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Abstract. This article introduces a new curvature tensor, the S—curvature tensor, which is seen as a
comprehensive extension of various curvature tensors. Itis demonstrated that a semi-Riemannian manifold
with traceless S—curvature tensor is Einstein. Itis proved thata S—curvature flat semi-Riemannian manifold
is of constant sectional curvature. Moreover, we show that a perfect fluid S—curvature flat space-time
represents dark matter era. It is shown that a perfect fluid spacetime with V;IS?H = 0 is expansion-free and
shear-free and its flow is geodesic, but not necessary vorticity-free. We show that a pseudo S—symmetric
manifold is reduced to pseudo symmetric manifold if and only if the scalar curvature is constant. Finally,
a concrete example of pseudo S—symmetric manifolds is introduced.

1. Introduction

Curvature invariants are essential tools in both differential geometry and general relativity, providing
valuable geometric and physical insights into the curvature of spacetime, the structure of manifolds, and
the behavior of matter and energy in gravitational fields. Their coordinate independence and geometric
significance make them indispensable for studying the fundamental properties of space and the nature of
gravity. In semi-Riemannian geometry, these invariants are scalar values created from a variety of curvature
tensors, with the most well-known ones being the Riemann, Ricci, and Weyl tensors (for example see [4]).

Inspired by the significance of the curvature tensors in differential geometry and general relativity, we
propose a novel curvature tensor known as the S—tensor, which is defined as follows:

Sit = boRiju + b1gijRu + bagikRj + b3gaR i + bag xRyt
+bsgiRix + beguRij + b7R (gizgjk - gjlgik) , 1)
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with b; being constants, R;j, Rij, and R indicate the curvature tensor with a type of (0,4), the Ricci tensor,
and the scalar curvature in that order. The appeal of this curvature tensor lies in its essence of:

1. Weyl curvature tensor [21, 28] for by = 1, b3 = by = —bp, = —bs = ﬁ, b; = m by =bg =

2. Conharmonic curvature tensor [17, 32] for by = 1, by = b5 = —b3 = —by = ;= 2, by =bg = b7 =

3. Concircular curvature tensor [12, 36] for by =1, by = n(g—ll), b = bz =b3 = b4 =bs=bg =

4. Semi-conformal curvature tensor [3, 18] for b, = bs = —b3 = —by = 2 by = = 1, by =bg =0,

5. Projective curvature tensor [27, 33] for by = 1, b5 = —b3 = Ll b1 »=by=bg=b; =0,

6. Wy—curvature tensor [24, 34] for by = 1, by = —=by = = 1, by =b3=bs=bg =b; =0,

7. Quasi-conformal curvature tensor [5, 14] for by = by = —b, = —bs, by = _71 (an"l + 2b3), by =bg =0,

8. M-Projective curvature tensor [7, 9] for by =1, by = bs = —b3 = —by = ﬁ, b1 =bg =b; =0,and

9. Pseudo-projective curvature tensor [15, 26] for b3 = —bs = ﬁ, b; = _71 (% + b3), by=by,=by=bs=0

According to the classification introduced by the author in [2], the manifold M falls into the category of
pseudo symmetric manifolds (PS), if its Riemann curvature tensor satisfies the following condition:

ViR = 2BuRijur + BiRnjui + BjRinkt + PrRijnt + BiRijins

where B; denotes a non-zero 1-form known as the “associated covector” and Vj, indicates the covariant
derivative relative to the metric tensor g. This concept has been generalized by many researchers, for
example see [10, 19, 25, 37, 38] and many others.

