Filomat 39:26 (2025), 9075-9085
https://doi.org/10.2298/FIL2526075D

(S
&

Published by Faculty of Sciences and Mathematics,
University of Ni8, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

o

)
2 o
iy oS’

5
TIprpor®

A study of hybrid fractional differential equations via measure of
noncompactness

Habib Djourdem?

*Mathematics departement, Faculty of sciences and technology, Relizane University. Algeria

Abstract. In this paper, we study a nonlinear boundary value problems (BVPs) of hybrid Hadamard
fractional differential equations with nonlocal hybrid Hadamard integral boundary conditions. We use
the technique of the measure of noncompactness and degree theory under some suitable conditions to
investigate the existence of a solution for our problem. Further, we study the uniqueness results and

stability analysis of the considered problem. To show the applicability of our obtained results, we give a
numerical example.

1. Introduction

Recently, as a new branch of applied mathematics, fractional differential equations (FDEs) have played
a very important role due their significations in mathematical modeling of many phenomena in real
world related to engineering and scientific disciplines such as biology, chemistry, economics and numerous
branches of physical sciences [2, 9, 10, 20-22].

Boundary value problems of (FDEs) implicit several kinds of fractional derivatives like Riemann-
Liouville-type, Caputo-type, Hadamard-type, Caputo-Hadamard-type, Erdélyi-Kober, and Hilfer-Hadamard-
type fractional derivative with different sorts of boundary conditions have studied by many authors ( see
[1,3,5-7,12-14, 16]). In many papers , when the authors use fixed point theorem like Schauder fixed point
theorem for the existence of solutions, this it needs more powerful condition in sense of compactness on the
nonlinear function that involves in the problem which restricts the area to very particular boundary value
problems (BVPs). In order to extend the tools to a class of BVPs to use less restricted conditions, one needs
to explore more refined tools of functional analysis, such as the topological degree theory combined with
notions of noncompactness and convexity. The topological degree method proved to be dominant tool in
the study of many mathematical models, we refer to [8, 15, 23, 26, 28, 29, 31].

Inspired and motivated by the works mentioned in this paper, we study the following nonlinear hybrid
fractional differential equations
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subject to the boundary conditions

v(l)=0,
- (v (1) = £ P (v <r>)) »
V@, v @) ), )
v(0) -5 Pxi(mo@)\|
( Wt (D), 0 (0) ) =AED @),

where D? denotes the Hadamard fractional derivative of order ¢ € 12,3]. I?, I% and IP are the Hadamard
fractional integrals of order y,0;,p > 0 (i = 1,2,...,m), W € C([1,e] x R%, R\ {0}), g € C([1,e] X RX R, R),
and x; € C([1,e] x R,R) with x;(1,0) =0, fori =1,2,..,m. A, nare two real parameters with A > 0,1 <n <e

rA(;iUg_—ll)) (logn)"*"* # 1. Moreover, we establish some conditions about Ulam-type stability for the

problem (1)-(2).

and

2. Basic definitions and preliminaries

Here, we give certain definitions and results which are needed to prove our main results.

Let C (I, R) be the Banach space of all continuous functions from I into IR.

We begin by defining Hadamard fractional integrals and derivatives, and we introduce some properties
that can be used thereafter.

Definition 2.1. [17] The Hadamard fractional integral of order o € R* fora function f € Cla,b],0<a <1 <b < oo,
is defined as

" 1 ’ T\ ! ds
Ff() = mf (og2) fO,
where I (.) is the Euler Gamma function, which is defined by I (r) = fooo et 'dt and log (.) = log, (.) .

Definition 2.2. [17] Let 0 < a < b < co and 6 = 1. The Hadamard derivative of fractional order o € R* for a
function f € C"!([a,b], R) is defined as

a\" n—o-1
D7) =0 )@ = iy (v [ (o8 ) e

wheren —1 <o <n € Z*,n = [o] + 1denotes the integer part of the real number q.
Lemma 2.3. ([17], Property 2.24) If a,at, f > O, then

(DU (log %)ﬁl) () = T (rﬁ(f)a) (log g)ﬁiail ,

s - et ™

Lemma 2.4. ([17]) Let 0 > 0 and v € C[1,00) N L' [1, 00). Then the solution of Hadamard fractional differential
equation D°v (1) = 0 is given by

n

v (1) = Z ci (log T)U_i ,

i=1
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and the following formula holds:
n .
I°D’v (1) = v (1) + Z ci(log7)™™,
i=1
forsomec; € R,i=1,2,...,n, wheren = [0] + 1.

