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Abstract. This article introduces a new curvature tensor, the S−curvature tensor, which is seen as a
comprehensive extension of various curvature tensors. It is demonstrated that a semi-Riemannian manifold
with tracelessS−curvature tensor is Einstein. It is proved that aS−curvature flat semi-Riemannian manifold
is of constant sectional curvature. Moreover, we show that a perfect fluid S−curvature flat space-time
represents dark matter era. It is shown that a perfect fluid spacetime with ∇hS

h
jkl = 0 is expansion-free and

shear-free and its flow is geodesic, but not necessary vorticity-free. We show that a pseudo S−symmetric
manifold is reduced to pseudo symmetric manifold if and only if the scalar curvature is constant. Finally,
a concrete example of pseudo S−symmetric manifolds is introduced.

1. Introduction

Curvature invariants are essential tools in both differential geometry and general relativity, providing
valuable geometric and physical insights into the curvature of spacetime, the structure of manifolds, and
the behavior of matter and energy in gravitational fields. Their coordinate independence and geometric
significance make them indispensable for studying the fundamental properties of space and the nature of
gravity. In semi-Riemannian geometry, these invariants are scalar values created from a variety of curvature
tensors, with the most well-known ones being the Riemann, Ricci, and Weyl tensors (for example see [4]).

Inspired by the significance of the curvature tensors in differential geometry and general relativity, we
propose a novel curvature tensor known as the S−tensor, which is defined as follows:

Si jkl = b0Ri jkl + b11i jRkl + b21ikR jl + b31ilR jk + b41 jkRil

+b51 jlRik + b61klRi j + b7R
(
1il1 jk − 1 jl1ik

)
, (1)
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with bi being constants, Ri jkl, Ri j, and R indicate the curvature tensor with a type of (0, 4), the Ricci tensor,
and the scalar curvature in that order. The appeal of this curvature tensor lies in its essence of:

1. Weyl curvature tensor [21, 28] for b0 = 1, b3 = b4 = −b2 = −b5 =
1

n−2 , b7 =
−1

(n−1)(n−2) , b1 = b6 = 0,

2. Conharmonic curvature tensor [17, 32] for b0 = 1, b2 = b5 = −b3 = −b4 =
1

n−2 , b1 = b6 = b7 = 0,
3. Concircular curvature tensor [12, 36] for b0 = 1, b7 =

−1
n(n−1) , b1 = b2 = b3 = b4 = b5 = b6 = 0,

4. Semi-conformal curvature tensor [3, 18] for b2 = b5 = −b3 = −b4 =
b0

n−2 , b7 =
−b8
n−1 , b1 = b6 = 0,

5. Projective curvature tensor [27, 33] for b0 = 1, b5 = −b3 =
1

n−1 , b1 = b2 = b4 = b6 = b7 = 0,
6. W2−curvature tensor [24, 34] for b0 = 1, b2 = −b4 =

1
n−1 , b1 = b3 = b5 = b6 = b7 = 0,

7. Quasi-conformal curvature tensor [5, 14] for b3 = b4 = −b2 = −b5, b7 =
−1
n

(
b0

n−1 + 2b3

)
, b1 = b6 = 0,

8. M−Projective curvature tensor [7, 9] for b0 = 1, b2 = b5 = −b3 = −b4 =
1

2(n−1) , b1 = b6 = b7 = 0, and

9. Pseudo-projective curvature tensor [15, 26] for b3 = −b5 =
1

n−1 , b7 =
−1
n

(
b0

n−1 + b3

)
, b1 = b2 = b4 = b6 = 0.

According to the classification introduced by the author in [2], the manifold M falls into the category of
pseudo symmetric manifolds (PS)n if its Riemann curvature tensor satisfies the following condition:

∇hRi jkl = 2βhRi jkl + βiRhjkl + β jRihkl + βkRi jhl + βlRi jkh,

where βi denotes a non-zero 1−form known as the ”associated covector” and ∇h indicates the covariant
derivative relative to the metric tensor 1. This concept has been generalized by many researchers, for
example see [10, 19, 25, 37, 38] and many others.

This work introduces a new extension of pseudo symmetric manifolds called pseudo S−symmetric
manifolds, denoted as (PSS)n. These manifolds are characterized by the following condition:

∇hSi jkl = 2βhSi jkl + βiShjkl + β jSihkl + βkSi jhl + βlSi jkh. (2)

In the domain of physics, a space-time can be defined as an n−dimensional Lorentzian manifold fur-
nished with a Lorentzian metric. A Lorentzian manifold M is referred to as a pseudoS−symmetric spacetime
when theS−tensor satisfies equation (2). For a perfect fluid space-time (PFS), the energy-momentum tensor
T jk exhibits the following arrangement [6, 11]:

T jk =
(
σ + p

)
λ jλk + p1 jk, (3)

where σ, p, and λk correspond to the energy density, the isotropic pressure, and a unit time-like vector field
or the velocity vector respectively. Moreover, σ and p are linked through the state equation represented
as p = p (σ), with the PFS recognized as isentropic. Also, the PFS is classified as stiff matter when p = σ.
When p + σ = 0, the PFS signifies dark energy era. The PFS represents radiation era if σ − 3p = 0 whereas it
represents quintessence era if σ − 3p = 0 [8].

