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Renormalized solutions for some nonlinear degenerated elliptic
problems in weighted Sobolev space with variable exponents

Mohammed El Fatry*", Mounir Mekkour?, Youssef Akdim?

?Faculty of Sciences Dhar EI Mahraz, Sidi Mohamed Ben Abdellah University, Laboratory L2ZMASI, B.P. 1796, Atlas Fez, Morocco

Abstract. In this article, we prove the existence of a renormalised solution to the problem of the nonlinear
elliptic equation:

—div(a(x,u,Du)) = f inQ, 1
u=0 on JQ), @

where a(x, u, Du) is blow-up for a finite value m of the unknown u and the data f € L(Q).

1. Introduction

Recently, interest in weighted Sobolev space with variable exponent has grown rapidly because they
have many physical applications such image processing (underline the borders, eliminate the noise) and
electro-rheological fluids, for more detail, we invite the reader to see([3, 4]).

Our objective in this paper is to establish that a renormalized solution exists for a class of elliptic-type
problems with the following form.

—div (a(x,u,Du)) = f in Q, ’
u =0 ondQ, 2)

where Q is an open bounded subset of RN(N > 2), and the data f in L! (Q2) . The operator — div (a(x, u, Du))
is a Leray-Lions operator defined on weighted Sobolev space with variable exponent and blow-up when
u — m~, with m is strictly positive real number.

This problem is motivated by physical applications where the internal variable u is constrained to satisfy
u < m. Comprehensive discussions on such internal constraints are provided in Frémond’s studies on shape

memory materials [13] and on constitutive laws in phase-change models [14]. Further related contributions
can be found in the context of turbulence modeling [21, 22].
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For the analysis of Problem (2), we will use the notion of renormalized solution (see Definition (3.1).
The reason for using this kind of solution is to capture the behavior of the solution on the set {# = m}, which
will be suitably replaced by Ty(u), since the datum is only L!-integrable. Moreover, the flux a(x, u, Du) on
{u = m} must make sense (see 15).

For convenience, we recall that the notion of renormalized solution was first introduced by DiPerna [17]
in the study of the Boltzmann equation and later developed by DiPerna and Lions in [17]. This concept has
since been extended to a wide range of nonlinear PDEs, including applications in fluid mechanics [26]. For
the elliptic case, we refer to [9, 23, 24], while the parabolic case is discussed in [10, 12, 18].

The problem (2), has been investigated in a few cases by several authors. In [? ], H.Redwane has studied
the problem (2) in weighted Sobolev spaces and they proved the existence of renormalized solutions u €
W;’p (Q, w). Next, In (see [11, 12]), the authors proved the existence of renormalized solutions u € W;’p(Q),
in the case where the operator a4 is replaced by a symmetric matrix, and blow-up for a finite value of the
unknown.

This paper is broken down as follows: section 2, we present the weighted Sobolev space with variable ex-
ponent and some of its properties. Section 3, we make assumptions and provide definition of renormalized
solution. Section 4, we etablish the proof of main result.

2. Preliminaries

We should remember the weight Lebesgue and Sobolev with variable exponents.

Letp: (_2 — [1, o] be a measurable function, where Q is a domain of IR”, satisfy the log-Holder continuity
condition

Ip(x) — p(y)] < forallx,y € Qwith|x—y| <7, 3)

1 7
1 lx=yl

where A >0and 0 <r <1,and 1 < p_ <p, <N, where

p- = minp(x) and p, = maxp(x)
xeé XE(_)

and let w be a mesurable positive a.e. finite function defined in IR” and satisfied the following integrability
conditions

-
w €L, (Q) and w € L7 (QY),

loc
N
_/ Sy —/
p(x) plx) -1
We define the variable exponent Lebesgue space by

w € L*(Q), where s(x) € (

loc

)N [ 00].

P9(Q,w) = {u: Q — R: uis measurable in Q and f w(@)|u(x)PPdx < oo }.
Q
The space LP™(Q, w) equipped with the Luxemburg-type norm
il = inf{A > 0 f |@|P<X>w(x)dx <1}
o A

becomes a Banach space [16]. We denote by L7 V(Q, w*) the conjugate space of LP)(Q, ), where
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and where
@' () = @' (@)™ forall x e Q.

The relation between the modular fQ |/P®) w(x)dx and the norm follows from

: P p* p(x) v P
min(IfIf,,,.. £, ) < fQ AP w)dx < max(UfIl, NI )

For all f € [PO(Q), g € LV )(Q) with

p(x)
px) -1’

the generalized Holder inequality holds,

p(x) € (1,00), p'(x) =

1 1
f If gldx < (= + == )Iflholiglly o < 201l llgllyco -
Q PP
The weighted Sobolev space with variable exponent is defined by
WYO(Q, w) = {u € LPNQ, w) : Vu exists and [Vu| € IPY(Q, w)},
with respect to the norm
leell1,p),0 = Ntllpey,w + IVl

The space Wé’p (')(Q, w) is defined as the closure of C;’(Q) in W1P0(Q, w) with respect to the norm [lell 0
In addition the spaces W'*®(Q, w) and Wé’p (x)(Q, w) are separable and reflexive Banach spaces.