Now, we put ¥ = C(I,R) where I = [1,e] endowed with the norm |[v|| = sup,_,_, v (7). Consider
B € P (Y) the family of all its bounded sets. We recall the following definition [18].

Definition 2.5. The Kuratowski measure of noncompactness @ : B — R, is defined as
@ (S) =inf{d > 0: S € Badmits a finite cover by sets o f diameter < d}.
Now, we recall the following notions which can be found in [4].
Proposition 2.6. The Kuratowski measure @ satisfies the following properties:
(i) @ (S) = 0 if and only if S is relatively compact.
(i) @ is seminorm, i.e., @ (AS) = [A| @ (S), A € Rand @ (51 + S2) < @ (51) + @ (S»).

({i)) S, C S implies @(51) < @(Sy); @ (51U Sy) = max{@(S1), @ (S»)}.
(iv) @ (conv S) = @ (S).

@) @(S)=a(S).

Definition 2.7. Consider Qy C Y and F : Qy — Y a continuous bounded map. Then, F is called @-Lipschitz, if
there exists u > 0 such that

@ (F(S) <uaw(S), forall bounded S C Q.

If, in addition, u < 1 then we say that ¥ is a strict-contraction.
Definition 2.8. The map ¥ is called @-condensing if

@ (F(S)) <@ (S), forall bounded S c Oy with @ (S) > 0.
In other words, @ (¥ (S)) = @ (S) implies @ (S) = 0.

Proposition 2.9. If7,C : Qg — Y are ®-Lipschitz maps with constants  respectively ', then F +C : Qy — Y
is @-Lipschitz with constant y + y’.

Proposition 2.10. If ¥ : Qy — Y is compact, then F is @-Lipschitz with constant y = 0
Proposition 2.11. IfC: Qy — Y is Lipschitz with constant u, then C is @-Lipschitz with the same constant.
The following theorem [11], will be used to prove the existence result.
Theorem 2.12. Let 7 : Y — Y be a @ condensing map and
W ={vel: thereexists ¢ € [0,1], such that v = cT v}.
If ‘W is a bounded set in Y, that is, there exists r > 0 such that ‘W C B, (0), then the topological degree
D(I-c¢7,B,(0),0)=1, forallce]0,1].

Consequently, T has at least one fixed point and the set of the fixed points of T lies in B, (0).
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3. Existence results

In this section, we will establish the existence and uniqueness of solution of the boundary value problem
(1)-(2) by using the fixed point approaches. To do this, we first transform our problem into an integral form
of the problem.

For convenience we put

_ /\F(U_l) +0-2
Q=1 g tosn™ o
1 1 A o 1
:I“(o+1) (r(a+p+1)(ogn)” _T(a+1))’ @

Lemma 3.1. Let h € C([1,e],R). The solution function vy of the hybrid Hadamard equation
Dﬂvm—zgﬁmumu»

WY (t,v (1), v (1)) }Zh(’f), l<t<e 2<0<3, )

subject to the boundary conditions

v(1)=0,
peo-1 (U(T) — Zznil IQiXi (T/U(T))) -0
Y (t,v (1), v (7)) - ©)
v(0) - XL i (mo(@)\
( W (0 (D), 10 (1) )M—Ammm»

if and only if the function vy is a solution for the following Hadamard integral equation:

v(t) =¥ (t,v(1),l"v (1)) [F( )f
(log )" " npw*h@> 1 e\ h(s)
0 (F(G+p)f1 (1°g§) S BT (log ) s )} 7)