Multiplying Eq. (3) to 1 jk, we infer that

T = (n − 1) p − σ, (4)

where T = 1 jkT jk.
Einstein’s field equations EFEs with vanishing cosmological term is given as follows [28]:

R jk −
1
2
1 jkR = κT jk, (5)

with κ being the gravitational constant. EFEs suggest that T jk is divergence-free, that is, ∇mTm
k = 0. These

equations establish a relationship between the geometry of spacetime and its matter, meaning that matter
defines the geometry of spacetime, and vice versa.
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Transvecting Eq. (5) with 1 jk, one detects that

R =
2κT
2 − n

. (6)

The generalized Robertson-Walker (GRW) space-time is derived from the warped product construction,
which merges a one-dimensional base manifold (symbolizing cosmic time) with 1tt = −1, along with a
(n − 1)-dimensional fiber manifold (representing space). The base manifold is commonly described using
a temporal coordinate, whereas the fiber manifold embodies the spatial slices at fixed intervals of time.
In mathematical terms, the GRW space-time can be represented as M = I × f M̃, where I denotes an open
connected interval of R [22]. A Robertson-Walker (RW) space-time is a specific type of GRW space-time in
which the fiber manifold exhibits a constant sectional curvature [13].

This paper is structured as outlined below: Firstly, we explore characterizations of semi-Riemannian
manifolds when theS−tensor has a traceless decomposition. Following that, we investigate semi-Riemannian
manifolds with divergence-freeS−tensor. Subsequently, we present pseudoS−symmetric semi-Riemannian
manifolds. Also, we provide several interesting results in spacetimes. Lastly, we introduce a concrete ex-
ample of pseudo S−symmetric semi-Riemannian manifolds.

2. Semi-Riemannian manifolds with traceless decomposition of the S−tensor

The current section discusses the properties of semi-Riemannian manifolds admitting tracelessS−tensor.
The mathematical structure of a (1, 3) S−tensor is as follows:

S
h
jkl = b0Rh

jkl + b1δ
h
j Rkl + b2δ

h
kR jl + b3δ

h
l R jk + b41 jkRh

l

+b51 jlRh
k + b61klRh

j + b7R
(
δh

l 1 jk − δ
h
k1 jl

)
.

It is easy to verify that

S
t
lkt = (b0 + b1 + b2 + b5 + b6 + nb3) Rlk + [b4 + (n − 1) b7] 1lkR,

S
t
ltk = (b1 − b0 + b3 + b4 + b6 + nb2) Rlk + [b5 − (n − 1) b7] 1lkR,

S
t
tkl = (nb1 + b2 + b3 + b4 + b5) Rkl + b61klR.

Obviously

S
t
lkt = S

t
klt,S

t
ltk = S

t
ktl, S

t
tkl = S

t
tlk.

As mentioned in [20], the S−tensor can be represented in the following form:

S
m
jkl = B

h
jkl + δ

h
jCkl + δ

h
kD jl + δ

h
l E jk, (7)

where Bh
jkl is an unique traceless (1, 3) tensor and Ckl, D jl, E jk are three unique (0, 2) tensors. These (0, 2)

tensors can be achieved in the following manner:

Ckl =
1

(n − 1) (n + 2)

[
(n + 1)St

tkl − S
t
ktl − S

t
lkt

]
,

=

[
b1 +

nb4 + nb5 − 2b6

(n − 1) (n + 2)

]
Rkl +

[
(n + 1) b6 − b5 − b4

(n − 1) (n + 2)

]
1lkR,

D jl =
1

(n − 1) (n + 2)

[
−S

t
t jl − S

t
l jt + (n + 1)St

jtl

]
,

=

[
b2 −

b0

(n − 1)
+

n (b4 + b6) − 2b5

(n − 1) (n + 2)

]
R jl +

[
(n + 1) b5 − b4 − b6

(n − 1) (n + 2)
− b7

]
1 jlR,
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E jk =
1

(n − 1) (n + 2)

[
(n + 1)St

jkt − S
t
tk j − S

t
kt j

]
,

=

[
b3 +

b0

(n − 1)
+

n (b5 + b6) − 2b4

(n − 1) (n + 2)

]
R jk +

[
(n + 1) b4 − b5 − b6

(n − 1) (n + 2)
+ b7

]
1 jkR.

Assume that the S−tensor is traceless, therefore

Ckl = Dkl = Ekl = 0.