This work introduces a new extension of pseudo symmetric manifolds called pseudo S—symmetric
manifolds, denoted as (PSS),. These manifolds are characterized by the following condition:

ViSi = 2BuSiju + BiShjk + BjSinkt + PrSiu + PiSijrn- ()

In the domain of physics, a space-time can be defined as an n—dimensional Lorentzian manifold fur-
nished with a Lorentzian metric. A Lorentzian manifold M is referred to as a pseudo S—symmetric spacetime
when the S—tensor satisfies equation (2). For a perfect fluid space-time (PFS), the energy-momentum tensor
T exhibits the following arrangement [6, 11]:

Tjk = (U + p) /\j/\k + Pk, (3)

where 0, p, and A correspond to the energy density, the isotropic pressure, and a unit time-like vector field
or the velocity vector respectively. Moreover, ¢ and p are linked through the state equation represented
as p = p (o), with the PFS recognized as isentropic. Also, the PFS is classified as stiff matter when p = ¢.
When p + 0 = 0, the PFS signifies dark energy era. The PFS represents radiation era if 0 — 3p = 0 whereas it
represents quintessence era if 6 — 3p = 0 [8].

Multiplying Eq. (3) to g/, we infer that

=(n-1p-o )

where T = g/ T.
Einstein’s field equations EFEs with vanishing cosmological term is given as follows [28]:

Rjk - Zg]kR = KTjk, (5)

with «x being the gravitational constant. EFEs suggest that Tj is divergence-free, that is, V,, T} = 0. These
equations establish a relationship between the geometry of spacetime and its matter, meaning that matter
defines the geometry of spacetime, and vice versa.
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Transvecting Eq. (5) with g/, one detects that

2xT
R = .
o (6)

The generalized Robertson-Walker (GRW) space-time is derived from the warped product construction,
which merges a one-dimensional base manifold (symbolizing cosmic time) with g, = -1, along with a
(n — 1)-dimensional fiber manifold (representing space). The base manifold is commonly described using
a temporal coordinate, whereas the fiber manifold embodies the spatial slices at fixed intervals of time.
In mathematical terms, the GRW space-time can be represented as M = I X; M, where I denotes an open
connected interval of IR [22]. A Robertson-Walker (RW) space-time is a specific type of GRW space-time in
which the fiber manifold exhibits a constant sectional curvature [13].

This paper is structured as outlined below: Firstly, we explore characterizations of semi-Riemannian
manifolds when the S—tensor has a traceless decomposition. Following that, we investigate semi-Riemannian
manifolds with divergence-free S—tensor. Subsequently, we present pseudo S—symmetric semi-Riemannian
manifolds. Also, we provide several interesting results in spacetimes. Lastly, we introduce a concrete ex-
ample of pseudo S—symmetric semi-Riemannian manifolds.

2. Semi-Riemannian manifolds with traceless decomposition of the S—tensor

The current section discusses the properties of semi-Riemannian manifolds admitting traceless S—tensor.
The mathematical structure of a (1,3) S—tensor is as follows:

S?kl = bOR?kl + bl(s?Rkl + bz(SZle + b35?Rjk + b4g]'kR?

+b5gﬂRZ + b6gk1R§l + b7R (5?5]]']( - 529;‘1) .

It is easy to verify that
S, = (bo+by+Dbo+Dbs+Dbe+nbs) Ry + [bs + (n — 1) byl guR,
Sl = (b1 —bo+bs+by+be+nby) Ry + [bs — (n — 1) byl giR,
S, = (nby + Dby +bs + by + bs) Ry + beguR.

Obviously

S;kt = Sltdt’ S;tk = Sltctl’ Sikl = S;lk‘
As mentioned in [20], the S—tensor can be represented in the following form:
Sy = By + 01Cu + 5, Djy + 6/, (7)

where B?kl is an unique traceless (1,3) tensor and Cy, Dj, Ej are three unique (0,2) tensors. These (0,2)
tensors can be achieved in the following manner:

Cu = m[(”"‘l)siu_siﬁ_&tkt]r
= :b1+%] ” (nal_)l;;(;lfz_)m]mk&
D = m[—sgjl—s;ﬁ+(n+1)s§t,],
- et oy et e
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1 . ,
O = n-1)(n+2) [(n 1) Sji = S ~ Sltﬂ‘j] ,
bo 1 (bs + be) —2by (n+1)by—bs—bg
[b3+<n—1>+ (n—l)(n+2)] * [ ERIED) +b7]9ﬂ<K

Assume that the S—tensor is traceless, therefore
Cu=Dy=8Ey=0.