For more detail, we invite the reader to see [1, 6-8, 16, 19, 20, 27].
3. Assumptions on the Data and notations
Let Q be a bounded open set of RN(N > 2), and
a:OXRxRY — RY (4)

is a Carathéodory function, such that there exists a positive function b € C°((—o0, m)) which satisfies

PO () >a>0 Vs e (—oo,m) ; lim b(s) = +oo, (5)

fo ! b(s)ds < +oo, (6)
and

a(x,s, £)& = w(@)b(s)’O 7 [EPY, a(x,s,0) = 0. (7)

a(x, 5, E)| < @) B|L(x) + w(x) 7O b(s) ! Iél”(")‘l], (8)

[a(x,s, &) — a(x,s, &) [E - &1 20, 9)

where L is a non negative function in U’/(')(Q), and g > 0, for almost every x € (), foreverys € Qand £ € RN,
Finally the data

f is an element of L'(Q). (10)
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Definition 3.1. A mesuarble function u defined on Q) is a renormalized solution of problem (2) if
Ti(u) € W, (Q, ),
u<m ae inQ,
a(x, Ty, (), DTy, ()X um) € (L (Q, 0! PO,

lim f a(x, u, Du)Dudx = 0,

S§—+00
{—s—1<u(x)<-s}

lirn1 f a(x,u, Du)Dudx = f fdx,

0—-00
{m—20<u(x)<m—o6} {u(x)=m}

and, for every function S in WY(IR) such that supp(S) is compact and S(m) = 0, u satisfies

fa(x,u,Du)D(S(u)q))dx:ffS(u)godx,
Q

Q

for every € WP (Q, ) N L™ (Q).

9104

(11)
(12)
(13)
(14)

(15)

(16)

Remark 3.2. Conditions (11) and (13) to show that all term in (16) are well defined. The assumption (15), has been

establissed in [11].
The following notations will be used throughout the paper. For any k > 0 and ¢ > 0, we define

-k, ifs<—k,
Ths)={ r, if —k<r<e,
g, if r>ec

For ] > 1 fixed, we define
0i(s) = T1 (r — Ti(r))

and /(s) = 1 —16,(s)| for all s € R.

4. The existence theorem
Theorem 4.1. Assume that (4)-(10) hold true there existe a renormalized solution u of problem (2).

Proof of theorem

4.1. Step 1: Approximate problem and a priori estimates
Let us introduce the following regularisation of the data: for a fixed n > 1. let

bu(r) = B(T", (1),
a"(x,s, &) = alx, Tfnfl/n(s), &),

f € L¥(Q), such that f, — f strongly in L'(Q), as 1 tends to + oo,

Let us now consider the following regularized problem

—div (a"(x,u", Du")) = f, in Q,
u" = 0 on dQ,

(17)

(18)
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As a result, demonstrating the existence of a weak solution u" € W;’p(')(Q, w) of (18) is an easy task (see
[25)).
We choose T (u") as a test function in (18), we get

f a(x,u", Du")DTy(u")dx = f fuTie(u™)dx.
o) Q
Since (5) and (7) , we have
f () IDTe(u")PY dx < C, (19)
Q

where C does not depend on n and k .
By a classical argument (see e.g [2, 5]), for a subsequence still indexed by #, from (19), we have

u" > uae. inQ, (20)
and
Ty (u") — T (u) weakly in W,"(Q, w). 1)
k u'
Taking now Z" = OT'"( ) by (s)ds as a test function in (18), we give

fQ a"(x,u", Du"YDZ"(u™)dx = fQ faZl (1")dx. (22)
By the assumptions (7) of 4" and (5), we deduce that

fQ w(x) IDZ" W)Y dx < C. (23)
For every k > 0, we write

", T "), DT )] < o)™ L) + w7 IDZ )P . (24)
Putting together (23) and (24), we deduce that

a(x, Tf;(u”), DT (u") is bounded in LV (Q, ' 7' ™),
then there exists a function ¢, € LF'®(Q) such that

a"(x, TS, (u"), DT, (u") — @y weakly in LV ®(Q, w!7'®), (25)

Using T, (u") — T,,(u") as a test function in (18) leads to

L a(x,u", Du™).D (T;m(u") - T;rl(u”)) dx = Lfn (T;m(u") - T;l(u”)) dx,

thanks to (7), we have

b(m — %)WH f () D (T3, (") = Th (™) s, (26)

Q

we can pass to the limit in (26) as n tends to +oo, to deduce that

Ty, ) =Th(u) = 0 ae. in Q,
u < m ae inQ. (27)
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Taking now Ti(v") as a test function in (18), we obtain
f a"(x, u", Du")DT(v")dx < C.
Q
By (5) and (7), we have

f w(x) |IDT(@")P™ dx < C. (28)
Q

By a classical argument (see e.g [2, 5]), for a subsequence still indexed by #, from (28), we have

" > vae. inQ, (29)
and

Ty (v") = Ty (v) weakly in W,"(Q, o).