As a result, we obtain[
b1 +

nb4 + nb5 − 2b6

(n − 1) (n + 2)

]
Rkl = −

[
(n + 1) b6 − b5 − b4

(n − 1) (n + 2)

]
1lkR,[

b2 −
b0

(n − 1)
+

n (b4 + b6) − 2b5

(n − 1) (n + 2)

]
R jl = −

[
(n + 1) b5 − b4 − b6

(n − 1) (n + 2)
− b7

]
1 jlR,[

b3 +
b0

(n − 1)
+

n (b5 + b6) − 2b4

(n − 1) (n + 2)

]
R jk = −

[
(n + 1) b4 − b5 − b6

(n − 1) (n + 2)
+ b7

]
1 jkR.

These three equations show that the manifold is Einstein.
Three different contractions of the previous three equations with 1kl, 1 jl, and 1 jk imply

(n − 1) (n + 2) [b1 + b6] R = 0,

(n − 1) (n + 2)
[
b2 + b5 − nb7 −

b0

n − 1

]
R = 0,

(n − 1) (n + 2)
[
b3 + b4 + nb7 +

b0

n − 1

]
R = 0.

Consequently, either the scalar curvature vanishes or

b1 = −b6,

b2 + b5 = − (b3 + b4) = nb7 +
b0

n − 1
.

Thus, we can state

Theorem 2.1. A semi-Riemannian manifold of dimension ≥ 3 with traceless S−tensor is Einstein. Moreover, either
the scalar curvature vanishes or

b1 = −b6

b2 + b5 = − (b3 + b4) = nb7 +
b0

n − 1
.

3. The impact of the flatness of the S−tensor on semi-Riemannian manifolds

This section is dedicated to the investigation of S−curvature flat semi-Riemannian manifolds. A semi-
Riemannian manifold M is referred to as S−curvature flat when the S−tensor vanishes at each point of the
manifold.

Putting Si jkl = 0 in Eq. (1), one can find

−b0Ri jkl = b11i jRkl + b21ikR jl + b31ilR jk + b41 jkRil

+b51 jlRik + b61klRi j + b7R
(
1il1 jk − 1 jl1ik

)
.

Suppose that b0 is non-zero and define b̄i =
bi
b0

. Therefore,

−Ri jkl = b̄11i jRkl + b̄21ikR jl + b̄31ilR jk + b̄41 jkRil
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+b̄51 jlRik + b̄61klRi j + b̄7R
(
1il1 jk − 1 jl1ik

)
. (8)

Contracting with 1il and 1 jk respectively, we acquire that(
1 + b̄1 + b̄2 + nb̄3 + b̄5 + b̄6

)
R jk = −

[
(n − 1) b̄7 + b̄4

]
1 jkR, (9)(

1 + b̄1 + b̄2 + nb̄4 + b̄5 + b̄6

)
Ril = −

[
(n − 1) b̄7 + b̄3

]
1ilR. (10)

Transvecting Eq. (8) with 1ik and 1 jl respectively, we realize that(
−1 + b̄1 + nb̄2 + b̄3 + b̄4 + b̄6

)
R jl =

[
(n − 1) b̄7 − b̄5

]
1 jlR, (11)(

−1 + b̄1 + nb̄5 + b̄3 + b̄4 + b̄6

)
Rik =

[
(n − 1) b̄7 − b̄2

]
1ikR. (12)

Contracting Eq. (8) with 1i j and 1kl respectively, we get(
nb̄1 + b̄2 + b̄3 + b̄4 + b̄5

)
Rkl = −b̄61klR, (13)(

nb̄6 + b̄2 + b̄3 + b̄4 + b̄5

)
Ri j = −b̄11i jR. (14)

The equations presented above demonstrate the following:

n
(
b̄3 − b̄4

)
R jk =

(
b̄3 − b̄4

)
1 jkR, (15)

n
(
b̄2 − b̄5

)
R jk =

(
b̄2 − b̄5

)
1 jkR, (16)

n
(
b̄1 − b̄6

)
R jk =

(
b̄1 − b̄6

)
1 jkR. (17)

If any of the conditions b̄3 , b̄4, b̄2 , b̄5 or b̄1 , b̄6 is satisfied, then

Ri j =
R
n
1i j,

which illustrates that the manifold is Einstein.
Otherwise, if b̄3 = b̄4, b̄2 = b̄5, and b̄1 = b̄6. Then(

1 + 2b̄1 + 2b̄2 + nb̄3

)
R jk = −

[
(n − 1) b̄7 + b̄3

]
1 jkR, (18)(

−1 + 2b̄1 + nb̄2 + 2b̄3

)
R jl =

[
(n − 1) b̄7 − b̄2

]
1 jlR, (19)(

nb̄1 + 2b̄2 + 2b̄3

)
Rkl = −b̄11klR. (20)

Performing contractions of the foregoing three equations, we get[
1 + 2b̄1 + 2b̄2 + 2nb̄3 + n (n − 1) b̄7

]
R = 0, (21)[

−1 + 2b̄1 + 2nb̄2 + 2b̄3 − n (n − 1) b̄7

]
R = 0, (22)[

2nb̄1 + 2b̄2 + 2b̄3

]
R = 0. (23)

If R , 0, then Eqs. (21), (22), and (23) provide us with the following information

2b̄1 + 2b̄2 + 2nb̄3 + n (n − 1) b̄7 = −1,
2b̄1 + 2nb̄2 + 2b̄3 − n (n − 1) b̄7 = 1,

2nb̄1 + 2b̄2 + 2b̄3 = 0.