As a result, we obtain

le4+7’lb5—2b6 _ _(I’l+1)b6—b5—b4
[b” m-Dm+2) | T 7| T -Dm+2) ]g’kR’
bo T’Z(b4+b6)—2b5 _ —(1’1+1)b5—b4—b6 '
[bz_(n—1)+ (n—l)(n+2)] N N CECED) _b7]9ﬂR’
bo I’Z(b5+b6)—2b4 _ E(i’l+1)b4—b5—b6 '
bt (n—l)(n+2)] A T Y ) +b7]~‘7]"R'

These three equations show that the manifold is Einstein. ‘ ‘
Three different contractions of the previous three equations with g, g, and g/* imply

nm-1)(n+2)[by+b]R = 0O,
(71—1)(1’[+2) b2+b5—1’lb7—nb_01]R = 0,
n=-1)m+?2) b3+b4+nb7+%]R = 0.

Consequently, either the scalar curvature vanishes or

b = —bs,

bo

b2+b5 1

- (b3 + b4) =nby +
Thus, we can state

Theorem 2.1. A semi-Riemannian manifold of dimension > 3 with traceless S—tensor is Einstein. Moreover, either
the scalar curvature vanishes or

bi = -—bs

bo

b + bs 1

—(bg + b4) = I’lb7 +

3. The impact of the flatness of the S—tensor on semi-Riemannian manifolds

This section is dedicated to the investigation of S—curvature flat semi-Riemannian manifolds. A semi-
Riemannian manifold M is referred to as S—curvature flat when the S—tensor vanishes at each point of the
manifold.

Putting Sy = 01in Eq. (1), one can find

—=boRijw = b1gijRu + bagiRj1 + b3gaRjx + bag xRy
+b5g1Rix + beguRij + b7R (giigjk - !]ﬂgik).
Suppose that b is non-zero and define b; = 5—(‘) Therefore,

—Rij = b1gijRu + bagieRji + b3gaR i + bagixRi
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+b5giRik + beguRij + b7R (gilgjk - 9jl!7ik) :

Contracting with g and g/* respectively, we acquire that

(1 + by + Dy + nbs + bs + Bé)Rjk - [(n -1by + 54] gikR,

(1 + D1+ by +nby + bs + Eé)Rﬂ = - [(n -1by + 133]_171-,1{.
Transvecting Eq. (8) with ¢ and ¢/ respectively, we realize that

(—1 + by +nby +bs + by + 1_96) Ry = [(n -1)b, - 1_75] giR,

(—1 + by +nbs + by + by + 56) Ry = [(n -1)b, - Ez] gikR.
Contracting Eq. (8) with g7/ and g respectively, we get

(nEl +by+b3+ by + E;,)Rkl = —beguR,

(nEé +by+bs+bs+ B5)Rij = -bigiR.
The equations presented above demonstrate the following:

n (1_73 - 134) Ry = (53 - 54) gixR,

n(bo=bs)Ryx = (b2—bs)giR,

n(by-be) Ry = (b1 —be) guR.

If any of the conditions by # by, by # bs or by # by is satisfied, then

R
Rij = - Jiis

which illustrates that the manifold is Einstein.
Otherwise, if b3 = by, by = bs, and by = bg. Then
(1+2B1 +2by + nbs) Ry = - [(n ~ )by + 133] giR,
(~1+ 2By +nby +2b3) R; [(n -1)b, - 132] iR,
(nz'a1 + 2Dy + 2153)Rkl = —biguR.

Performing contractions of the foregoing three equations, we get

142, +2b, + 2nbs + n(n - 1) ;| R = 0,
[—1+251+2nl_72+21_73—n(n—1)57]R = 0,
[2n1_71+252+253]R = 0.

If R # 0, then Egs. (21), (22), and (23) provide us with the following information

251 + 21_72 + 21’11_?3 +n (7’1 - 1) 57
251 + 21’11_72 + 21_73 - 1’1(1’[ - 1) 57
21/117)1 + 2?]2 + ZE3

-1,
1,
0.