+ i 1%y (v (7).
i=1

Proof. Let vy be a solution for hybrid equation (5). By virtue of the lemma 2.4, there exist constants
c1, €2, c3 € R provided that

v (1) = Lt 1% (7,0 (1)) f " ! h(S)
Y (t,v(1),I"v (1)) F(G)

n 171(5)

8)
+c1(log7) ™ + ¢ (log )2 + 3 (log 7)™

Since xi(1,0) = 0, i = 1,2,..,m and ¥ (1,0,0) # 0, the use of boundary conditions v (1) = 0 and

po-1 (vm—z,& 1% xi(t0(1)) )
Y(t,u(t),I"v(7))

order p > 0 on both sides of equality (8) and using Lemmas 2.3, we get that

v(1) = Lt i (T, 0 (1)) W L (s)
Ip( V(t,v(1),"v (1)) ) I’(a+p)f s =

I'(o-
T(p+o—1) (log 7

= 0 gives c; = ¢3 = 0. Applying Hadamard fractional integral operator of

+ 0 )p+0‘—2 )
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Y(z,u(7),['v(7))

1 A 1 Vo1 h(s) 1 e\ h(s)
@2 = 5(—r(a+p)fl log 7] *Pas- o J, (105) Tds)'

where Q) is defined in (3).

By using the Hadamard integral boundary condition (w)‘ = A(IPv)(n), we get
t=e

By inserting the values ¢; fori = 1,2,3 in (8), we get

U 1]’[(5)
vo (t) = W (1,00 (1), "0 (7)) [F( )f s

L s [ (m%)’”“ ——f s ]

Y Pt vo (1)
i=1

That is vy a solution for integral equation (7). Conversely, one can easily see that vy is a solution function
for the hybrid boundary value problem of fractional order (5)-(6) whenever vy is a solution function for the
fractional integral equation (7). O

Define operators A, B: Y — Y by

, ” Lglsv(s), 1”11(3))
Av (1) =W (7,0 (1), "0 (1)) [F( )f —s
(log T) g p+g—1 g (S/ v (S) ,p’l) (S))

" Q (F(a+p) f fds ©

1 g@s,v(s ) I'v (S))
T J, (105 ;) s )]

Bu (1) = Ly i (r,v (7)),
then a function v € Y is a solution for problem (1)-(2) if and only if v is a fixed point of the operator equation

v(1) =Av(1)+ Bv(t) =T v(1). (10)

For developing the existence result, we list the following hypothesis.
(H1) There are positive continuous functions «, & : [1,e] — R, parameters 0 < g, w < 1, positive constants
Cy.,M,,,0 and 0 < g; < 1 such that for v € Y, we have

i (T, v (D)) < Cy, ol + My,
|9 (z, v (1), Pv (1) < 5 (1) + 6 (W] + |P'0[f),
and
W (z,0 (1), v ()] < &) + B (v (O + 100 (D))

(Hz) For arbitrary 7 € [1,¢], v,v € C([1,e],R), there are positive constants K,, for i = 1,2,..,m, kg =
maxi<<, K (1) and o = maxi<<, & (1),

lxi (7, v (1)) — xi (v, v (D) < K, [v =],
|lI/ (Tr v (T) ’ I'v (T)) -v (Tl5 (T) ’ I'v (T))l < 50 |U - 5' ’
and

gz v(), v () - g(,5(2), 00 (@)| < xolv -7l
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mKy,

Lemma 3.2. With suppostions (Hy) and (H,), the operator B is @-Lipschitz with constant y = §—3;. Further, B
satisfies the following growth condition:

mC

IBv (D] < Tox1) (11)
where C = maxy<i<m {Cy, V1" + My, }.
Proof. For v,v € Y such that v < v, using (H,), we obtain

I1B@) - B@) < Y 1”1y (t,v (D) - xi (7,5 (D)

i=1
KXi -
STo+p

hence

1B () - B < ullv-"l. (12)

By Proposition 2.11, B is @-Lipschitz with constant 1. For growth condition, using the assumption (H;), we
get

BN <Y (Cy ol + M) 1% ()
i=1
1 v N ,
= o L (G bl + M) og )
i=1

1 m
< — )| .
P Zl (Cr " + M)
mC
< =.
“T(o+1)