Solving the previous three equations, we find that

b̄1 = 0,
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b̄2 = −b̄3 =
1

2 (n − 1)
+

n
2

b̄7.

Consequently, Eq. (18) becomes

R jk =
R
n
1 jk,

this shows that the manifold is Einstein.

Lemma 3.1. A S−curvature flat semi-Riemannian manifold with non-zero scalar curvature is Einsteinian.

It is important to show that for b̄3 = b̄4, b̄2 = b̄5, and b̄1 = b̄6 we have

b̄3 + b̄4 =
−1

(n − 1)
− nb̄7,

b̄2 + b̄5 =
1

(n − 1)
+ nb̄7,

b̄1 + b̄6 = 0.

Consequently, Eq. (8) becomes

Ri jkl =
R

n (n − 1)

(
1 jk1il − 1 jl1ik

)
,

which clarifies that the manifold is of constant sectional curvature.
Thus, we can derive

Theorem 3.2. AS−curvature flat semi-Riemannian manifold with non-zero scalar curvature is of constant sectional
curvature.

Since the spacetime is of constant sectional curvature, therefore the spacetime becomes conformally flat
and hence the 4−dimensional spacetime is of Petrov type O.

Corollary 3.3. A 4−dimensional S−curvature spacetime is of Petrov type O.

Corollary 3.4. A S−curvature flat space-time corresponds to the de Sitter space-time for R ≻ 0, whereas it corre-
sponds to the anti-de Sitter space-time for R ≺ 0.

It is widely realized that a 4−dimensional space-time with constant sectional curvature possesses a
maximum of 10−parameter group of isometries, indicating its homogeneous nature.

Thus, we have

Corollary 3.5. A 4−dimensional S−curvature flat space-time with positive scalar curvature transforms into a
homogenous space-time.

As previously stated, a S−curvature flat manifold is Einstein. This finding can be employed in Eq (5) to
introduce

T jk =
(2 − n) R

2nκ
1 jk. (24)

Applying the operator ∇h to Eq. (24) yields the following results

∇hT jk = 0,

this indicates that T jk is covariantly constant.
Thus, we get
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Corollary 3.6. The energy-momentum tensor of S−curvature flat space-time is covariantly constant.

Remark 3.7. Chaki and Ray [1] conducted a study on space-times in which T jk is covariantly constant.

Using Eq. (24) in Eq. (3), it arises

(
σ + p

)
λ jλk + p1 jk =

(2 − n) R
2nκ

1 jk.

By contracting the preceding equation with 1 jk and λk, we can derive that

−σ + (n − 1) p =
2 − n

2κ
R, (25)

σ =
n − 2
2nκ

R. (26)

Employing Eq. (26) in Eq. (25), one sees that

p = −
n − 2
2nκ

R.

By merging the previous two equations, we can obtain the following outcome:

σ + p = 0,

this illustrates that the space-time represents dark matter era [31].

Theorem 3.8. A S−curvature flat PFS spacetime of non-zero scalar curvature denotes dark matter era.

From the foregoing Lemma, it follows that in a S−curvature flat semi-Riemannian manifold Ch
ijk,h = 0,

C
h
ijk denotes the Weyl tensor. In [23], Mantica et al. proved that a PFS with Ch

ijk,h = 0 is a GRW space-
time. Therefore, the S−curvature flat PFS spacetime is a GRW space-time. Also, it is known that [16] a
4−dimensional GRW spacetime is a PFS if and only if it is RW spacetime.

Hence, we can state

Theorem 3.9. A S−curvature flat PFS spacetime is a GRW spacetime and in dimension 4, the spacetime becomes
RW spacetime.

4. Semi-Riemannain manifold with divergence-free S−tensor

In this section, characterizations of semi-Riemannain manifolds with divergence-free S−tensor are
investigated.

The S−tensor can be written as

S
h
jkl = b0Rh

jkl + b1δ
h
j Rkl + b2δ

h
kR jl + b3δ

h
l R jk + b41 jkRh

l

+b51 jlRh
k + b61klRh

j + b7R
(
δh

l 1 jk − δ
h
k1 jl

)
.

