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Renormalized solutions for some nonlinear degenerated elliptic
problems in weighted Sobolev space with variable exponents
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Abstract. In this article, we prove the existence of a renormalised solution to the problem of the nonlinear
elliptic equation:{
−div (a(x,u,Du)) = f in Ω,
u = 0 on ∂Ω, (1)

where a(x,u,Du) is blow-up for a finite value m of the unknown u and the data f ∈ L1(Ω).

1. Introduction

Recently, interest in weighted Sobolev space with variable exponent has grown rapidly because they
have many physical applications such image processing (underline the borders, eliminate the noise) and
electro-rheological fluids, for more detail, we invite the reader to see([3, 4]).

Our objective in this paper is to establish that a renormalized solution exists for a class of elliptic-type
problems with the following form.{

−div (a(x,u,Du)) = f in Ω,
u = 0 on ∂Ω, (2)

whereΩ is an open bounded subset of RN(N ≥ 2), and the data f in L1 (Ω) . The operator −div (a(x,u,Du))
is a Leray–Lions operator defined on weighted Sobolev space with variable exponent and blow-up when
u→ m−, with m is strictly positive real number.

This problem is motivated by physical applications where the internal variable u is constrained to satisfy
u ≤ m. Comprehensive discussions on such internal constraints are provided in Frémond’s studies on shape
memory materials [13] and on constitutive laws in phase-change models [14]. Further related contributions
can be found in the context of turbulence modeling [21, 22].
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For the analysis of Problem (2), we will use the notion of renormalized solution (see Definition (3.1).
The reason for using this kind of solution is to capture the behavior of the solution on the set {u = m}, which
will be suitably replaced by Tk(u), since the datum is only L1-integrable. Moreover, the flux a(x,u,Du) on
{u = m}must make sense (see 15).

For convenience, we recall that the notion of renormalized solution was first introduced by DiPerna [17]
in the study of the Boltzmann equation and later developed by DiPerna and Lions in [17]. This concept has
since been extended to a wide range of nonlinear PDEs, including applications in fluid mechanics [26]. For
the elliptic case, we refer to [9, 23, 24], while the parabolic case is discussed in [10, 12, 18].

The problem (2), has been investigated in a few cases by several authors. In [? ], H.Redwane has studied
the problem (2) in weighted Sobolev spaces and they proved the existence of renormalized solutions u ∈
W1,p

0 (Ω, ω). Next, In (see [11, 12]), the authors proved the existence of renormalized solutions u ∈ W1,p
0 (Ω),

in the case where the operator a is replaced by a symmetric matrix, and blow-up for a finite value of the
unknown.

This paper is broken down as follows: section 2, we present the weighted Sobolev space with variable ex-
ponent and some of its properties. Section 3, we make assumptions and provide definition of renormalized
solution. Section 4, we etablish the proof of main result.

2. Preliminaries

We should remember the weight Lebesgue and Sobolev with variable exponents.

Let p :
−

Ω→ [1,∞] be a measurable function, whereΩ is a domain ofRn, satisfy the log-Hölder continuity
condition

|p(x) − p(y)| ≤
A

log 1
|x−y|

, for all x, y ∈ Ωwith |x − y| < r, (3)

where A > 0 and 0 < r < 1, and 1 < p− < p+ < N, where

p− = min
x∈
−

Ω

p(x) and p+ = max
x∈
−

Ω

p(x)

and let ω be a mesurable positive a.e. finite function defined in Rn and satisfied the following integrability
conditions

ω ∈ L1
loc(Ω) and ω ∈ L

−1
p(x)−1

loc (Ω),

ω ∈ L−s(x)
loc (Ω), where s(x) ∈ (

N
p(x)

,∞) ∩ [
1

p(x) − 1
,∞].

We define the variable exponent Lebesgue space by

Lp(x)(Ω, ω) = {u : Ω→ R : u is measurable in Ω and
∫
Ω

ω(x)|u(x)|p(x)dx < ∞ }.

