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On topological properties of Argmin multifunction
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Abstract. Let X be a Tychonoff topological space, C(X,R) be the space of continuous real-valued functions
defined on X and K(X) be the space of all nonempty compact subsets of X. The multifunction argmin :
C(X,R) × K(X) → X is defined as follows: argmin( f ,K) = {x ∈ K : f (x) = min{ f (y) : y ∈ K}}. We present
topologies on C(X,R)×K(X) under which argmin : C(X,R)×K(X)→ X has a closed graph. We also extend
a generic optimization theorem of G. Beer from Čech-complete spaces to locally Čech-complete ones.

1. Introduction

Let X be a Tychonoff topological space and let C(X,R) denote the space of continuous real-valued
functions defined on X. It is well known ([2, 5, 6, 14, 20]) that if X is a compact metric space, then with
respect to the topology of uniform convergence on C(X,R), most functions (in the sense of Baire category)
have a unique minimum.

In [19, 20] Kenderov initiated a study of constrained minimization problems. Let K(X) be the space
of all nonempty compact subsets of X. Each pair ( f ,K), where f ∈ C(X,R) and K ∈ K(X) determines a
(constrained) minimization problem: find x ∈ K at which f attains its minimum over K.

Define the multifunction argmin : C(X,R) × K(X)→ X as follows:
argmin( f ,K) = {x ∈ K : f (x) = min{ f (y) : y ∈ K}}.

We are interested in topological properties of argmin multifunction.
Any reasonable topology τ on C(X,R) × K(X) should have the property that the graph of argmin is closed,
i.e., if {( fλ,Kλ)} is τ convergent to ( f ,K) and xλ ∈ argmin( fλ,Kλ) for every λ, then the convergence of {xλ} to
x implies x ∈ argmin( f ,K). This property is very important in optimization.

There is a rich literature on argmin multifunction either on the space of lower semicontinuous functions
[2, 4, 24] or on the space of continuous functions [3, 9, 14, 19, 20].

In our paper we present topologies on C(X,R) × K(X) under which argmin : C(X,R) × K(X) → X has
a closed graph. We also extend a generic optimization theorem of G. Beer from Čech-complete spaces to
locally Čech-complete ones.
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2. Preliminaries

In the sequel, all spaces are assumed to be Hausdorff, N denotes the space of all positive integers and
R denotes the Euclidean space of real numbers with the usual Euclidean metric.

The Vietoris (or finite) topology τV [21] on the collection of nonempty compact subsets K(X) of a
topological space X has a subbase all sets of the form

V− = {A : A ∈ K(X) and A ∩ V , ∅}
and

V+ = {A : A ∈ K(X) and A ⊂ V},
where V runs over the open subsets of X.

The Fell topology τF [3] on the collection of nonempty compact subsets K(X) of a space X has a subbase
all sets of the form

V− = {A : A ∈ K(X) and A ∩ V , ∅}
and

(Kc)+ = {A : A ∈ K(X) and A ∩ K = ∅},
where V runs over the open subsets of X and K runs over compact subsets of X.

The upper Vietoris topology τV+ [3, 13] on the collection of nonempty compact subsets K(X) of a space
X has a base all sets of the form

V+ = {A : A ∈ K(X) and A ⊂ V},
where V runs over the open subsets of X and the lower Vietoris topology τV− [3] on the collection of
nonempty compact subsets K(X) of a space X has a subbase all sets of the form

V− = {A : A ∈ K(X) and A ∩ V , ∅},
where V runs over the open subsets of X.