The divergence of the S−tensor is

∇hS
h
jkl = b0∇hRh

jkl + b1∇ jRkl + b2∇kR jl + b3∇lR jk + b41 jk∇hRh
l

+b51 jl∇hRh
k + b61kl∇hRh

j + b71 jk∇lR − b71 jl∇kR.
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It is known that ∇hRh
jkl = ∇lR jk − ∇kR jl and ∇hRh

j =
1
2∇ jR, thus

∇hS
h
jkl = b1∇ jRkl + (b2 − b0)∇kR jl + (b3 + b0)∇lR jk +

b6

2
1kl∇ jR

+

(
b4

2
+ b7

)
1 jk∇lR +

(
b5

2
− b7

)
1 jl∇kR. (27)

If the divergence S−tensor is zero, then

0 = b1∇ jRkl + (b2 − b0)∇kR jl + (b3 + b0)∇lR jk +
b6

2
1kl∇ jR

+

(
b4

2
+ b7

)
1 jk∇lR +

(
b5

2
− b7

)
1 jl∇kR. (28)

Transvecting with 1kl, 1 jl, and 1 jk, one uncovers that

[2b1 + b2 + b3 + b4 + b5 + nb6]∇ jR = 0,
[b1 + 2b2 + b3 + b4 + nb5 + b6 + 2 (1 − n) b7 − b0]∇kR = 0,
[b1 + b2 + 2b3 + nb4 + b5 + b6 + 2 (n − 1) b7 + b0]∇lR = 0.

Consequently, the scalar curvature is constant or

2b1 + b2 + b3 + b4 + b5 + nb6 = 0,
b1 + 2b2 + b3 + b4 + nb5 + b6 + 2 (1 − n) b7 = b0,

b1 + b2 + 2b3 + nb4 + b5 + b6 + 2 (n − 1) b7 = −b0.

Hence, we can state

Theorem 4.1. In a pseudo-Riemannian manifold M with divergence-free of the S−tensor, either the scalar curvature
R remains constant or the following conditions are satisfied

2b1 + b2 + b3 + b4 + b5 + nb6 = 0,
b1 + 2b2 + b3 + b4 + nb5 + b6 + 2 (1 − n) b7 = b0,

b1 + b2 + 2b3 + nb4 + b5 + b6 + 2 (n − 1) b7 = −b0.

Utilizing Eqs. (5) and (6) in (27), we reveal that

∇hS
h
jkl = κ{

[
b1∇ jTkl + (b2 − b0)∇kT jl + (b3 + b0)∇lT jk

]
−

1
n − 2

[(b1 + b6) 1kl∇ jT + (b2 − b0 + b5 − 2b7) 1 jl∇kT

+ (b3 + b0 + b4 + 2b7) 1 jk∇lT]}.

Suppose that ∇hS
h
jkl = 0, thus the preceding equation simplify to

0 =
[
b1∇ jTkl + (b2 − b0)∇kT jl + (b3 + b0)∇lT jk

]
−

1
n − 2

[(b1 + b6) 1kl∇ jT + (b2 − b0 + b5 − 2b7) 1 jl∇kT

+ (b3 + b0 + b4 + 2b7) 1 jk∇lT]. (29)

Contracting with 1kl, one acquires that

[2b1 + b2 + b3 + b4 + b5 + nb6]∇ jT = 0.
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If 2b1 + b2 + b3 + b4 + b5 + nb6 , 0, thus

∇ jT = 0. (30)

Consequently, Eq. (29) reduces to

b1∇ jTkl + (b2 − b0)∇kT jl + (b3 + b0)∇lT jk = 0. (31)

Inserting Eq. (3) in Eq. (31), we infer that

0 = b1

[
λlλk∇ j

(
σ + p

)
+

(
σ + p

)
λl∇ jλk +

(
σ + p

)
λk∇ jλl + 1kl∇ jp

]
+ (b2 − b0)

[
λ jλl∇k

(
σ + p

)
+

(
σ + p

)
λ j∇kλl +

(
σ + p

)
λl∇kλ j + 1 jl∇kp

]
+ (b3 + b0)

[
λ jλk∇l

(
σ + p

)
+

(
σ + p

)
λ j∇lλk +

(
σ + p

)
λk∇lλ j + 1 jk∇lp

]
.

Transvecting with λ j, it arises

0 = b1

[
λlλk(σ + p)̇ +

(
σ + p

)
λlλ̇k +

(
σ + p

)
λkλ̇l + 1klṗ

]
+ (b2 − b0)

[
λl∇kp − λl∇k

(
σ + p

)
−

(
σ + p

)
∇kλl

]
+ (b3 + b0)

[
λk∇lp − λk∇l

(
σ + p

)
−

(
σ + p

)
∇lλk

]
. (32)

Two different contractions with λk and 1lk imply(
σ + p

)
λ̇l = −∇lp + ṗλl, (33)
σ̇ = −

(
σ + p

)
η, (34)

where η = ∇lλl denotes the expansion scalar.
Using Eq. (33) in Eq. (32), one deduces that

0 = b1
[
λlλkσ̇ + 3λlλkṗ − λl∇kp − λk∇lp + 1klṗ

]
+ (b2 − b0)

[
λl∇kp − λl∇k

(
σ + p

)
−

(
σ + p

)
∇kλl

]
+ (b3 + b0)

[
λk∇lp − λk∇l

(
σ + p

)
−

(
σ + p

)
∇lλk

]
.