The space Lp(x)(Ω, ω) equipped with the Luxemburg-type norm

∥u∥p(.),ω = inf
{
λ > 0 :

∫
Ω

|
u(x)
λ
|
p(x)ω(x)dx ≤ 1

}
becomes a Banach space [16]. We denote by Lp′(.)(Ω, ω∗) the conjugate space of Lp(.)(Ω, ω), where

1
p(x)

+
1

p′(x)
= 1,
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and where

ω∗(x) = ω∗(x)1−p′(x) for all x ∈ Ω.

The relation between the modular
∫
Ω
| f |p(x) ω(x)dx and the norm follows from

min(∥ f ∥p
−

p(.),ω, ∥ f ∥p
+

p(.),ω) ≤
∫
Ω

| f |p(x) ω(x)dx ≤ max(∥ f ∥p
−

p(.),ω, ∥ f ∥p
+

p(.),ω).

For all f ∈ Lp(·)(Ω), 1 ∈ Lp′(·)(Ω) with

p(x) ∈ (1,∞), p′(x) =
p(x)

p(x) − 1
,

the generalized Hölder inequality holds,∫
Ω

| f 1| dx ≤
( 1
p−
+

1
p′−

)
∥ f ∥p(x)∥1∥p′(x) ≤ 2∥ f ∥p(x)∥1∥p′(x) .

The weighted Sobolev space with variable exponent is defined by

W1,p(·)(Ω, ω) = {u ∈ Lp(·)(Ω, ω) : ∇u exists and |∇u| ∈ Lp(·)(Ω, ω)},

with respect to the norm

∥u∥1,p(.),ω = ∥u∥p(.),ω + ∥∇u∥p(.).

The space W1,p(.)
0 (Ω, ω) is defined as the closure of C∞0 (Ω) in W1,p(.)(Ω, ω) with respect to the norm ∥u∥1,p(.),ω.

In addition the spaces W1,p(x)(Ω, ω) and W1,p(x)
0 (Ω, ω) are separable and reflexive Banach spaces.

For more detail, we invite the reader to see [1, 6–8, 16, 19, 20, 27].

3. Assumptions on the Data and notations

Let Ω be a bounded open set of RN(N ≥ 2), and

a : Ω ×R ×RN
−→ RN (4)

is a Carathéodory function, such that there exists a positive function b ∈ C0((−∞,m)) which satisfies

bp(x)−1 (s) ≥ α > 0 ∀s ∈ (−∞,m) ; lim
s−→m−

b(s) = +∞, (5)

∫ m

0
b(s)ds < +∞, (6)

and

a(x, s, ξ)ξ ≥ ω(x)b(s)p(x)−1
|ξ|p(x) , a(x, s, 0) = 0. (7)

|a(x, s, ξ)| ≤ ω(x)
1

p(x) β
[
L(x) + ω(x)

1
p′ (x) b(s)p(x)−1

|ξ|p(x)−1
]
, (8)

[a(x, s, ξ) − a(x, s, ξ′)] [ξ − ξ′] ≥ 0, (9)

where L is a non negative function in Lp′ (.)(Ω), and β > 0, for almost every x ∈ Ω, for every s ∈ Ω and ξ ∈ RN.
Finally the data

f is an element of L1(Ω). (10)
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Definition 3.1. A mesuarble function u defined on Ω is a renormalized solution of problem (2) if

Tk(u) ∈W1,p(.)
0 (Ω, ω), (11)

u ≤ m a.e. in Ω, (12)

a(x,Tk
m(u),DTk

m(u))χ{u<m} ∈ (Lp′(.)(Ω, ω1−p′(.)))N, (13)

lim
s→+∞

∫
{−s−1≤u(x)≤−s}

a(x,u,Du)Dudx = 0, (14)

lim
δ→0

1
δ

∫
{m−2δ≤u(x)≤m−δ}

a(x,u,Du)Dudx =
∫

{u(x)=m}

f dx, (15)

and, for every function S in W1,∞(R) such that supp(S) is compact and S(m) = 0, u satisfies∫
Ω

a(x,u,Du)D(S(u)φ)dx =
∫
Ω

f S(u)φdx, (16)

for every φ ∈W1,p(.)
0 (Ω, ω) ∩ L∞ (Ω) .

