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Existence of mild solutions for {-Caputo fractional integro-differential
evolution problems
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Abstract. The aim of this paper is to investigate the existence of mild solutions to a nonlocal &-Caputo
fractional semilinear integro-differential evolution equation in any arbitrary Banach space. The existence
of the results is proved by using the fixed point theorem for condensing maps. To illustrate our theoretical
results, a non-trivial example is given as an application.

1. Introduction

The traditional calculus of integers is extended by the introduction of the calculus of fractions, which
has infinite memory and inherits certain properties, we suggest that you refer to the special monographs
for fundamental insights into the theory of fractional calculus and fractional models [2, 4, 10, 16, 18, 20-24].

Recently, significant discoveries have been made by researchers on the existence and uniqueness of
solutions to boundary value fractional differential equations involving different fractional derivatives, such
as Riemann-Liouville, Caputo, Hilfer, and Hadamard. For more details, see [1, 12, 16, 18]. In 2016, Almeida
[3] introduced the &-Caputo fractional derivative, a specific form of fractional derivative in which the
exponent of the kernel involves a strictly increasing function. For certain choices of &, we get several well-
known fractional derivatives, including Rieman-Liouville, Caputo, and Caputo-Hadamard. This flexibility
makes the -Caputo operator a robust modeling framework in fractional calculus, see [6-8, 13, 14].

In contrast, another major focus within the field of fractional calculus is the fractional evolution equa-
tions. This field provides an abstract, conceptual framework that proves invaluable in tackling a variety of
engineering and physics challenges characterized by systems that evolve dynamically over time. Numer-
ous studies have been carried out with the aim of confirming both the existence and the uniqueness of mild
solutions to the fractional evolution equations. These investigations rely heavily on the mathematical foun-
dations provided by semigroup theory and fixed point theory, which shed light on the intricate behavior
of systems governed by fractional dynamics [8, 25-27].
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In 2010, Yong Zhou et al. [26] studied the existence and uniqueness of mild solutions for the following
nonlocal fractional evolution differential equation in a Banach space Z.

{ COL 2(t) = Az(b) + g(t,2(H), teT,

z(0) + v(z) = zo,

where CZ)g+ is the Caputo fractional derivative at order 0 < § < 1,z9 € Z, J = (0, T], A is the infinitesimal
generator of a Cp-semigroup {7 (f)}=0 of operators on Z, g : [0,00) x Z — Z and the nonlocal term
v : C([0, 0), Z) — Z are given functions.

In 2020, Suechoei et al. [25] studied the local and global existence of mild solution to the following initial
value fractional semilinear evolution equations in a Banach space Z

CON2(t) = A=) + g(t,2(1), te T,
z(0) = zo,

where CD{;’E is the £-Caputo fractional derivative at order 0 < f < 1, zg € Z, A is the infinitesimal generator
of a Cy -semigroup of uniformly bounded linear operators{7 (f)};»o on Z and g : [0, 0) x Z — Zis given

function satisfying some assumptions.
Inspired by the aforementioned studies, our goal is to establish the existence of mild solutions to the
following fractional evolution equation in an arbitrary Banach space Z
{ COR () + Aat) = glt,2(), Qa(1)),  tET, O

2(0) + v(2) = 2,

where 8 € (0,1), zo € Z, A : D(A) ¢ Z — Z is a closed linear operator, — A generates an uniformly
bounded and equicontinuous Cp-semigroup {7 ()}~ in Z and the given functions g : ' X ZxZ — Zand
v: C(J, ) — Z satisfy certain assumptions. The term Qz(f) can be interpreted as a system control, it is
defined as follows:

¢
Qz(t) = f K(t, s)z(s)ds,
0

t
where K € C(A,RY), with A= {(t,s) e R*:0<s<tjand Q = supf K(t,s)ds < oo.
teg JO
The organization of this work is as follows: in Section 2, we introduced some tools that will help us to prove
our main purpose. In Section 3, we establish the existence of mild solutions to the problem (1). Then, in
Section 4, we provide a specific example to illustrate our main results, followed by a conclusion in the last
section.