Solving the previous three equations, we find that

9065

©)
(10)

(11)
(12)

(13)
(14)

(15)
(16)
(17)

(18)
(19)
(20)

(21)
(22)
(23)
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- - 1 nx
bz = —b3 = 2(71——1) + Eb7

Consequently, Eq. (18) becomes

R
Rjc = —gie

this shows that the manifold is Einstein.
Lemma 3.1. A S—curvature flat semi-Riemannian manifold with non-zero scalar curvature is Einsteinian.

It is important to show that for by = by, by = bs, and by = bs we have

- - -1 _
b3 + b4 = (1’[ — 1) — I’lb7,
_ _ 1 _
bz + b5 = (1’1 — 1) + nb%
El + 56 = 0.

Consequently, Eq. (8) becomes

R
Rz‘jkl = m (gjkgil - yjl!]ik) ’

which clarifies that the manifold is of constant sectional curvature.
Thus, we can derive

Theorem 3.2. A S—curvature flat semi-Riemannian manifold with non-zero scalar curvature is of constant sectional
curvature.

Since the spacetime is of constant sectional curvature, therefore the spacetime becomes conformally flat
and hence the 4-dimensional spacetime is of Petrov type O.

Corollary 3.3. A 4—dimensional S—curvature spacetime is of Petrov type O.

Corollary 3.4. A S—curvature flat space-time corresponds to the de Sitter space-time for R > 0, whereas it corre-
sponds to the anti-de Sitter space-time for R < 0.

It is widely realized that a 4—dimensional space-time with constant sectional curvature possesses a
maximum of 10—parameter group of isometries, indicating its homogeneous nature.
Thus, we have

Corollary 3.5. A 4—dimensional S—curvature flat space-time with positive scalar curvature transforms into a
homogenous space-time.

As previously stated, a S—curvature flat manifold is Einstein. This finding can be employed in Eq (5) to
introduce

_(2-mR

Ty = Tjk- (24)

2nk

Applying the operator V), to Eq. (24) yields the following results
Vh T]'k = O,

this indicates that T} is covariantly constant.
Thus, we get
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Corollary 3.6. The energy-momentum tensor of S—curvature flat space-time is covariantly constant.
Remark 3.7. Chaki and Ray [1] conducted a study on space-times in which T is covariantly constant.
Using Eq. (24) in Eq. (3), it arises

2-n)R

(0 + P) A]'Ak + ngk = K

Gjk-

By contracting the preceding equation with g/* and A*, we can derive that

2
—o+(n-Dp = = "R, (25)
-2
o = 1”%R (26)
2nk
Employing Eq. (26) in Eq. (25), one sees that
n-—2
=- R
P 2nx
By merging the previous two equations, we can obtain the following outcome:
o+p=0,
this illustrates that the space-time represents dark matter era [31].
Theorem 3.8. A S—curvature flat PFS spacetime of non-zero scalar curvature denotes dark matter era.
From the foregoing Lemma, it follows that in a S—curvature flat semi-Riemannian manifold Cf’],k W= 0,

Ci?jk denotes the Weyl tensor. In [23], Mantica et al. proved that a PFS with Cf’jk , = 0is a GRW space-

time. Therefore, the S—curvature flat PFS spacetime is a GRW space-time. Also, it is known that [16] a
4—dimensional GRW spacetime is a PFS if and only if it is RW spacetime.
Hence, we can state

Theorem 3.9. A S—curvature flat PES spacetime is a GRW spacetime and in dimension 4, the spacetime becomes
RW spacetime.

4. Semi-Riemannain manifold with divergence-free S—tensor

In this section, characterizations of semi-Riemannain manifolds with divergence-free S—tensor are
investigated.
The S—tensor can be written as