Remark 3.2. Conditions (11) and (13) to show that all term in (16) are well defined. The assumption (15), has been
establissed in [11].

The following notations will be used throughout the paper. For any k > 0 and ε > 0, we define

Tk
ε(s) =


−k, if s ≤ −k,
r, if − k ≤ r ≤ ε,
ε, if r ≥ ε.

For l ≥ 1 fixed, we define

θl(s) = T1 (r − Tl(r))

and hl(s) = 1 − |θl(s)| ,for all s ∈ R.

4. The existence theorem

Theorem 4.1. Assume that (4)-(10) hold true there existe a renormalized solution u of problem (2).

Proof of theorem

4.1. Step 1: Approximate problem and a priori estimates
Let us introduce the following regularisation of the data: for a fixed n ≥ 1. let

bn(r) = b(Tn
m−1/n(r)),

an(x, s, ξ) = a(x,Tn
m−1/n(s), ξ),

fn ∈ L∞(Ω), such that fn → f strongly in L1(Ω), as n tends to +∞, (17)

Let us now consider the following regularized problem{
−div (an(x,un,Dun)) = fn in Ω,

un = 0 on ∂Ω, (18)
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As a result, demonstrating the existence of a weak solution un
∈ W1,p(.)

0 (Ω, ω) of (18) is an easy task (see
[25]).

We choose Tk(un) as a test function in (18), we get∫
Ω

an(x,un,Dun)DTk(un)dx =
∫
Ω

fnTk(un)dx.

Since (5) and (7) , we have∫
Ω

ω(x) |DTk(un)|p(x) dx < C, (19)

where C does not depend on n and k .
By a classical argument (see e.g [2, 5]), for a subsequence still indexed by n, from (19), we have

un
→ u a.e. in Ω, (20)

and

Tk (un) ⇀ Tk (u) weakly in W1,p(.)
0 (Ω, ω). (21)

Taking now Zn =
∫ Tk

m(un)

0 bn(s)ds as a test function in (18), we give∫
Ω

an(x,un,Dun)DZn(un)dx =
∫
Ω

fnZn(un)dx. (22)

By the assumptions (7) of an and (5), we deduce that∫
Ω

ω(x) |DZn(un)|p(x) dx < C. (23)

For every k > 0, we write∣∣∣an(x,Tk
m(un),DTk

m(un))
∣∣∣ ≤ βω(x)

1
p(x)

[
L(x) + ω(x)

1
p′ (x) |DZn(un)|p(x)−1

]
. (24)

Putting together (23) and (24), we deduce that

an(x,Tk
m(un),DTk

m(un) is bounded in Lp′(x)(Ω, ω1−p′(x)),

then there exists a function φk ∈ Lp′(x)(Ω) such that

an(x,Tk
m(un),DTk

m(un) ⇀ φk weakly in Lp′(x)(Ω, ω1−p′(x)). (25)

Using T+2m(un) − T+m(un) as a test function in (18) leads to∫
Ω

an(x,un,Dun).D
(
T+2m(un) − T+m(un)

)
dx =

∫
Ω

fn
(
T+2m(un) − T+m(un)

)
dx,

thanks to (7), we have

b(m −
1
n

)p(x)−1
∫
Ω

ω(x)
∣∣∣∣D (

T+2m(un) − T+m(un)
)∣∣∣∣p(x)

dx ≤ C, (26)

we can pass to the limit in (26) as n tends to +∞, to deduce that

T+2m(u) − T+m(u) = 0 a.e. in Q,
u ≤ m a.e. in Q. (27)
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Taking now Tk(vn) as a test function in (18), we obtain∫
Ω

an(x,un,Dun)DTk(vn)dx ≤ C.