2. Preliminaries

Let Z be a Banach space with the norm || ||z and C(J, Z) be the Banach space of all continuous functions
z: 9 — Z endowed with the norm

llzIl = sup llz(®)llz,
teg

and [P(J, Z)(1 < p < =) be the Banach space of all Bochner integrable functions z : J — Z with the norm

t 1
Iy = ( [ letonp)’

We Consider M = sup||7 (t)llzz) = 1, where L(Z) denotes the Banach space of all linear and bounded
teg
operators on Z.
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Definition 2.1. [3] Let f € L'(J,R) and & € CH(J,R) with &'(t) > 0 for every t € J. The &-Riemann-Liouville
fractional integral of the function f at order o > 0 is given by

t -1
wi oy — [ EB=EE)T
rfo = [ SO )
Definition 2.2. [3] Let f, £ € C"(J,R) with &'(t) > 0 for every t € J. The &E-Caputo fractional derivative of the

function f at order a > 0 is given by

FEW) - &)yt

Cqy,é —
Dy f(t) = T a)

&)/ (s)ds,

where f; ml(s) = (EL di) f(s) and n = [a] + 1, such that [a] denotes the integer part of .

Remark 2.3. Integrals and derivatives appearing in previous definitions are taken in Bochner sense when f is a
function with values in Z.

Proposition 2.4. [3] Let a > 0, if f € C" (T, R), we find that
1) COGETEEf(t) = f(B).

n-1 ¢lil
; (
fg (£(t) = £0))".

2) T% COREf(t) = f(1) -
i=0

Definition 2.5. [17] Let f : R* — IR the generalized Laplace transform of the function f is given by

Flw) = Le{fB)w) = f me*w@(f)*f((’))f(t)g'(t)dt, for all w.
0

Lemma 2.6. [17] Let & > 0, f be a piecewise continuous function on each [0, t] and &(t)-exponential order, then

f“ﬂﬂ()—ﬁl

Definition 2.7. [18, 23] The Wright function is given by

o foryeCand0<f <1,

) = i (—y)T(B(i + 1)) sin(re(i + 1))

Proposition 2.8. [18, 23] The Wright function vg satisfies the following proprieties
1. Forallt € R, vg(t) 2 0
Ira+o)

2. f vg(t)dt =1
0
04, — ~\-TY) -

3. fo vp(y)y dy = T+ 50) for 6> -1,
4. f vﬁ(t)e‘ytdt =Es(-y),yeC,

0
5. ﬁf tvﬁ(t)e‘ytdt =Egp(-y), y€C,

0

where Eg(.) and Egg(.) are Mittag-Leffler functions.
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Definition 2.9. [19] Let p > 0. The one-sided stable probability density is defined by

()

o) = = Y (-1)

n=1

r 1
n—1p—(ﬁn+1) (157:1|+ ) sin(nnﬁ).

Lemma 2.10. [19] Let w > 0 and p > 0, then we have

f Lg(p)ePdp = e, for every B in (0, 1).
0

Definition 2.11. [11] Let O bounded subset of Z. The map A: O — R, given by
AO) =inf{o > 0: O C U, O; and diam(O;) < 6}.
is called Kuratowski measure of non-compactness.

Proposition 2.12. [11] Let O, 04,0, C Z be bounded, then

AO) =0 & O is relatively compact.

AxO) = |x|A(O), x€R.

AO1 + Oz) < A(O1) + A(Oy).

01 C O3 = AO) < A(0,).

AO1 U Oy) = max{A(O1), MO,)}.

A(0) = A(O) = A(convO), where convO means the convex hull of O.
MO +z) = A0), forallze Z.

N Uk @

Lemma 2.13. [9] Let U C Z such that U is bounded, then there exists a countable set Uy = {zx};_; C U such that
AMU) <20 (UY).