Then
mC

IBv (D)l < m-

O

Lemma 3.3. Under conditions (Hy) and (Ha), the operator A is @ -Lipschitz with zero constant. Further, A satisfies
the following growth condition:

AV < fo+ filloll? + LIl , ve Y. (13)

Proof. The continuity of the operator A for each fixed 7 € [1,e] follows from the continuity of ¥, g with
respect to v for each fixed 7 € [1, ¢]. Then, for each v € Y, using (H;), we have

(k) + 0 (G +IM"v (s))

1A (2)] < (£ (@) + B (0 @ + 170 (D)) [ R (log )’
1 (A (1) + 06 (lv (D) + v (7)) +0
+5( Tlo+p+1) (log )’
LK@+ (O + P ())
T'oc+1)
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This gives us

AV < fo+ filloll? + Lol ve Y, (14)

- 1 1
where fy = |Y] &oko, fi = &6 Y] (1 + iy ) and f = Y] kB (1 + ) (1 + ko )
From (14), we conclude that A is uniformly bounded on any bounded subset @ of Y.
Now, we use the following notations

Y, (1) =W (r,v(7), "0 (1), gu(1) =g(z,v(7),["0 (7). (15)

Next, we show that A is equicontinuous. Take v € ¥ and 1 < 71 < 7, < ¢, then we have

|ﬂv(T2)_ﬂU(T1)| = 'L)fz IOgE o LI/ ( 2) gv (S)

‘I’u (72) (log 75) 2 F’*"‘l o (5)
(F (c+p) f 5 0

“ 1 gU(S) )
F(O)f

—m 1 (log%) W, (11)

¥, (1)) (logty,)" 2 (A o1 g, (5)
- Q (F(a+p)f1 (logg) s ds

1 e\Prol Jv (S)
‘m (105 TdS)‘

gu()

-1 -1
< | o8 2) " e - v et v e f10g 2) - og 2| 2
+f (105 2) " Wi e 2)|] 909 4
+= [M (1)l |(log 72)°72 = (log 11)" | + (log 71)" 2 [W, (12) = W, (1)
”+° Lyg, (S) 1 ‘ e\’ 1 g, (s)
‘F(o+p)f s mfl(bgé) s ds
(16)

Then, the right-hand side of the above inequality tends to zero when 7 — 1.
Therefore A is equicontinuous. Hence, by using the Arzela-Ascoli theorem, ‘A is compact. By proposition
2.10, the operator A is @-Lipschitz with zero constant. [J

Theorem 3.4. Assume that (Hy) and (Hy) hold. Then problem (1)-(2) has at least one solution v € Y provided that
q + w < 1. Further, the set of solutions of (1)-(2) is bounded in Y.

Proof. By Lemma 3.2, the operator 8 is @-Lipschitz for 0 < u < 1, and by Lemma 3.3, the operator A is @-
Lipschitz with zero constant. From proposition 2.9, we claim that 7~ is @-Lipschitz with constant u € [0, 1).
Define

Q={vel: thereexists C€[0,1], v = (Tv}.
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We shall to prove that Q is bounded in Y.
Let v € Q. Using growth conditions (11) and (13), we obtain

ol < C(IAv] + [IBvl)

<Clfo+ Al + follol™7 + r(Z—fl))

= C(A I+ £ 1lol*T7) + C(fo + 1"(7(7”—5:1))

Since g + w < 1 and f, < 1, it follows that the set Q is bounded. Hence, by Theorem 2.12, problem (1)-(2)
has at least one solution. [

Choose 0 < R < 1 and consider a closed bounded and convex subset Bg = {fued: |lull <R}
Theorem 3.5. Assume that (H1) and (Hy) hold. If

1 1
w q _—
o 01+ gy o oo 1+ o m <.
then the problem (1)-(2) has a unique solution.