By (5) and (7), we have∫
Ω

ω(x) |DTk(vn)|p(x) dx ≤ C. (28)

By a classical argument (see e.g [2, 5]), for a subsequence still indexed by n, from (28), we have

vn
→ v a.e. in Ω, (29)

and

Tk (vn) ⇀ Tk (v) weakly in W1,p(.)
0 (Ω, ω).

We choose θk(vn) as a test function in (18), it gives

lim
n→0

∫
Ω

an(x,un,Dun)D (θk(vn)) dx =
∫
Ω

fnθk(v)dx.

Since fn ∈ L∞(Ω), Lebesgue’s convergence theorem, we have

lim
k→0

lim
n→0

∫
{n≤|vn |≤n+1}

an(x,un,Dun)Dvndx = 0. (30)

4.2. Step 2: the monotonicity estimate and the weak limit
Lemma 4.2. For any k ≥ 0, we have

lim
n→0

∫
Ω

[
an(x,Tk

m(un),DTk
m(un))

bn(un)p(x)−1
−

an(x,Tk
m(un),DTk

m(u))
bn(un)p(x)−1

]
×

(
DTk

m(un) −DTk
m(u)

)
dx = 0. (31)

Proof. Let k ≥ 0 be fixed. Equality (31) is split into∫
Ω

[
an(x,Tk

m(un),DTk
m(un))

bn(un)p(x)−1
−

an(x,Tk
m(un),DTk

m(u))
bn(un)p(x)−1

]
×

(
DTk

m(un) −DTk
m(u)

)
dx = In

1 + In
2 + In

3 , (32)

where

In
1 =

∫
Ω

an(x,Tk
m(un),DTk

m(un))
bn(un)p(x)−1

DTk
m(un)dx,

In
2 = −

∫
Ω

an(x,Tk
m(un),DTk

m(un))
bn(un)p(x)−1

DTk
m(u)dx,

In
3 = −

∫
Ω

an(x,Tk
m(un),DTk

m(u))
bn(un)p(x)−1

(
DTk

m(un) −DTk
m(u)

)
dx.

In what follows we pass to the limit as n tends to +∞ in (32).
Limit of In

1
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We choose hl(vn)
∫ Tk

m(u)

0
1

b(s)p(x)−1 ds as a test function in (18) to obtain∫
Ω

hl(vn)an(x,un,Dun)
DTk

m(u)
b(u)p(x)−1

dx+∫
Ω

an(x,un,Dun)Dhl(vn).

∫ Tk
m(u)

0

1
b(s)p(x)−1

ds

 dx (33)

=

∫
Ω

fnhl(vn)
∫ Tk

m(u)

0

1
b(s)p(x)−1

dsdx.

Since hk have a compact support, we have for a large n

|an(x,un,Dun)hl(vn)| ≤ βω(x)
1

p(x)

[
L(x) + ω(x)

1
p′ (x) |DTl+1(vn)|p(x)−1

]
. (34)

From (34) and (28), we deduce that

an(x,T(l+1)/α (un) ,DT(l+1)/α (un))hl(vn) is bounded in Lp′(x)(Ω, ω1−p′(x)), (35)

for every large n.
We first use the estimate (35) to extract another subsequence, still indexed by l, such that

an(x,T(l+1)/α (un) ,DT(l+1)/α (un))hl(vn) ⇀ ψl weakly in Lp′(x)(Ω, ω1−p′(x)), (36)

as n tends to +∞.
Now for max(k,m) ≤ l/α, we have

an(x,T(l+1)/α (un) ,DT(l+1)/α (un))hl(vn) χ{−k<un<m}

= hl(vn)an(x,Tk
m(un),DTk

m(un)) χ{−k<un<m}

a.e. in Ω. Ussing the covergences (36), (29), and (36) and letting n tends to +∞, we have for

ψlDTk
m(u) = hl(v)φkDTk

m(u) a.e.in Ω. (37)

Letting now n tends to +∞ and l tends to +∞. The first term in (33) yeilds

lim
l→+∞

lim
n→+∞

∫
Ω

hl(vn)an(x,un,Dun)
DTk

m(u)
b(u)p(x)−1

dx =
∫
Ω

φk
DTk

m(u)
b(u)p(x)−1

dx. (38)

The second term of (33)∣∣∣∣∣∣∣an(x,un,Dun)Dhl(vn).