Lemma 2.14. [5] Let U be a subset of C(J, Z) such that U(t) = {z(t) : z € U and t € ). If U is equicontinuous
and bounded in C(J, Z), then A(U(t)) is continuous on J, and

AMU) = max A(U(B) = MUT)).

Lemma 2.15. [15] Let U = {z}2, € C(T, Z) be a countable and bounded set. Then A(TU(t)) is a Lebesgue integral

on g, and
t o t
/\({j; zk(s)ds}kzl) < 2f0 Afzi(s)}p2y )ds.

Lemma 2.16. [5] Let Z1 and Z» be two Banach spaces and F : dom(F) € Z1 — Z» Lipschitz continuous having
constant k, then A(F (U)) < xA(U) for every bounded U C dom(F).

Theorem 2.17. [11] Let B C Z be a bounded closed and convex set and ¥ : B — B be a condensing operator which
means that A(7(B)) < A(B), then ¥ has a fixed point in B.

Theorem 2.18. [11] Let B C Z be open and bounded with 0 € B. If ¥ : B — Z is a condensing function and
satisfies.
z# yF(z) forzedBandy € (0,1),

then & has a fixed point in B.
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3. Main results

Definition 3.1. A function z € C(J, Z) is called a solution of problem (1) if it satisfies both the equation CD’S’fz(t) +
Az(t) = g(t, z(t), Qz(t)) and the condition z(0) + v(z) = zo on J.

Lemma 3.2. Let z € C(J, Z). Then, z is a solution of (1) if and only if it satisfies the following fractional integral
equation

t ¢ _ p-1
2(t) = 20 — () + fo 5(5)(5(?( ﬁ)g(s)) (~Az(s) + g5, 2(5), Qz(s)))ds. 3)

Proof. Suppose that z is a solution of (1), then by using Proposition 2.4 we obtain
I67 COfFa(t) = T8 (~Az(t) + g(t, 2(H), Qz(1))).

It follows
2(t) = 2(0) + 05 (= Az(b) + g(t, 2(t), Qz(D))).

Therefore

t ooy _ p-1
z(t) = zp — v(z) + fo ¢ (s)(é(?(ﬁ)é(s)) (=Az(s) + g(s, z(s), Qz(t))))ds.

Therefore, the integral equation (3) is satisfied.
Conversely, it is obvious that if z satisfies the equation (3), then it also satisfies problem (1). [

Lemma 3.3. Ifz € C(J, Z) satisfies the fractional equation (3), then we have

t
2(t) = S} (t,0)(z0 — v(2)) + f S5 (1, )(E(E) = E6)F 7 g(s,2(s), Q(s))E' (s)ds,
0
where
St s)zt) = fo Op(PIT (W) — £GP p)(t)dp and S5 (t,5)z(t) = B fo pus(PYT((E(E) - £6)p)z(Didp.
Proof. Let w > 0. Then, by means of the generalized Laplace transform applied to the equation (3), we get
) = — (a0~ V) + 5 (T + ),

with () = Lefz()}(@) and Fw) = Lefg(t, 2(), QD)) ().
Then, we have
Z(w) = P NPl + A) Nzo — v(2)) + (0PI + A) G(w).

It follows that
Zw) = ! f e ST (s)(z0 — v(z))ds + f ST (s)glw)ds,
0 0

=p f m(w’?)ﬁ e @' T () (z0 — v(2))dn + B f i e OV T (nfglw)dn.
0 0
=7Z1(w) + z2(w)

Choosing n = &(t) — £(0), we obtain

Zi(w) = fo ) T (e =) 7 ((5(0) ~ 0 )a0 - v
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and
() = f (1) - EQ) e OOV T (£(1) - EQPT)E Bt
0
From Lemma 2.10, we obtain
w S _£0)
G = [ oo [ ger O - ) o @

On the other hand, we have
Bw) = f f f geeeser-200p (B = <O (& - 5(0))ﬁ ! ()T ((E(t) pé( )P )o(s, =(5), Qe(s)E/S)E' (st