A base for the Vietoris topology is the family of sets of the form

[V1, . . . ,Vn] =
n⋂

i=1

V−i ∩ (
n⋃

i=1

Vi)+,

where V1, . . . ,Vn are open sets in X.
Let X be a topological space and (Y, d) be a metric one. We will remind the topologies of uniform

convergence and the topology of uniform convergence on compacta on YX.
The topology τU of uniform convergence on YX is induced by the uniformityUU of uniform convergence

which has a base consisting of all sets of the form

W(ε) = {( f , 1) : ∀x ∈ X, d( f (x), 1(x)) < ε},

where ε > 0. The general τU-basic neighborhood of f ∈ YX is the set W( f , ε) = {1 ∈ YX : d( f (x), 1(x)) <
ε for every x ∈ X}.

The topology τUC of uniform convergence on compacta on YX is induced by the uniformity UUC of
uniform convergence on compacta which has a base consisting of all sets of the form

W(K, ε) = {( f , 1) : ∀x ∈ K, d( f (x), 1(x)) < ε},

where K ∈ K(X) and ε > 0. The general τUC-basic neighborhood of f ∈ YX is the set W( f ,K, ε) = {1 ∈ YX :
d( f (x), 1(x)) < ε for every x ∈ K}.

A set-valued map, or a multifunction from X to Y is a function that assigns to each element of X a subset
of Y. Following [7] the term map is reserved for a set-valued map. If F is a map from X to Y, then its graph
is the set {(x, y) ∈ X × Y : y ∈ F(x)}. In our paper we will identify maps with their graphs.

Notice that if f : X→ Y is a single-valued function, we will use the symbol f also for the graph of f .
Let X and Y be topological spaces. A map F : X → Y is upper semicontinuous at a point x ∈ X if for

every open set V containing F(x), there exists an open set U such that x ∈ U and
F(U) =

⋃
{F(u) : u ∈ U} ⊂ V.
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F is upper semicontinuous if it is upper semicontinuous at each point of X. Following Christensen [17]
we say, that a map F is usco if it is upper semicontinuous and takes nonempty compact values. Finally,
a map F from a topological space X to a topological space Y is said to be minimal usco if it is a minimal
element in the family of all usco maps (with the domain X and the range Y); that is, if it is usco and does
not contain properly any other usco map from X into Y. Using the Kuratowski-Zorn principle we can
guarantee that every usco map from X to Y contains a minimal usco map from X to Y (see [7]).

A map F : X → Y is subcontinuous at x ∈ X [16], iff for every net {xλ : λ ∈ Λ} converging to x and for
every yλ ∈ F(xλ), the net {yλ : λ ∈ Λ} has a cluster point. F is subcontinuous if it is subcontinuous at each
point of X.

In the last few decades, the minimal usco maps have found many applications in different areas of
mathematics, for example, in optimization, in the study of differentiability of Lipschitz functions, or in
selection theorems. The recent book [11] Usco and quasicontinuous mappings contains some applications
of minimal usco and minimal cusco maps in the above mentioned areas.

3. When has argmin multifunction closed graph?

We prove the following theorem:

Theorem 3.1. Let X be a locally compact Hausdorff space. Then argmin : (C(X,R), τUC) × (K(X), τF) → X has a
closed graph.

Proof. Let {( fλ,Kλ) : λ ∈ Λ} converge to ( f ,K) in (C(X,R), τUC)× (K(X), τF). Let xλ ∈ argmin( fλ,Kλ) for every
λ ∈ Λ and let {xλ : λ ∈ Λ} converge to x ∈ X. We will prove that x ∈ argmin( f ,K). First we prove that
x ∈ K. Suppose x < K. There is an open set U in X such that x ∈ U, U is compact and U ∩ K = ∅. Since
{Kλ : λ ∈ Λ} converges to K in (K(X), τF), there is λ0 such that U ∩ Kλ = ∅ for every λ ≥ λ0. A contradiction
since {xλ : λ ∈ Λ} converge to x. Thus x ∈ K. Suppose there is y ∈ K such that

f (y) < f (x).
There is ϵ > 0 such that f (y) + 6ϵ < f (x). The continuity of the function f at x and y and the local

compactness of X imply the existence of open sets U and V such that x ∈ U, y ∈ V, U, V are compact sets
and U ∩ V = ∅ and for every z ∈ U

| f (z) − f (x)| < ϵ,

for every s ∈ V
| f (s) − f (y)| < ϵ.