∫ Tk
m(u)

0

1
b(s)p(x)−1

ds


∣∣∣∣∣∣∣ ≤ max(m, k)

α
|an(x,un,Dun)Dvn

| .

Since (30), we deduce that

lim
l→+∞

lim
n→+∞

∫
Ω

an(x,un,Dun)Dhl(vn).

∫ Tk
m(u)

0

1
b(s)p(x)−1

ds

 dx = 0. (39)

Due to (38) and (39) , we have∫
Ω

φk
DTk

m(u)
b(u)p(x)−1

dx =
∫
Ω

f

∫ Tk
m(u)

0

1
b(s)p(x)−1

ds

 dx. (40)
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Take
∫ Tk

m(un)

0
1

bn(s)p(x)−1 ds as a test fuction in (18), we get

∫
Ω

an(x,un,Dun)
DTk

m(un)
bn(un)p(x)−1

dx =
∫
Ω

fn

∫ Tk
m(un)

0

1
bn(s)p(x)−1

dsdx. (41)

Passing to the limit as n tends to +∞ in (41) , in view (40) , we have

lim
n→+∞

In
1 =

∫
Ω

φk
DTk

m(u)
b(u)p(x)−1

dx. (42)

Limit of In
2

By the assumptiom of bn, we remark

1
bn(un)p(x)−1

→
1

bn(un)p(x)−1
a.e.in Ω, (43)

as n tends to +∞. Since (21), (25), and (43), we have

lim
n→+∞

In
2 = −

∫
Ω

φk
DTk

m(u)
b(u)p(x)−1

dx. (44)

Limit of In
3

We notice (4), (5), and (21), we show

an(x,Tk
m (un) ,DTk

m (u))
bn(un)p(x)−1

→
a(x,Tk

m (u) ,DTk
m (u))

b(u)p(x)−1
a.e.in Ω, (45)

as n tends to +∞, and∣∣∣∣∣∣an(x,Tk
m (un) ,DTk

m (u))
bn(un)p(x)−1

∣∣∣∣∣∣ ≤ (46)

ω(x)
1

p(x)
1
α

[
β
[
L(x) + ω(x)

1
p′ (x)

∣∣∣DTk
m (un)

∣∣∣p(x)−1
]]

a.e.in Ω, (47)

uniformly with respect to n. by (45), and (46), we deduce

an(x,Tk
m (un) ,DTk

m (u))
bn(un)p(x)−1

→
a(x,Tk

m (u) ,DTk
m (u))

b(u)p(x)−1
weakly in Lp′(x)(Ω, ω1−p′(x)) , (48)

as n tends to +∞.
From (21), we conclude

DTk
m (un) −DTk

m (u)→ 0 weakly in Lp(x)(Ω, ω). (49)

Due to (48), and (49) imply that

lim
n→+∞

In
3 = 0. (50)

Combining (32) with (42)–(50), we etablish 31

Lemma 4.3. For fixed k ≥ 0, one has

φk = a(x,Tk
m (u) ,DTk

m (u)) a.e.in {x ∈ Ω ; u(x) < m} . (51)
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And

an(x,Tk
m (un) ,DTk

m (un))
bn(un)p(x)−1

DTk
m (un)

→
a(x,Tk

m (u) ,DTk
m (u))

b(u)p(x)−1
DTk

m (u) weakly in L1(Ω), (52)

when n→ +∞.

Proof. Let k ≥ 0 be fixed, by (20) and (48), we have

lim
n→+∞

∫
Ω

an(x,Tk
m (un) ,DTk

m (un))
bn(un)p(x)−1

DTk
m (un) dx =

∫
Ω

φk

b(u)p(x)−1
DTk

m (u) dx.