It follows that

00 T 00 _ [3—1
B = [ e o [ prp SO ;(s)) T )p‘g( W) g5, 29, Qe(s)E'()pds)e ().
©)

According to (4) and (5), we get
) = f " e h-£0) ( f ” gﬁ(p)fr(w)(zg —v@)dp| & )it
0 0

J— (€@~ EP, (0 - 6
an ([ [ seston SO EOZEO 09, Qe pi ot

By means of the inverse of the generalized Laplace transform, we get

z(t) = fo vp(P)T ((£(t) = £(0)Pp) (20 = v(2))dp

+p f f pUs(P)E) = EEPTIT((E() = £0)Y p)g(s, 2(5), Qz(5))E' (s)dpds,

where vg(p) = % ﬁ{’ﬁ(p /5)

Then
t
2(t) = S (£, 0)(z0 — v(2)) + f S (£ S)EW) = E6)P (5, 2(5), Qz(5))E (s)ds.
0
|
Lemma 3.4. [27] The operators Sﬁ and Sﬁ ¢ satisfy the following :

1. & é(t s) and K é(1? s) are bounded linear operators for each fixed t > s > 0. Moreover

IISﬁ r(t s)z|l < M||z|| and ||Sﬁ r(t s)z|| < Fﬁ)llzll foreveryz € Z.

2. The operators Sﬁ ((£9)z, Sﬁ ((,9)z [0, +00) — Z are continuous, for allze Z.

3. If {T (O} is an equicontinuous semigroup, Then the operators S 1e(ts) and S > (£, 5) are continuous in
(0, +00) by the operator norm, i. e., foreach 0 <s <ty <t < T, we have

”Sié (t2,5) = S (t1,5)

| =0 and ||S] (t2,5) = S5 (11,9)

|—>0 as ty — 1.
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We introduce the operators ?'f % 7—'2‘8 & and ¥ as follows

7, :C(T,2) - C(T, 2)
Fiz(t) = S (1,0)(z0 - v(2)),

7L :CT,2) - T, 2)
Fa2(b) = fo S5 et )(E(E) = E6)F 7 g(s, 2(s), Q(s))E' (s)ds,

and

F:CJ,2) - CJ, D
— P p
Fz(t) = F7 2(t) + F 2(8).
Based on Lemma 3.3, we can deduce that a fixed point of the operator ¥ corresponds to a mild solution of

problem (1).
To establish the main results, we need to use the following assumptions

(H)
1. The function g(¢, .,.) : £ X Z — Z is continuous, for each t € 7.
2. The function g(., z,2) : J — Z is Lebesgue measurable, for each (z,z) € Z x Z.

(H>) There is an increasing continuous function A : R* — R*, and & € Lﬁ (J,R*) with 1 € (0, B), such that
llg(t, z, 2)Il < h(t)A(|lzll) foreachz,ze Zandte .
(H3) The function v is continuous and there exist a constant £, > 0 such that
v(z1) = v(2)ll £ Lyllz1 — 20|l forall z1,25 € C(F, 2).
(Ha) There are two positive constants £; and £, such that
A(g(t, D1, D»)) < LiA(Dy) + LLA(D,) foreveryte T and Dy, D, € Z.
Theorem 3.5. If assumptions (H1)-(Hy) hold, then the problem (1) has a mild solution provided that

2L + QL)

Lt =56+

(&(T) - ao»ﬁ) (0,557 6)

Proof. We consider Bg = {z € C(J, Z) : ||zl £ R} with

(&(T) = &(0))B2D(=P1)

R: T(B)(B2 + 1)A-Av)

M
T 1-ML,

lizoll + lIvO)Il + AR 1 -

The proof consists of the following steps:

Step 1. We will show that 7 (Bg) C Bg.
Letz € Bg and f, = P

1-p1
772l < 1F1,e2Oll + 1F2,c2()]