S?kl = bOR?kl + blé?Rkl + bzéZR]l + bg(s?Rjk + l?;ngkRIl1
+b5gﬂR2 + b6gklR]]/rl + b7R (6?‘9]7( - (Sllzgﬂ) .
The divergence of the S—tensor is
VhS’]?kl = bovhR?kl + b1Vijl + bZVkle + bslejk + b4gjkvhR;1
+b5g]~thRZ + bﬁglehR’j? + b7gjkV1R - b7gj1VkR.
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It is known that VhR;lkl = ViRjx = ViR and VhR? = %VjR, thus
b
vhs?kl = blijkl + (bz - bo) VkR]'l + (b3 + bo) V]R]'k + fgklij
b b
+ (34 + b7) gixVIR + (55 - b7) giViR. 27)
If the divergence S—tensor is zero, then
b
0 = b1Vijl + (by — by) VkR]‘l + (b3 + by) V[Rjk + fgklij
by bs
+ E + by gjkle + ? —by gﬂka. (28)

Transvecting with g¥, g/, and g/, one uncovers that

[2b1 + by +b3 +b4+b5 +1’lb6] V]R = 0,
[b1+2b2+b3+b4+1’lb5+b6+2(1—n)b7—b0]ka = 0,
[b1+b2+2b3+1’lb4+b5+b6+2(1’l—1)b7+b0]le = 0.

Consequently, the scalar curvature is constant or

2b1+b2+b3+b4+b5+1’lb6 = 0,
bl+2b2+b3+b4+1’lb5+b6+2(1—i’l)b7 = bo,
bl+b2+2b3+7’lb4+b5+b6+2(7‘l—1)b7 = —bo.

Hence, we can state

Theorem 4.1. In a pseudo-Riemannian manifold M with divergence-free of the S—tensor, either the scalar curvature
R remains constant or the following conditions are satisfied

2b1+b2+b3+b4+b5+1’lb6 = 0,
b1+2b2+b3+b4+nb5+b6+2(1—n)b7 = bo,
bl+b2+2b3+nb4+b5+b6+2(n—1)b7 = —bo.

Utilizing Egs. (5) and (6) in (27), we reveal that
VhS’;kl = K{[b1Vkal + (b2 - b()) VkT]'l + (b3 + bo) V,T]k]

1
=5 [(b1+b6) VT + (b2 = bo + bs = 2b7) 7 VieT
+ (b?, + b() + by + 2b7) g]kVIT]}

Suppose that VhS?kl = 0, thus the preceding equation simplify to
0 = [b1Vka1 + (b — bo) VkT]'l + (b3 + by) V]Tjk]

1
—m[(bl +bs) g VT + (by — by + bs — 2b7) g Vi T
+ (b3 +bg + by + 2b7) g]leT] (29)

Contracting with gkl, one acquires that

[2b1 +by + b3 + by + b5 + leé] V]T =0.
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If 2b1 + by + b3 + by + bs + nbg # 0, thus
VT =0.
Consequently, Eq. (29) reduces to
b1V Ty + (b2 — bo) ViTj + (b3 + bo) ViTj = 0.
Inserting Eq. (3) in Eq. (31), we infer that
0 = b [MAVi(o+p)+(0+p) MViAr + (0 + ) AeVidi + gaVjp)
+ (b2 = bo) [LjAVic (0 + p) + (0 + p) AVids + (0 + p) AiViA; + g Vip ]
+ (b3 + by) [)\jAle (c+p)+ (0 +p)AVIA + (0 +p) 4VIA; + gjkvlp] .
Transvecting with A/, it arises

0 = bk [/\l/\k(a +p) + (0 +p) VA + (0 +p) A + gklp]
+ (bz — bo) [/\Nkp - )\,Vk (O + p) - (O + p) vk/\l]
+ (b3 + bo) [Alep - AV (U + p) - (U + p) Vl/\k] .

Two different contractions with AF and g’ imply

—le + PA],

(G+p)Al
6 = —(o+p)n,

where 1 = V;A! denotes the expansion scalar.
Using Eq. (33) in Eq. (32), one deduces that

0 = I [/\lAk('F + 3)\1)\147 - /\Nkp - Alep + gklﬁ]
+ (bz - bo) [Alep - )\Nk ((7 + p) - (G + p) Vk/\l]
+ (b3 + bo) [/\kvlp - AV (G + p) - (G + p) V]/\k] .

Multiplying with g€, with the assistance of Eq. (34), we conclude that
bi[-6+(n-5)p]=0,

provides by # 0, thus
(n=-5p-6=0.