L+

Proof. We use the Banach contraction principal. For v, v € Bg, we have

¥, (2) g, (5) = W5 (1) g5 ()| < IW, ()10 (5) = 95 (5)] + |5 ()] W5 (2) = W5 ()]

= [(‘SO AR (1 : m)) o (17)

_ 1 _
+(Ko +6|v|(1 + m))é@]b—ﬂ.
By using (9) and (15), we have

— 1 ’ o1 d
AW - ADN < 55 [ (lo87) @ a0© - @00 T

(log T)U_2 /\ gl 77 p+o-1 ds
HES) (F(a ) j; (log 5) @, (1) g (5) — W5 (1) g5 (5)| =

1 pto-1 p
+mf(log§) |gjy (T)gv (S)_WU(T)QT,(S)‘ ?S)

Then, from (17), we get
_ w 1
A @) - A@)I <Y (Eo +pR (1 + TO+1))° 1))10)) Ko
1 _ (18)
oot oo
=llv-1ll,

where . .
1= (e e (1 gy o o (4 g
From (12) and (18), we conclude
7 () =T @I < [A@) - A - 1B((v) - B
<+ wlv -l

which implies that problem (1)-(2) has a unique solution in Br. O
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4. Hyers-Ulam stability

This section is devoted to the study of the Hyers-Ulam stability analysis for the problem (1)-(2). For
more related problems to the Hyers-Ulam stability, the reader can consult the works [24, 25, 27, 30] and the
literature.

Definition 4.1. The fractional integral equation (10) is said to be Hyers-Ulam stable if there exists a constant ¢ such
that, for given @ and for each solution v of the inequality

lv=(A-B)v() <, (19)
there exists a solution v (t) of the problem (1)-(2)
v(1) = (A-B)v(7),

such that
llv () = v (DIl < Do.

Theorem 4.2. Assume that (H1) and (H,) hold. If | + u < 1, then problem (1)-(2) is Hyers-Ulam stable.

Proof. Let v € Y satisfy the inequalty (19) and v a solution of the problem (1)-(2) satisfying the integral
equation (10). We have

lv(7) =2 (Ol = llv () — (A+ B)v (Dl
<lv(t) = (A+B)v (DI + (A +B)v (1) - (A+ B)v (1) (20)
SO+|(A+B)v(t)—-(A+B)v (7).

On one side, we have

A+ B)v (1) = (A+B)v ()l < | Av (1) — Av (D] + [|1Bv (1) - B (7.
In other side and by using (12), (18) and (20), we get

lv(@=v@I <@+ 1+ p)lv®-v@I,
which implies that

v (7) =0 (DIl < Do,

where g = %
0
5. Example

In this section, we present an example to illustrate our obtained results.
Consider the following hybrid fractional differential equations

v(0) = L T xi(r,v(b)
W(T,v (T),I%U (T))

[NyS)

D

}=9(Lv(1),13v(1)), Te[l,e], 1)

with the boundary conditions
v(1)=0,

v ()= X P (v (ﬂ)]

o—1
P W(T,U(T),I%U(T))

=1 (22)

=0,02(%v)(2),

T=e

v (1) = L 1% xi (7, v (1))
ll/(’f,v(T),I%v(’c))
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where
xite,o (o) = %elvm', i=1,2,3,
1’[/<TIU(T),I%U(T)) = 6T+7U(T4): +12v(7)

9
andg(T,U(T),I%U(T)) = w
Here,0=2,m=3,y=3,p=32,n=2and A =0,02.
Functions );, g and V¥ satisfy hypothesis (H;) and (H>) fora; = 0,2,a, = 0,4,a3 = 0,6 ,Cx1 = % ,Cp, =
Coo=9 M,=3x(0)=286=3,9=0,5K,=2,x=23%=F%andw=0,2.
By a simple calculation, we find that f, = 0,0000676992 < 1 and q + w < 1. By using Theorem 3.4, the
problem (21)-(22) has at least one solution and the set of solutions is bounded in Y.
Taking R = 0,8. We have u = 0,0830215 and I = 0,0871847, which give [ + p < 1, then by Theorem 3.5,
the problem (21)-(22) has a unique solution in Bg and by Theorem 4.2, the problem (21)-(22) is Hyers-Ulam
stable.

7
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