The sequence {xλ : λ ∈ Λ} converges to x ∈ X. Thus there is λ0 such that xλ ∈ U for every λ ≥ λ0. Since
{Kλ : λ ∈ Λ} converges to K in (K(X), τF), there is λ1 such that Kλ ∩V , ∅ for every λ ≥ λ1. For every λ ≥ λ1
choose yλ ∈ Kλ ∩ V. The sequence { fλ : λ ∈ Λ} converges to f in (C(X,R), τUC). Thus there is λ2 such that
for every λ ≥ λ2 we have

| fλ(z) − f (z)| < ϵ

for every z ∈ U ∪ V. Let λ∗ ≥ λi for every i ∈ {0, 1, 2}. Then for λ ≥ λ∗ we have

| fλ(yλ) − f (y)| ≤ | fλ(yλ) − f (yλ)| + | f (yλ) − f (y)| < 2ϵ,

| fλ(xλ) − f (x)| ≤ | fλ(xλ) − f (xλ)| + | f (xλ) − f (x)| < 2ϵ.

We received the following inequalities:

f (x) − 2ϵ < fλ(xλ) < f (x) + 2ϵ, f (y) − 2ϵ < fλ(yλ) < f (y) + 2ϵ.

fλ(xλ) − fλ(yλ) > f (x) − f (y) − 4ϵ > 2ϵ,

for λ ≥ λ∗. It is a contradiction, since xλ ∈ argmin( fλ,Kλ) for every λ ∈ Λ.
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We have the following characterization of local compactness.

Theorem 3.2. Let X be a Tychonoff topological space. The following are equivalent:
(1) X is locally compact,
(2) The argmin : (C(X,R), τUC) × (K(X), τF)→ X has a closed graph.

Proof. It is sufficient to prove that (2) ⇒ (1). Suppose that argmin : (C(X,R), τUC) × (K(X), τF) → X has a
closed graph and X is not a locally compact space. Let x0 be a point from X which fails to have a compact
neighbourhood. Let U(x0) be the family of all open neighbourhoods of x0. For every U ∈ U(x0) and for
every K ∈ K(X) there is xU,K ∈ U \ (K ∪ {x0}). Let y ∈ X be a point different from x0. There is a continuous
function f : X → [0, 1] such that f (x0) = 1 and f (y) = 0. For every U ∈ U(x0) and for every K ∈ K(X)
put CU,K = {xU,K, x0, y} and let fU,K be a continuous function from X to [0, 1] such that fU,K(xU,K) = 0 and
fU,K|K = f |K. Such an extension exists since X is a Tychonoff space.

Let K(X) be directed by the inclusion andU(x0) by the reverse inclusion and consider the natural product
direction onU(x0) × K(X). The net

{( fU,K,CU,K) : (U,K) ∈ U(x0) × K(X)}

converges to ( f , {x0, y}) in (C(X,R), τUC) × (K(X), τF). First we prove that {CU,K : (U,K) ∈ U(x0) × K(X)} con-
verges to {x0, y} in (K(X), τF). Let C ∈ K(X) be such that {x0, y} ∈ (Cc)+. Let V be a fixed open neighbourhood
of x0. Then for every (U,K) ≥ (V,C) we have CU,K ∈ (Cc)+, since xU,K ∈ U \ K ⊂ V \ C.

It is easy to verify that { fU,K : (U,K) ∈ U(x0) × K(X)} converges to f in (C(X,R), τUC) and {xU,K :
(U,K) ∈ U(x0) × K(X)} converges to x0. For every (U,K) ∈ U(x0) × K(X), xU,K ∈ argmin( fU,K,CU,K), but
x0 < argmin( f , {x0, y}), a contradiction.