By applying V; to Eq. (4), we can derive
ViT=-Vie+n—-1)Vjp.

Inserting Eq. (30) in Eq. (36), one gets
(n-1)Vp-Vioc=0.

Transvecting with A', we conclude that
n-1)p-6=0.

Merging Eq. (35) in Eq. (36), one infers that
p =0

9069

(30)

(31)

(32)

(33)
(34)

(35)

(36)

(37)
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o = 0.
Consequently

p = constant,

0 = constant.

In particular, if we choose by =1, b, = 3, by = 1, and b3 = 1, then Eq. (31) turns into
V]'Tkl + VkTﬂ + V[Tjk =0,

this suggests that T; is Killing [35].

In [30], the authors proved that in a PFS if Tj; is Killing, then the spacetime is expansion-free and
shear-free and its flow is geodesic, but not necessary vorticity-free.

Thus, we can derive

Theorem 4.2. A perfect fluid space-time with VhS?kl = 0 is expansion-free and shear-free and its flow is geodesic,
but not necessary vorticity-free, under certain restriction.

5. On pseudo S—symmetric semi-Riemannian manifolds

Here, we investigate some general properties of pseudo S—symmetric semi-Riemannian manifolds.
Utilizing Eq. (1) in Eq. (2) and assuming that by is non-zero and b; = f—é, thus
[VhRijkl = 2BnRijui — BiRnjkr — BiRinki — PrRiji — ﬁlRijkh]
= b [!]ij (2B = Vi) R + BignjRu + B;ginRia + PrgijRu + ﬂl!]inkh]
+by [ gik 2Bn — Vi) Rjy + BigmcRj1 + BjgicRu + BrginRj + ﬁlgikth]
+b; [{]11 (2B = Vi) Rix + BiguRjx + B;giaRuk + PrgiaRjn + ﬁzgihRjk]
+by [{] ik (2Br = Vi) Ri + Big kR + BigmRi + BrgnRit + p1g ijih]
+bs [9]1 (2B = Vi) Rix + BigiRuk + BjgnRix + PrgjiRin + ﬁzgthik]
+bg [f]kl (2B1 = Vi) Rij + BiguRpj + BiguRin + PrgmRij + ﬁlf]thij]
+b7A(9a95 — 919%) (2Bn = Vi) R + BiR (9ugjx — 93191k
+BiR (gugnk — gngic) + PR (91'19 in = gjzgih) + IR (!]ihg ik — gjhgik)}~ (38)
Multiplying with g, we deduce that
[VhRjk — 28Rk = BiRik — BkRjn = B'Rujua — ﬂiRijkh]
= b1[(2Br — Vi) Rix + 2B;Ruc + BeRj + B'gnRu]
+b2 [(2B1 = Vi) Rjk + B'gucR s + BiRiuk + 2BcRjn
+bs [ (211 + 2By — nV4) Ry + 1R + npiRjn]
+D. (281 = Vi) gicR + (B + Begin) R + B'jeRus + B'9cRin]
+b5 [(2B1 — Vi) Ryt + 28Ry + BiRji + B 1Rt
+Dg [(Zﬁh — Vi) R + 2BkRjj + BiRy + B gth,]]
a

+b 7 - Tl) g]'thR + Znﬁhgij + (1’1 - 2) (ﬁjghkR + ﬁkgth)] .
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Transvecting with g/¥, we obtain
[1 + D1 + by + bs + bg + nbs +nE4+n(n—1)Ey]VhR
=2 (2 + 2By + 2B, + 2bs + 2b + nbs + by | B R
= 2[1 + by +EZ+E3+E4+E5+Eé+n(E3 +134)+(n—1)(n+2)57]ﬁh12.
We define y as follows:

1+El+Ez+E3+E4+E5+E6+n(E3+E4)+(n—1)(n+2)l_77

y=-

7

2+2l_11+21_72+21_75+ZE6+7’[(E3+E4)

where the denominator is non-zero.
Assume that R is constant, hence

BRix = YRy, 39

this indicates that g* performs as an eigenvector of Ry, with a corresponding eigenvalue equals yR.
Consequently, we get

Theorem 5.1. In a (PSS), manifold, B* is an eigenvector of Ry and its eigenvalue equals yR.