€ (-1,0), we have

< IS} (£, 0)(z0 — V()| +

t
[ St 9e0 - 607 g6 26, @0 s
0
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By Lemma 3.4 and (H3), we get
||Sf,5(t, 0)(z0 — vl < M{(llzoll + Ly llzllc + [Iv(O)I]) -

By applying Holder’s inequality and (), we obtain

t t —B;
| e = 0196520, @ onas <( [ - sorras) " acn

L &M~ £(0))E2+D0-B)
(B2 + 1)(FD)

AR -

Then, by Lemma 3.4 we obtain

(&(T) — &(0))B2+D~p)
T(B)(Ba + 1)1-F

t
[ f Sh (1, 5)(E(E) - E6))F (5, 2(5), Qz(3)E ()| < MARIL -
0

Therefore

(E(T) = @) F-F)
TR + 1))

(E(T) = @) F=-)

T(E)2 + 1)+

172Nl < M(llzoll + Ly llzllc + [v(O)I) + MARIH 10

< MAllzoll + LR + [v(0)I) + MA(R)IIhIILﬁ,
=R.
Hence, ||7z|| <R for every z € Bg.

Step 2. We will prove that 7:1ﬁ ¢ is Lipschitz continuous.
Let z,Z € Bg, by using (H3), we have

|Ff iz = FLz|| = ||S] o (t,0) (20 - v(@)) = S ((£,0) (z0 - v(@) |
< Miv(z) - v(@)l|
< M-£v||z - 2“,

thus 7’1’g £ is Lipschitz continuous with constant ML, .

Step 3. We will show that 7—'; ¢ 1s continuous.
Let {z,})7, C Bg with lirP z,(t) = z(t) in Bg, foreachte J.
n—+0oo

Then, by using (H;) we get
nl_l)IP g (£, z,(t), Qz,(t)) = g(t, z(t), Qz(t)) foreveryte J.

Therefore
Tim_sup g (¢ 2u(8), Qz4(9) - 9(t, 2(), Q(B)] = 0
teJ

In other hand, fort €
M t
17360 = F1e2l < 75 f (E0) — EOYE G, 20, Qzn) — (5,2, Q2)lds
0

M((E(T) - &(0))F)
< TGT) 5;161}9 llg(s, zu(s), Qzu(s)) — g(s, z(s), Qz(s))Il-
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Thus
IF 7 zn(t) = Fhe2(t)] = 0 as n — +oo,

Therefore Tf £ is a continuous on Bg.

Step 4. We will demonstrate that ¥ is equicontinuous in Bg.
Letze Bgand 0 <t <t; < T, we get

I 2(t2) - F2(t)l < S (12,00 (z0 - v(2) = S (11,0) (20 - v(2))|
+| fo ()~ £ S 02, 906, 26), QEE (51
- fo (60 - 6P Sl 965, 26), QN |
<S8 ¢ (12,0 20 - vi2) - S (11,00 (20 - v(2)|

t>
#| [ (€ = 0 29965, 269, Qs
5]

1
' fo (1) = €O = (&) = £GP S (12, 9905, 26), Q)

t
t [ e - 0P (85009 - S t01,9)ots 260, Qe
0

=Y+ Yo+ Y3+ Yy

By Lemma 3.4, we obtain

1< (87 2,00 = S 01,00 )eo| +[|(ST. (12,0 - S 11,00 i)

Then, Y7 — 0 as £, — t;.
For Y, we have

MAR)IIAN

L (&) - &)

(A+p2)(1=p1)
Yz S —1 .
L)1 + o)t

Then, Y, — 0 as t, — #;.
Now, for Y3, by using Lemma 3.4, we have

y <MA(R)||h|ILi h . oy NP
3_T( fo ((&t) = & = (E(t) - &) ds)
b3 (£GP — £ 4+ (E(02) — )™ )
TR (1+p2)
MA)IA

S T - (1+82) (1=p1)
< TG g (&(t2) — &(h)) :