Theorem 3.3. Let X be a Tychonoff topological space. Then argmin : (C(X,R), τU) × (K(X), τV)→ X has a closed
graph.

Proof. Let {( fλ,Kλ) : λ ∈ Λ} converge to ( f ,K) in (C(X,R), τU) × (K(X), τV). Let xλ ∈ argmin( fλ,Kλ) for every
λ ∈ Λ and let {xλ : λ ∈ Λ} converge to x ∈ X. We will prove that x ∈ argmin( f ,K). First we prove that x ∈ K.
Suppose x < K. There is an open set U in X such that x ∈ U and U ∩ K = ∅. Since {Kλ : λ ∈ Λ} converges to
K in (K(X), τV), there is λ0 such that U ∩Kλ = ∅ for every λ ≥ λ0, a contradiction since {xλ : λ ∈ Λ} converge
to x. Thus x ∈ K. Suppose there is y ∈ K such that

f (y) < f (x).
There is ϵ > 0 such that f (y)+ 6ϵ < f (x). The continuity of the function f at x and y implies the existence

of open sets U and V such that x ∈ U, y ∈ V, and U ∩ V = ∅ and for every z ∈ U

| f (z) − f (x)| < ϵ,

for every s ∈ V
| f (s) − f (y)| < ϵ.

The sequence {xλ : λ ∈ Λ} converges to x ∈ X. Thus there is λ0 such that xλ ∈ U for every λ ≥ λ0. Since
{Kλ : λ ∈ Λ} converges to K in (K(X), τV), there is λ1 such that Kλ ∩V , ∅ for every λ ≥ λ1. For every λ ≥ λ1
choose yλ ∈ Kλ ∩ V. The sequence { fλ : λ ∈ Λ} converges to f in (C(X), τU). Thus there is λ2 such that for
every λ ≥ λ2 we have

| fλ(z) − f (z)| < ϵ

for every z ∈ X. Let λ∗ ≥ λi for every i ∈ {0, 1, 2}. As in the proof of Theorem 3.1 we obtain that for λ ≥ λ∗

we have
fλ(xλ) − fλ(yλ) > f (x) − f (y) − 4ϵ > 2ϵ.

It is a contradiction, since xλ ∈ argmin( fλ,Kλ) for every λ ∈ Λ.

Notice that Theorem 3.3 can be deduced from the proof of Theorem 3.2 and Lemma 4.1 in [2], however
we offered a direct proof.
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Theorem 3.4. Let X be a Tychonoff topological space. Then the multifunction argmin : (C(X,R), τU)×(K(X), τV+ )→
X is subcontinuous.

Proof. Let {( fλ,Kλ) : λ ∈ Λ} converge to ( f ,K) in (C(X,R), τU)× (K(X), τV+ ). Let xλ ∈ argmin( fλ,Kλ) for every
λ ∈ Λ. We will show that {xλ : λ ∈ Λ} has a cluster point in K. Suppose that no point of K is a cluster point
of {xλ : λ ∈ Λ}. For every x ∈ K there is an open neighbourhood Ox of x and λx ∈ Λ such that xλ < Ox for all
λ ≥ λx. Since K is compact there exist points x1, x2, ..., xn from K such that

K ⊂ ∪n
i=1Oxi .

Letλ∗ ∈ Λ be such thatλ∗ ≥ λxi for every i ∈ {1, 2, ...n}. Then for everyλ ≥ λ∗, xλ < ∪n
i=1Oxi , a contradiction

since {Kλ;λ ∈ Λ} converges to K in (K(X), τV+ ).

Theorem 3.5. ([19] for X compact) Let X be a Tychonoff topological space. Then argmin : (C(X,R), τU) ×
(K(X), τV)→ X is an usco map.