Since (43) and (5), we have for every ψ

0 ≤ lim
n→+∞

∫
Ω

[
an(x,Tk

m (un) ,DTk
m (un))

bn(un)p(x)−1
−

an(x,Tk
m (un) , ψ)

bn(un)p(x)−1

] [
DTk

m (un) − ψ
]

dx

= lim
n→+∞

∫
Ω

an(x,Tk
m (un) ,DTk

m (un))
bn(un)p(x)−1

[
DTk

m (un) − ψ
]

dx

− lim
n→+∞

∫
Ω

an(x,Tk
m (un) , ψ)

bn(un)p(x)−1

[
DTk

m (un) − ψ
]

dx (53)

=

∫
Ω

(
φk

b(u)p(x)−1
−

a(x,Tk
m (u) , ψ)

b(u)p(x)−1

) [
DTk

m (un) − ψ
]

dx.

By Minty trick lemma, we conclude that for any

φk

b(u)p(x)−1
=

a(x,Tk
m (u) ,DTk

m (u))
b(u)p(x)−1

a.e.in Ω. (54)

Since (54) and (27), we deduce (51).
To prove (52), we observe that the monotone character of a and (31) give[

an(x,Tk
m (un) ,DTk

m (un))
bn(un)p(x)−1

−
an(x,Tk

m (un) ,DTk
m (un))

bn(un)p(x)−1

]
×[

DTk
m (un) −DTk

m (un)
]
→ 0

strongly in L1(Ω) as n tends to +∞. From (21), (25), (48), and (51), we conclude when n→ +∞

an(x,Tk
m (un) ,DTk

m (un))
bn(un)p(x)−1

DTk
m (u)→

a(x,Tk
m (u) ,DTk

m (u))
b(u)p(x)−1

DTk
m (u) weakly in L1(Ω), (55)

and

an(x,Tk
m (un) ,DTk

m (u))
bn(un)p(x)−1

DTk
m (un)→

a(x,Tk
m (u) ,DTk

m (u))
b(u)p(x)−1

DTk
m (u) weakly in L1(Ω), (56)

and

an(x,Tk
m (un) ,DTk

m (u))
bn(un)p(x)−1

DTk
m (u)→

a(x,Tk
m (u) ,DTk

m (u))
b(u)p(x)−1

DTk
m (u) weakly in L1(Ω). (57)

By the convergences (55), (56), and (57), we obtain that for any k ≥ 0

an(x,Tk
m (un) ,DTk

m (un))
bn(un)p(x)−1

DTk
m (un)→

a(x,Tk
m (u) ,DTk

m (u))
b(u)p(x)−1

DTk
m (u) weakly in L1(Ω),

as n tends to +∞.



M. El Fatry et al. / Filomat 39:26 (2025), 9101–9112 9110

4.3. Step 3: End of the proof
Taking Ts+1

m (un) − Ts
m (un) as a test function in (18) gives∫

Ω

an(x,un,Dun).D
(
Ts+1

m (un) − Ts
m (un)

)
dx =

∫
Ω

fn
(
Ts+1

m (un) − Ts
m (un)

)
dx. (58)

Since supp
(
Ts+1

m (.) − Ts
m (.)

)
⊂ [−(s + 1),−s] , we obtain∫

{−1−s≤un≤−s}
an(x,un,Dun).Dundx (59)

=

∫
Ω

an(x,un,Dun)D
(
Ts+1

m (un) − Ts
m (un)

)
dx

=

∫
Ω

an(x,un,Dun)
bn(un)p(x)−1

D
(
Ts+1

m (un) − Ts
m (un)

)
bn(Ts+1

m−1 (un))p(x)−1dx

=

∫
Ω

an(x,Ts+1
m (un) ,DTs+1

m (un))
bn(Ts+1

m (un))p(x)−1
D

(
Ts+1

m (un)
)

bn(Ts+1
m−1 (un))p(x)−1 (60)