Multiplying with 1kl,with the assistance of Eq. (34), we conclude that

b1
[
−σ̇ + (n − 5) ṗ

]
= 0,

provides b1 , 0, thus

(n − 5) ṗ − σ̇ = 0. (35)

By applying ∇l to Eq. (4), we can derive

∇lT = −∇lσ + (n − 1)∇lp. (36)

Inserting Eq. (30) in Eq. (36), one gets

(n − 1)∇lp − ∇lσ = 0.

Transvecting with λl,we conclude that

(n − 1) ṗ − σ̇ = 0. (37)

Merging Eq. (35) in Eq. (36), one infers that

ṗ = 0,
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σ̇ = 0.

Consequently

p = constant,
σ = constant.

In particular, if we choose b1 = 1, b2 = 3, b0 = 1, and b3 = 1, then Eq. (31) turns into

∇ jTkl + ∇kT jl + ∇lT jk = 0,

this suggests that Ti j is Killing [35].
In [30], the authors proved that in a PFS if Ti j is Killing, then the spacetime is expansion-free and

shear-free and its flow is geodesic, but not necessary vorticity-free.
Thus, we can derive

Theorem 4.2. A perfect fluid space-time with ∇hS
h
jkl = 0 is expansion-free and shear-free and its flow is geodesic,

but not necessary vorticity-free, under certain restriction.

5. On pseudo S−symmetric semi-Riemannian manifolds

Here, we investigate some general properties of pseudo S−symmetric semi-Riemannian manifolds.
Utilizing Eq. (1) in Eq. (2) and assuming that b0 is non-zero and b̄i =

bi
b0

, thus[
∇hRi jkl − 2βhRi jkl − βiRhjkl − β jRihkl − βkRi jhl − βlRi jkh

]
= b̄1

[
1i j

(
2βh − ∇h

)
Rkl + βi1hjRkl + β j1ihRkl + βk1i jRhl + βl1i jRkh

]
+b̄2

[
1ik

(
2βh − ∇h

)
R jl + βi1hkR jl + β j1ikRhl + βk1ihR jl + βl1ikR jh

]
+b̄3

[
1il

(
2βh − ∇h

)
R jk + βi1hlR jk + β j1ilRhk + βk1ilR jh + βl1ihR jk

]
+b̄4

[
1 jk

(
2βh − ∇h

)
Ril + βi1 jkRhl + β j1hkRil + βk1 jhRil + βl1 jkRih

]
+b̄5

[
1 jl

(
2βh − ∇h

)
Rik + βi1 jlRhk + β j1hlRik + βk1 jlRih + βl1 jhRik

]
+b̄6

[
1kl

(
2βh − ∇h

)
Ri j + βi1klRhj + β j1klRih + βk1hlRi j + βl1khRi j

]
+b̄7{

(
1il1 jk − 1 jl1ik

) (
2βh − ∇h

)
R + βiR

(
1hl1 jk − 1 jl1hk

)
+β jR

(
1il1hk − 1hl1ik

)
+ βkR

(
1il1 jh − 1 jl1ih

)
+ βlR

(
1ih1 jk − 1 jh1ik

)
}. (38)

Multiplying with 1il,we deduce that[
∇hR jk − 2βhR jk − β jRhk − βkR jh − β

lRhjkl − β
iRi jkh

]
= b̄1

[(
2βh − ∇h

)
R jk + 2β jRhk + βkR jh + β

l1hjRkl

]
+b̄2

[(
2βh − ∇h

)
R jk + β

l1hkR jl + β jRhk + 2βkR jh

]
+b̄3

[(
2nβh + 2βh − n∇h

)
R jk + nβ jRhk + nβkR jh

]
+b̄4

[(
2βh − ∇h

)
1 jkR +

(
β j1hk + βk1 jh

)
R + βl1 jkRhl + β

i1 jkRih

]
+b̄5

[(
2βh − ∇h

)
R jk + 2β jRhk + βkR jh + β

i1 jhRik

]
+b̄6

[(
2βh − ∇h

)
R jk + 2βkR jh + β jRhk + β

i1khRi j

]
+b̄7

[
(1 − n) 1 jk∇hR + 2nβh1 jkR + (n − 2)

(
β j1hkR + βk1 jhR

)]
.



A. A. Syied et al. / Filomat 39:26 (2025), 9061–9074 9071

Transvecting with 1 jk,we obtain[
1 + b̄1 + b̄2 + b̄5 + b̄6 + nb̄3 + nb̄4 + n (n − 1) b̄7

]
∇hR

−2
[
2 + 2b̄1 + 2b̄2 + 2b̄5 + 2b̄6 + nb̄3 + nb̄4

]
βkRhk

= 2
[
1 + b̄1 + b̄2 + b̄3 + b̄4 + b̄5 + b̄6 + n

(
b̄3 + b̄4

)
+ (n − 1) (n + 2) b̄7

]
βhR.