Proof. By Theorem 3.3 argmin : (C(X,R), τU)× (K(X), τV)→ X has a closed graph. By Theorem 3.4 argmin :
(C(X,R), τU) × (K(X), τV+ ) → X is subcontinuous, thus also argmin : (C(X,R), τU) × (K(X), τV) → X is
subcontinuous. By Corollary 3.12 in [12] every subcontinuous multifunction with a closed graph and
values in a regular space is usco. Thus argmin : (C(X,R), τU) × (K(X), τV)→ X is usco.

Now we show that argmin : (C(R,R), τUC) × (K(R), τF)→ R is not upper semicontinuous.

Example 3.6. Let f : R → R be the function identically equal to 0. For every n ∈ N let fn : R → R be
defined as follows: fn(x) = 1/n for x ≤ 0, fn(x) = 0, x ≥ n and fn is linear on the interval [0,n]. For every
n ∈ N put Kn = {0,n}. Then {( fn,Kn) : n ∈ N} converges to ( f , {0}) in (C(R,R), τUC) × (K(R), τF). Notice that
argmin( f , {0}) = {0} and for every n ∈N, argmin( fn,Kn) = {n}. Thus argmin : (C(R,R), τUC)× (K(R), τF)→ R
is not upper semicontinuous.

Notice that Example 3.6 shows that argmin : (C(R,R), τU)× (K(R), τF)→ R is not upper semicontinuous
too.

The following result was proved in [15].

Theorem 3.7. ([15]) Let X be a Tychonoff topological space. Then argmin : (C(X,R), τU) × (K(X), τV) → X is a
minimal usco map.

If X is compact, then (C(X,R), τU) × (K(X), τV) is a Baire space, so the question do most constrained
minimization problems have a unique solution makes sense. Kenderov in [19, 20] obtained an affirmative
answer for a large class of compact spaces, including not only metrizable ones, but also Stegall spaces.
Beer in [2] extended Kenderov’s generic optimization theorem to Čech-complete spaces and Holá in [15] to
Tychonoff almost Čech-complete spaces.

4. Results of Beer

In this part we improve a generic optimization theorem of G. Beer concerning partial maps from Čech-
complete spaces to locally Čech-complete ones.

We denote the space of all partial maps from a Hausdorff topological space X toR by C̃(X,R). Formally,
C̃(X,R) =

⋃
{C(K,R) : K ∈ K(X)}.

If f ∈ C̃(X,R) we write D( f ) for its domain. We will identify elements of C̃(X,R) with their graphs and
consider C̃(X,R) as a subspace of K(X ×R) equipped with the Vietoris topology τV.

In [2] argmin multifunction from C̃(X,R) to X was studied, where
argmin( f ) = {x ∈ D( f ) : f (x) = min{ f (y) : y ∈ D( f )}}.

The following Lemma was proved in [2] with the additional assumption that X is regular. However,
this assumption is not used in the proof.
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Lemma 4.1. Let X be a Hausdorff topological space. Then argmin : (C̃(X,R), τV)→ X is usco map.

We will prove that argmin is a minimal usco map.

Theorem 4.2. Let X be a Hausdorff topological space. Then argmin : (C̃(X,R), τV)→ X is a minimal usco map.

Proof. Suppose that argmin is not minimal usco. Since argmin is usco, there is a minimal usco map
L : (C̃(X,R), τV) → X such that L ⊂ argmin. Let f ∈ C̃(X,R) be such that L( f ) , argmin( f ). Let a ∈
argmin( f ) \ L( f ). Let U,V be two disjoint open sets in X such that a ∈ U and L( f ) ⊂ V. Let G be an open set
in (C̃(X,R), τV) such that f ∈ G and L(G) ⊂ V. There are open sets S1, . . . ,Sn in X and open intervals I1, . . . , In
in R such that

f ∈ [S1 × I1, . . . ,Sn × In] ⊂ G.

