AA+ = A+X0AA+

and
A+A+AP = A+A+A(AA#)HX0AA+

= A+(AA#A+A)HX0AA+

= A+(A#A)HX0AA+

= A+X0AA+,

which implies that A+P = A+A+AP. Since

A#PA = A#(AA#)HX0AA+A = A#(AA#)HX0A = Y0

and
AA+UAA+ = AA+(X0 + AA+X0AA+ − P)AA+

= 2AA+X0AA+ − AA+PAA+

= 2AA+X0AA+ − AA+[(AA#)HX0AA+]AA+

= 2AA+X0AA+ − AA+X0AA+

= AA+X0AA+,
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one obtains {
X0 = P +U − AA+UAA+;
Y0 = A#PA, where A+P = A+A+AP.

Consequently, the general solution of Eq.(3.22) is given by (3.23).

Theorem 3.3.4. Let A ∈ Gn(C). Then A ∈ CSEP
n if and only if Eq.(3.22) and (3.19) share the same solutions.

PROOF. “ ⇒ ” It is evident since Eq.(3.22) and (3.19) are exactly the same equation under the
assumption that A is SEP.

“⇐ ” By the assumption, any (X,Y) given by (3.20) is a solution of Eq.(3.22). Hence, ∀P,U ∈ Cn×n, one
has

A#(AA#)H(P +U − AA+UAA+)A = A+P(A+)H,

namely,

A#(AA#)HPA = A+P(A+)H. (3.24)

In particular, letting P be AH yields A#AHA = A+AH(A+)H = A+A+A. Hence, A#AH = A#AHAA+ =
A+A+AA+ = A+A+. Letting P be A in (3.24), one obtains

A#(AA#)HA2 = A+A(A+)H. (3.25)

Multiplying the equality on the left by AA# yields A#(AA#)HA2 = (A+)H. As a result, A+A(A+)H = (A+)H,
that is, A+A+A = A+.Hence, A is EP. It follows by (3.25) that A = (A+)H, namely, A+ = AH. Consequently, A
is SEP.
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