We define γ as follows:

γ = −
1 + b̄1 + b̄2 + b̄3 + b̄4 + b̄5 + b̄6 + n

(
b̄3 + b̄4

)
+ (n − 1) (n + 2) b̄7

2 + 2b̄1 + 2b̄2 + 2b̄5 + 2b̄6 + n
(
b̄3 + b̄4

) ,

where the denominator is non-zero.
Assume that R is constant, hence

βkRhk = γRβh, (39)

this indicates that βk performs as an eigenvector of Rhk, with a corresponding eigenvalue equals γR.
Consequently, we get

Theorem 5.1. In a (PSS)n manifold, βk is an eigenvector of Rhk and its eigenvalue equals γR.

As mentioned above, a semi-Riemannian manifold M with traceless S−tensor is an Einstein manifold.
As a result, Eq. (38) simplifies to the following expression:[

∇hRi jkl − 2βhRi jkl − βiRhjkl − β jRihkl − βkRi jhl − βlRi jkh

]
= {

(
b̄1 + b̄6

)
1kl1i j +

(
b̄2 + b̄5

)
1ik1 jl +

(
b̄3 + b̄4

)
1 jk1il + nb̄71il1 jk

−nb̄71 jl1ik}
(
2βh − ∇h

) R
n
+ βi

R
n
{

(
b̄1 + b̄6

)
1hj1kl +

(
b̄2 + b̄5

)
1hk1 jl

+
(
b̄3 + b̄4

)
1hl1 jk + nb̄7

(
1hl1 jk − 1 jl1hk

)
} + β j

R
n
{

(
b̄1 + b̄6

)
1ih1kl

+
(
b̄2 + b̄5

)
1ik1hl +

(
b̄3 + b̄4

)
1il1hk + nb̄7

(
1il1hk − 1hl1ik

)
}

+βk
R
n
{

(
b̄1 + b̄6

)
1i j1hl +

(
b̄2 + b̄5

)
1ih1 jl +

(
b̄3 + b̄4

)
1il1 jh + nb̄71il1 jh

−nb̄71 jl1ih} + βl
R
n
{

(
b̄1 + b̄6

)
1i j1kh +

(
b̄2 + b̄5

)
1ik1 jh +

(
b̄3 + b̄4

)
1ih1 jk

+nb̄7

(
1ih1 jk − 1 jh1ik

)
}.

Hence, we can state

Theorem 5.2. A (PSS)n manifold with tracelessS−tensor reduces to (PS)n manifold iff the scalar curvature vanishes.

Adding Eq. (3) to Eq. (5), one sees that

Rhk −
1
2
1hkR = κ

(
σ + p

)
βhβk + κp1hk. (40)

Transvecting with βk and employing Eq. (39), we uncover that(1
2
− γ

) R
κ
= σ. (41)
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Again, contracting Eq. (40) with 1hk, one discovers that(
1 −

n
2

) R
κ
= −σ + (n − 1) p. (42)

Substituting from Eq. (41) in Eq. (42), we get(
3 − n − 2γ

)
2 (n − 1)κ

R = p. (43)

Hence, we can derive

Theorem 5.3. The isotropic pressure p and the energy density σ for a perfect fluid (PSS)n manifold given by Eqs.
(41) and (43).

Remark 5.4. Since p and σ are not constant, therefore the spacetime under consideration is conformity with the
present state of the universe.

In virtue of Eqs. (41) and (43), one deduces that

p
σ
=

3−n
2 − γ[

n−1
2 − (n − 1)γ

] .
Consequently we have the following table:

The space-time EoS γ
represents quintessence era σ + 3p = 0 4−n

n+2
represents dust matter era p = 0 3−n

2
represents radiation era σ − 3p = 0 5−n

4−n
represents dark matter era σ + p = 0 1

n

6. Example

In this section, a example of pseudo S−symmetric semi-Riemannian manifolds is introduced. Let us
now make the assumption that the manifold M is of dimension 4 and equipped with a metric 1, which can
be expressed in the following manner:

ds2 = 1hkdxhdxk =
(
dx1

)2
+

(
x1

)2 (
dx2

)2
+

(
x2

)2 (
dx3

)2
−

(
dx4

)2
, ∀h, k = 1, 2, 3, 4.

Christoffel symbols Γi
jk have the following non-zero components:

Γ3
23 =

1
x2 , Γ

2
12 =

1
x1 , Γ

2
33 =

−x2

(x1)2 , Γ
1
22 = −x1.

Consequently, it arises

R12 =
−1

x1x2 , R1332 = −
x2

x1 .