Let j ∈ {1, . . . ,n} be such that (a, f (a)) ∈ S j × I j and let ε be such that ( f (a) − 2ε, f (a) + 2ε) ⊂ I j. For every
i ∈ {1, . . . ,n}, i , j choose (xi, f (xi)) ∈ Si × Ii. Without loss of generality we can suppose that all points a and
xi, i ∈ {1, . . . ,n}, i , j are different (otherwise we will consider only different points which contain a).

Put M = {a} ∪ {xi : i = 1, . . . ,n, i , j}. Define the function 1 : M → R as follows: 1(a) = f (a) − ε and
1(xi) = f (xi) for every i ∈ {1, . . . ,n}, i , j. It is easy to verify that

1 ∈ [S1 × I1, . . . ,Sn × In] ⊂ G,

a contradiction, since argmin(1) = {a}, L(1) ⊂ V and a < V.

We also have the following result.

Proposition 4.3. Let X be a Hausdorff topological space. Then the set { f ∈ C̃(X,R) : |argmin( f )| = 1} is dense in
(C̃(X,R), τV).

Proof. Let f ∈ C̃(X,R). Let S1, . . . ,Sn be open sets in X and I1 . . . , In be open intervals such that

f ∈ [S1 × I1, . . . ,Sn × In].

Let (xi, f (xi)) ∈ Si × Ii for every i ∈ {1, . . . ,n}. Without loss of generality we can suppose that all xi are
different. Put b = min{ f (xi) : i = 1, . . . ,n}. Let j ∈ {1, 2, ...,n} be such that f (x j) = b and ε > 0 be such
that (b − 2ε, b + 2ε) ⊂ I j. Put M = {x1, . . . , xn}. Define the function 1 : M → R such that 1(x j) = b − ε and
1(xi) = f (xi) if i , j. Then the function 1 has the unique minimum, 1 ∈ C̃(X,R) and

1 ∈ [S1 × I1, . . . ,Sn × In].

Beer in his paper [2] proved that if X is a Čech-complete space, then also (C̃(X,R), τV) is Čech-complete.
Beer also proved the following result.

Lemma 4.4. Let X be a Tychonoff topological space. Then C̃(X,R) is a Gδ set in (K(X ×R), τV).

We will generalize Beer’s result for locally Čech-complete spaces. A Tychonoff topological space X is
called locally Čech-complete [8] if every point x ∈ X has a Čech-complete neighbourhood.

Lemma 4.5. ([1]) Let X be a locally Čech complete space. Then every Gδ subset of X is a locally Čech complete space.

Lemma 4.6. ([14]) Let X be a locally Čech-complete space. Then (K(X), τV) is locally Čech-complete too.

Proposition 4.7. Let X be a locally Čech-complete space. Then also (C̃(X,R), τV) is locally Čech-complete.

Proof. Since X is a locally Čech complete space and R is completely metrizable, X × R is locally Čech
complete and by Lemma 4.6 (K(X ×R), τV) is a locally Čech complete space. By Lemma 4.4 C̃(X,R) is a Gδ
set in (K(X ×R), τV). Thus by Lemma 4.5 (C̃(X,R), τV) is locally Čech-complete.
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5. On generic optimization theorem of Petar Kenderov

We now state the conditions under which most constrained minimization problems have a unique
solution.

Recall that a topological space Y is Stegall [9], if for every Baire space X, every minimal usco map from
X to Y, is single-valued at points of a residual set in X. A residual set in X is any set whose complement is
the set of the first Baire category in X.

A prime example of a Stegall space is a fragmentable space, in particular, any metric space, see [23].

Proposition 5.1. Let Y be a regular locally metrizable space. Then Y is a Stegall space.