Since £ is a continuous function, then we get Y3 — 0 as t, — #;.
Itis clear that Y4 = 0, fort; =0and 0 < t, < T. Now, for t; > 0 and € > 0 small enough,
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by using Lemma 3.4, we get

l’1—€

Yas| | @) -6 (Shelta,5) - S (1,5)) 965, 2(5), Qes)E ()ds
t
+ (&t) = £ (S (2, 9) = S (1,9) 905, 2(5), Qz(s))E (s)ds
ti—€
t1—€
Sf [£t) = €6 g5, 2(5), Q))& (s)|| ds sup (sﬁi(tz,s)—Sﬁé(tl,s))H
0 s€(0,t—€)
E(A;) f ) - €Y 965,26, @) )| ds
AR 1 (6t = SO = (k) = &t - e i)
- (1+p) "
< S PMACROIH, (1+2) (1-51)
(f2,8) — &, (t1, ——(&(t) — &t — )P,
g SECRRRAUR) Rrvrews UG RE U

Since £ is a continuous function, then Y4 — 0.ast, —» t; and € — 0.
Then, ||Fz(t2) = Fz(t)ll > 0ast, — t; foreveryze€ Bgand 0 <t; <t, <T.
Therefore, ¥ is equicontinuous in Bg.
Step 5. We will prove that ¥ is a condensing operator.
Let B C Bg, we have ¥ (B) is equicontinuous and bounded. Then by using Lemma 2.13, there exists a set
Bi = {z4},., C B, with
A(F (B)) < 2A(F (B)). (7)

Since ¥ (B1) C ¥ (Bg) is equicontinuous, then by Lemma 2.14 we have

AT (B1)) = max A(F (B) (1) ®)
For t € ], by using Lemmas 3.4 and 2.14, also (#3) and (), we obtain
MFB)(®) < AFLB)®) + A (FL(B)®)
< MFL(B1) + A ({ fo t ) (£ S)EW) — E6)F (s, zn<s>,azn<s>>5'<s>ds}:°_l).

By Lemma 2.16, we have A (7:1/35 (B1)) < ML,A (By) and by Lemma 2.15, we obtain

t
AMF B1)(B) < MLAB) +2 f A{S5 ()W = £6)) 905, 20(5), Qu(GNEG)] . )ds

< MLVA(B)+W) f (&) = 6P A g(5,24(5), an(s))} & (s)ds

< ML)+ 5 f (&) - O (LIABIE) + LAQEB)E))E (5)ds

Meanwhile, we have
A(QBi(s)) < A(Q(B1)) < IQIIA(B1) < @ A(B1) < Q A(B).
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Hence

AF (B1)(B) < MLAB) + Tﬁ) f (&) = £ (LA (B) + LLQAB))E (5)ds

< MLAB) + %ﬁi&)(am ~ 50)PA®)
2Ly +Q@ L)
< M(LV « A m - 5(0))‘*)?\(3)-

From (7)) and (8), we have

2L + QL)

tgrn CM O |AB).

MF(B)) < 2M (LV +
By the condition (6), it follows that
AMF (B)) < A(B).

Thus, the operator ¥ is a condensing operator.
Since all the conditions of Theorem 2.17 are satisfied, it follows that # has a fixed point in Bg, which
corresponds to a mild solution of problem (1). [

In another case, if condition (H3) does not hold, we make the following assumption.
(Hs) The function v is completely continuous and there are two constants K; € (0, /lw) and K, > 0 such that
Ilv)Il < Killzll + K, for every z € B,, where r > 0.
Theorem 3.6. If assumptions (H1), (Ha), (Hs), (Hs), and the following condition hold:
(L1+Q L)

p
SR O (0 531): ©)
Then the problem (1) has a mild solution in B, where r satisfying

>1
M(llzoll + Kz + i (5(T) = £(0)) 4051

Proof. Let
M(llzoll + Ko+ 57 ﬁ T (M) - 5(0))(1+ﬁ2)<1—ﬁ1))
(1-KiM)