It is observed that

R = 0.
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The non-zero component of the S−tensor is

S1332 = −
(b0 + b4) x2

x1 , (44)

and its covariant derivatives are expressed as

∇1S1332 =
(b0 + b4) x2

(x1)2 , ∇2S1332 = −
(b0 + b4)

x1 . (45)

Choosing the associated covector βi as given in the subsequent form:

βi (x) =

−1
3x1 i = 1
1

3x2 i = 2
0 otherwise

. (46)

In view of Eq. (2), we get

∇1S1332 = 2β1S1332 + β1S1332 + β3S1132 + β3S1312 + β2S1331. (47)
∇2S1332 = 2β2S1332 + β1S2332 + β3S1232 + β3S1322 + β2S1332. (48)

Using Eqs. (44) and (46) in Eqs. (47) and (48), one infers

∇1S1332 = 3β1S1332 =
(b0 + b4) x2

(x1)2 , (49)

∇2S1332 = 3β2S1332 = −
(b0 + b4)

x1 . (50)

Thus, the considered manifold is a 4−dimensional (PSS)4 semi-Riemannian manifold.
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[15] S. Güler and S. A. Demirbağ, Riemannian manifolds satisfying certain conditions on pseudo-projective curvature tensor, Filomat 30(3)
(2016): 721-731.

[16] M. Gutiérrez and B. Olea, Global decomposition of a Lorentzian manifold as a generalized Robertson–Walker space, Differential Geometry
and its Applications 27(1) (2009): 146-156.

[17] Y.Ishii, On conharmonic transformations, Tensor NS 7 (1957), 73–80.
[18] J. Kim, A type of conformal curvature tensor, Far East Journal of Mathematical Sciences 99(1) (2016), 61.
[19] J. Kim, On pseudo semiconformally symmetric manifolds, Bull Korean Math Soc. 54 (2017): 177–186.
[20] D. Krupka, The trace decomposition of tensors of type (1, 2) and (1, 3), New Developments in Differential Geometry, Math. Appl. 350,

Kluwer Acad. Publ. Dordrecht, (1996), 243-253.
[21] C. A. Mantica, and L. G. Molinari , On the Weyl and Ricci tensors of Generalized Robertson-Walker space-times, J. Math. Phys., 57

(2016): 102502.
[22] C. A. Mantica, and L. G. Molinari, Generalized Robertson–Walker spacetimes—a survey, International Journal of Geometric Methods

in Modern Physics, 14 (2017): 1730001.
[23] C. A. Mantica, U. C. De, Y. J. Suh, and L. G. Molinari, Perfect fluid spacetimes with harmonic generalized curvature tensor, Osaka

Journal of Mathematics 56(1) (2019): 173-182.
[24] S. Mallick and Uday Chand De, Spacetimes admitting W2-curvature tenso, Intern. J. Geom. Meth. Mod. Phys. 11(4) (2014), 1450030.
[25] S. Mallick and U. C. De, On pseudo φ−symmetric spacetimes, Analysis and Mathematical physics 9 (2019):1333-1345.
[26] S. Mallick, Y. J. Suh, and U. C. De, A spacetime with pseudo-projective curvature tensor, Journal of Mathematical Physics 57(6) (2016):

062501.
[27] R. S. Mishra, Structures on a differentiable manifold and their applications, Chandrama Prakasana. Allahabad, India (1984).
[28] B. O’Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
[29] G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance, Yokohama Math. J. 19(2) (1971): 97-103.
[30] R. Sharma and A. Ghosh, Perfect fluid space-times whose energy-momentum tensor is conformal Killing, Journal of mathematical

physics 51(2) (2010).
[31] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact solutions of Einstein’s field equations, Cambridge

university press, 2009.
[32] A. A. Syied, U. C. De, and N. B. Turki, Conharmonically flat and conharmonically symmetric warped product manifolds, AIP Advances

14(3) (2024): 035322.
[33] A. A. Syied, U. C. De, N. B. Turki, and R. Kumar, Doubly warped product manifolds: Investigations through the projective curvature

tensor and relativistic applications, AIP Advances, 14(6) (2024): 065324.
[34] N. B. Turki, U. C. De, A. A. Syied, and G. E. Vı̂lcu, Investigation of space-times through W2−curvature tensor in f (R,G) gravity, Journal

of Geometry and Physics 194 (2023): 104987.
[35] M. Walker and R. Penrose, On quadratic first integrals of the geodesic equations for type {2,2} spacetimes, Communications in Mathe-

matical Physics 18 (1970): 265-274.
[36] K. Yano, Concircular geometry I. Concircular transformations, Proc. Imperial Academy (Tokyo) 16(6) (1940), 195-200.
[37] F. O. Zengin, and S. A. Demirbag, On weakly and pseudo concircular symmetric structures on a Riemannian manifold, Acta Universitatis

Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 47(1) (2008): 129-138.
[38] F. O. Zengin, Y. Yavuz, Pseudo conharmonically symmetric manifolds, Eur J Pure and Appl Math 7 (2014): 246–255.