Proof. Let X be a Baire topological space and F : X→ Y be a minimal usco map. Put L = {x ∈ X : |F(x)| = 1}.
We will prove that the set X \ L is of the first Baire category. Let U be a non-empty open set in X. Let
x ∈ U. For every y ∈ F(x) there is a neighborhood O of y such that O is a metrizable space with the
induced topology from Y. Since Y is regular we can suppose that O is closed. F(x) is compact, thus there
are metrizable closed sets O1,O2, ...On such that F(x) ⊂ ∪1≤i≤nInt(Oi). By Theorem 4.4.19 in [8] ∪1≤i≤nOi is a
metrizable space. Since F is upper semicontinuous, there is an open neighbourhood V of x such that V ⊂ U
and

F(V) ⊂ ∪1≤i≤nInt(Oi).

F|V : V → ∪1≤i≤nOi is a minimal usco map from a Baire space V to a metrizable space ∪1≤i≤nOi. Thus
there is a residual set in V in the points of which F|V is single-valued. The set V ∩ (X \ L) is of the first Baire
category in V, thus also in X. By the Banach Category Theorem [10, Theorem 1.7.] the set X \L is of the first
Baire category in X. Thus L is a residual set in X.

Theorem 5.2. Let X be a locally Čech-complete Stegall space. Then the set { f ∈ C̃(X,R) : |argmin( f )| = 1} is a
residual set in (C̃(X,R), τV).

Proof. By Proposition 4.7 (C̃(X,R), τV) is locally Čech-complete. Every locally Čech-complete space is an
open continuous image of a Čech-complete space, see 3.12.19(d) in [8]. Thus (C̃(X,R), τV) is a Baire space.
By Theorem 4.2 argmin: (C̃(X,R), τV) → X is a minimal usco map. Since X is a Stegall space, the set
{ f ∈ C̃(X,R) : |argmin( f )| = 1} is a residual set in (C̃(X,R), τV).

The following definition was used in [2, 19, 20].

Definition 5.3. Let X and Y be topological spaces. A map F : X → Y is said to be almost lower semicon-
tinuous at x1 ∈ X if there exists a point y1 ∈ F(x1) such that for each neighbourhood V of y1, there exists an
open neighbourhood U of x1 such that F(z) ∩ V , ∅ for every z ∈ U.

Kenderov in [19, 20] introduced the class L of all spaces Y such that for each Čech-complete space X,
every usco map from X to Y is almost lower semicontinuous on some dense Gδ subset of X.

Beer in his paper [2] proved the following theorem.

Theorem 5.4. Let X be a Čech-complete space from the classL. Then there is a dense Gδ subset of (C̃(X,R), τV) each
of whose elements has a unique minimum.

We generalize Theorem 5.4 for locally Čech-complete spaces from the class L.
We will need the following auxiliary result:

Lemma 5.5. ([15] Let X and Y be topological spaces and Y be Hausdorff. Let F : X → Y be minimal usco. If F is
almost lower semicontinuous at x1, then F is single-valued at x1.

Theorem 5.6. Let X be a locally Čech-complete space from the classL. Then there is a dense Gδ subset of (C̃(X,R), τV)
each of whose elements has a unique minimum.
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Proof. Put L = { f ∈ C̃(X,R) : |argmin( f )| = 1}. It suffices to prove that the set C̃(X,R) \ L is of the first
Baire category in (C̃(X,R), τV): let G be any nonempty open subset of C̃(X,R). Since by Proposition 4.7
(C̃(X,R), τV) is locally Čech-complete, there exists an open Čech-complete set V such that V ⊂ G. Since
X ∈ L, argmin ↾V→ X is almost lower semicontinuous on a dense Gδ set H ⊂ V. By Lemma 5.5 argmin ↾V

is single-valued at every f ∈ H. Thus V ∩ (C̃(X,R) \ L) is of the first Baire category, since (C̃(X,R), τV) is a
Baire space, which in turn implies, by the Banach Category Theorem [10, Theorem 1.7.], that C̃(X,R) \ L is
of the first Baire category. Then the result follows, since in a Baire space every residual set contains a dense
Gδ subset.
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