−

∫
Ω

an(x,Ts
m (un) ,DTs

m (un))
bn(un)p(x)−1

D
(
Ts

m (un)
)

bn(Ts+1
m−1 (un))p(x)−1

We deduce from (20) and (52) that

lim
n→+∞

∫
{−1−s≤un≤−s}

an(x,un,Dun).Dundx

=

∫
Ω

an(x,un,Dun)D
(
Ts+1

m (un) − Ts
m (un)

)
dx

=

∫
Ω

a(x,Ts+1
m (u) ,DTs+1

m (u))
bn(Ts+1

m (un))p(x)−1
D

(
Ts+1

m (u)
)

bn(Ts+1
m−1 (u))p(x)−1

−

∫
Ω

a(x,Ts
m (u) ,DTs

m (u))
b(u)p(x)−1

D
(
Ts

m (u)
)

bn(Ts+1
m−1 (u))p(x)−1 (61)

=

∫
{−1−s≤u≤−s}

a(x,u,Du)Dudx.

Taking the limit as s tends to +∞ in (58) and using the estimates (60) and (61) show that u satisfies (3.8).
Choosing hl(vn) 1

δ (T+m−δ(u) − T+m−2δ(u)) as a test function in (18), we have

1
δ

∫
Ω

an(x,un,Dun)D(hl(vn)
(
T+m−δ(u) − T+m−2δ(u)

)
)dx

=
1
δ

∫
Ω

fnhl(vn)(T+m−δ(u) − T+m−2δ(u))dx. (62)

Since supp (hl) ⊂ [−(l + 1), l + 1] , we obtain

1
δ

∫
Ω

hl(vn)an(x,un,Dun)D(T+m−δ(u) − T+m−2δ(u))dx =

1
δ

∫
Ω

hl(vn)an(x,T(l+1)/α (un) ,DT(l+1)/α (un))D(T+m−δ(u) − T+m−2δ(u))dx. (63)

In addition, using the same procedures as above, we deduce

lim
l→+∞

lim
n→+∞

1
δ

∫
Ω

hl(vn)an(x,un,Dun)D(T+m−δ(u) − T+m−2δ(u))dx

=
1
δ

∫
{m−2δ≤|u|≤m−δ}

a(x,u,Du)Dudx. (64)
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Taking the limit as s tends to +∞ in (62) and using the estimates (63) and (64) show that u satisfies (3.8).
Let S be a function in W1,∞ (R) such that S has a compact support and S(m) = 0 and let φ ∈

W1,p(.)
0 (Ω, ω1−p′(x)) ∩ L∞ (Ω) . Take S(u) hl(vn )φ as a test fuction in (18), we get∫

Ω

hl(vn)an(x,un,Dun)D
(
S(u)φ

)
dx +

∫
Ω

S(u)φan(x,un,Dun)Dhl(vn)dx (65)

=

∫
Ω

fnS(u)hl(vn)φdx.

Taking the limit as n tends to +∞ and l tends to +∞ in (65).
Limit of first term in (65)
Since supp (hl) ⊂ [−(l + 1), l + 1] , we obtain

an(x,T(l+1)/α (un) ,DT(l+1)/α (un))hl(vn)) = hl(vn)an(x,un,Dun) a.e.in Ω.

From (27), (36), (37) and (51), we get

lim
l→+∞

lim
n→+∞

∫
Ω

hl(vn)an(x,un,Dun)D
(
S(u)φ

)
dx

= lim
l→+∞

∫
Ω

hl(v)a(x,Tk
m (un) ,DTk

m (un))D
(
S(u)φ

)
dx

=

∫
Ω

a(x,u,Du)D
(
S(u)φ

)
dx.

Limit of second term in (65)
As a consequence of (30), we conclude

lim
l→+∞

lim
n→+∞

∫
Ω

S(u)φan(x,un,Dun)Dhl(vn)dx = 0.

Limit of the Right-Hand Side of (65)
From (17) and (29)

lim
l→+∞

lim
n→+∞

∫
Ω

fnS(u)hl(vn)φdx =
∫
Ω

f S(u)φdx.

Then, u satisfies (16).
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