As mentioned above, a semi-Riemannian manifold M with traceless S—tensor is an Einstein manifold.
As aresult, Eq. (38) simplifies to the following expression:

[VhRijkl = 2BnRijii — BiRnujkr — BjRinki — PrRiji — ﬁlRijkh]

= {(El + 1_76) Iugij + (Ez + 1_75) gigji + (53 + 54) gikgi + nl_77gilgjk
—nbzgjgi} (2n — Vi) % + ﬁz’%{(l_ﬁ + Bs) gjgia + (B2 + Bs) gy
+ (1_73 + 1_74) gugjk + nby (ghlf]jk - gﬂghk)} + ﬁjg{@l + E6) ik
+ (52 + 55) JikIn + (1_73 + 1_74) JilJnk + nby (gilghk - ghlgz‘k)}
+,3k§{<51 + Eé)gi]‘ghl + (52 + 1_75) gingj + (53 + 54) gagjn + nbrgagjn
—nbyg;igin} + ﬁlg{(El + 1_76) GijJn + (1_72 + ES)gikgjh + (53 + 1_74) gingik
+nby ({]ih!]jk - gjhgik)}-

Hence, we can state
Theorem 5.2. A (PSS), manifold with traceless S—tensor reduces to (PS), manifold iff the scalar curvature vanishes.
Adding Eq. (3) to Eq. (5), one sees that
Ry — %ghkR =« (0 + p) PuPr + KPGik- (40)

Transvecting with g and employing Eq. (39), we uncover that

3o)8
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hk

Again, contracting Eq. (40) with g™, one discovers that

(1—g)§=—a+(rz—l)p. (42)

Substituting from Eq. (41) in Eq. (42), we get

B-n-2y)
2n-Dx P (43)

Hence, we can derive

Theorem 5.3. The isotropic pressure p and the energy density o for a perfect fluid (PSS), manifold given by Egs.
(41) and (43).

Remark 5.4. Since p and o are not constant, therefore the spacetime under consideration is conformity with the
present state of the universe.

In virtue of Egs. (41) and (43), one deduces that

p By

0[5 -m-1)y]

Consequently we have the following table:

The space-time EoS
represents quintessence era | 0 +3p =0 %
represents dust matter era p=0 3%”
represents radiation era 0-3p=0] 32
represents dark matterera | o+p=0 | 1

6. Example

In this section, a example of pseudo S—symmetric semi-Riemannian manifolds is introduced. Let us
now make the assumption that the manifold M is of dimension 4 and equipped with a metric g, which can
be expressed in the following manner:

ds? = ghkdxhdxk = (dxl)2 + (xl)2 (dx2)2 + (x2)2 (dx3)2 - (dx“)2 , Yhk=1,23,4.
Christoffel symbols F;.k have the following non-zero components:

2

—X
==, Th== Th=—7 Ip=-x
23 27 12 17 33 27 22 .
X X (xl)
Consequently, it arises
2
- x
Ri2 == Rizsy = — -
xlx2’ x!

It is observed that

R =0.
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The non-zero component of the S—tensor is

bo + by) x*
S = - T (44)

and its covariant derivatives are expressed as

bo + by) x? by +b
ViSizz = %, VaSizz = —M- (45)
(x!) X
Choosing the associated covector §; as given in the subsequent form:
= i=1
Bi(x) = 5= i=2 . (46)
0 otherwise
In view of Eq. (2), we get
ViSizz2 = 2B1S1332 + f1S1332 + B3S1132 + P3S1312 + P2S1331- (47)
VoSiz2 = 26281332 + 1S3 + B3S1232 + B3S1322 + f2S1332- (48)
Using Eqgs. (44) and (46) in Egs. (47) and (48), one infers
bo + by) x*
ViSizz = 3p1Su = % (49)
(1)
bo+0b
VoS3 = 3f2Siz = —%- (50)

Thus, the considered manifold is a 4—dimensional (PSS)4 semi-Riemannian manifold.
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