As in the proof of theorem 3.5, we can prove that # is equicontinuous in B,.
Now, let D c B,, we have ¥ (D) is equicontinuous and bounded , by Lemma 2.13 there exists Dy = {z,},’; € D
a countable set such that

A(F (D)) <2A(F (D1)). (11)

r>

Since 7 (D1) € ¥ (B,) is equicontinuous and by Lemma 2.14 we get
A(F (D)) = max A(F (D)) -

By employing (H,) and (Hs), we can conclude that

AM(L +Q L)

A(F (D)) < TG+ 1)

(E(T) = )Y A(D). (12)
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The combination of (9) and (12), we get
A(F (D)) < A(D),

thus, ¥ is a condensing operator.
Now, we consider y € (0,1) and z = y¥ (z), then we have

t
2(t) = S} (£,0)(z0 — v(2)) + ¥ f S (4 )(EWD) - E6)F (5, 2(5), Qz(s))E (s)ds.
0
It follows that MM
= < Mol + Kar + Ko) + e S

Then, we get
(1 - KlM)T’

<1
M S
M(||ZO|| + Ky + r(ﬁ)(1+[;z)l‘ﬁ1 (&(T) — &(0))+p201 ﬁl))

Thus, by using (10), there exists some constant r such that ||z|| # r. By the choice of B,, does not exist z € JB,
such that z = y¥ (z) for some y € (0, 1).

Hence, by Theorem 2.18 we conclude that £ has a fixed point in B,, which is a mild solution to the
problem (1). O

4. An illustrative example

As an example, we have the following fractional evolution problem

—t t
oz e, 2+ 3 i —u(t,2) = 5 ! e—)u(t,z)+ f L u(s, 2)ds, (£2) €011,
0

251+t 50
u(t,0) = u(t,1) = 0, (13)
u(0,z) + i llog(1 + llu(t;, 2)l) = uo(2), t; € (0,1), j=1,2,..,10.
4 j:1 40 ]/ 7 ] 7 4 7 %~r 7

Let Z := L?([0,1]) and A : D(A) C Z — Z be an operator such that Au = u”” with the domain
D(A) = {u € Z : u,u’ are absolutely continuous and u” € Z with u(0) = u(1) = 0}.

Thus, —A generates an equicontinuous Co-semigroup {7 (t)}>0 on Z, and |7 (t)|| < 1, for all t > 0.
By putting u(t) = u(t, ), the problem (13) can be rewritten into the form of the main problem(1) such that

¢ ¢
B=19=1[0,1], &) = V1+t,g(t,u,Qu) = ()+f le‘su(s)dswrch Qu(t)—f %e_su(s)ds and
0

(1+t)

v = 5 3" log(1 + ).
j=1

Letu, v € Z, we have
1 10 1 10 1
() = vl = |25 Y, Toa(1 + (eIl = 35 Y log(1 + ot < g1hu =l
j=1 j=1

And

1 et 1
9t 0, @01 = || 0+ [ ggesuons | <nod,
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with - )
h(t) = (gm + %) and A(R) =R.
Hence,
L= %Lz = 51—0,0* = %andlﬁv = 411
Furthermore, we have
2M (.CV + 2uj%f;f‘z)(g(n - 5(0))ﬁ) ~ 0.5636 < 1

Since all the conditions of the theorem 3.5 hold, which means that the problem (13) has a mild solution in
C([0, 1], L*([0, 1]))-

5. Conclusion

In this work, we investigated the existence of mild solutions to a semilinear fractional integro-differential
evolution equation involving £-Caputo derivatives with nonlocal conditions in an arbitrary Banach space.
In the first step, we constructed the form of the mild solutions of our problem using generalized &-Laplace
transforms, semigroups, and some techniques of the &-fractional calculus. In the second, we proved the
existence of mild solutions using some fixed point theorems for condensing maps. Finally, we provided a
convenient example to illustrate the investigation of our theoretical results.
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