We choose 0(v") as a test function in (18), it gives

lim u”(x,u",Du”)D(Qk(v”))dx:ff,,@k(v)dx.
Q

n—0 Q

Since f, € L*(Q), Lebesgue’s convergence theorem, we have

limlim a"(x,u", Du")Dv"dx = 0. (30)

k—=0n—0 {n<lor|<n+1}

4.2. Step 2: the monotonicity estimate and the weak limit
Lemma 4.2. Forany k > 0, we have

y a"(x, T8 (u"), DTk (u™))  a"(x, TX (u"), DT% (1))
im j(; [ by, (u)p-1 B by (un)p)-1 ]
X (DTfn(un) _ DT]fn(u)) dx = 0. 1)

n—0

Proof. Let k > 0 be fixed. Equality (31) is split into
a"(x, Ty, (u"), DTy, (") a"(x, Ty, (u"), DTy, (1))
o by (un)p)-1 - by (un)p)-1
x (DTS (u") - DT, (w))dx = I + I3 + I, (32)

where

ne [T& T, (u"), DT, (u"))
"o bu(umyp®-1

DT (u")dx,

po- [T T}, (w"), DT (")
2T 0T by
[z T (u"), DTS, ()
o by

In what follows we pass to the limit as n tends to +co in (32).
Limit of I}

DT (u)dx,

m=-

(DTE (") - DT () dx.
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k u
We choose h;(v") fT'"( ) _1

b st as a test function in (18) to obtain

1 n n n DT];n(u)
thl(U )a" (x, u", Du )W X+

Thw) 4
fa (x, u", Du")Dh(v ).(j; st]dx

Q
T (1) 1
:Lfnhl(’() )L stdx.

Since I have a compact support, we have for a large n

" e, ", Du" ()] < Bao(@) ™ [L(x) + ()70 |DT1+1<v">|”<”‘1] :

From (34) and (28), we deduce that

a"(x, Tgs1y/a "), DT 4170 (u™)l(2") is bounded in LV D(Q, o' #'™),

for every large n.
We first use the estimate (35) to extract another subsequence, still indexed by /, such that

a"(x, Tgxy/a "), DTga1yj0 ")(0") = ¢y weakly in IV ©(Q, o' 7)),

as n tends to +oo.

Now for max(k, m) < I/a, we have

a"(x, Tg1yja "), DT g41yja ")ni(0") Xi—k<ur<m)
= hy(@")a" (x, Tk (u"), DTS, (u")) X (—k<urr<m)

a.e. in Q. Ussing the covergences (36), (29), and (36) and letting n tends to +o0, we have for

1,ZJZDTfn(u) = hl(v)gokDT’,;(u) a.e.in Q.

Letting now 7 tends to +co and [ tends to +co. The first term in (33) yeilds

dx

DThw) (. DThw
s f e

lim lim th(v )a (x, u", Du )b(u)P(x)‘l X =

|—+oon—+00

The second term of (33)

Tu) max(m, k)
a"(x,u", Du")Dh(v )(j; by ds]‘ < "

Since (30), we deduce that

Tha) 4
]EISOHEEIW Qa (x, u", Du")Dhy(v )[fo st]dx =0.

Due to (38) and (39), we have

DT* (1) T q
L= [.s Uo e

la" (x, u", Du™)Dv"|.

9107

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)
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T (u")

Take b ds as a test fuction in (18), we get

T

DTk Tk(u”)
n n n
La (x,u",Du )b ( n)p(x) 1 ff"f p(x) 1z:lsdx.

Passing to the limit as #n tends to +o0 in (41) , in view (40) , we have
DT
lim I} = f (pkﬂdx.
Q

n—+00 b(u)p™-1

Limit of I}
By the assumptiom of b,, we remark

1
Dy YPO-1 By (P01

a.ein (),

as n tends to +co. Since (21), (25), and (43), we have

DTk
lim I} = —f(pkﬂdx.
Q

n—+oo b(u)P(x)_l

Limit of I
We notice (4), (5), and (21), we show

a"(x, Ty, (u"), DT}, ) a(x, Ty, (u), DTy, ()
bu(ur P~ - b(u)p)-1

in Q,

as n tends to +oo0, and

a"(x, Ty, "), DT}, ()
bn (un)p(x)—l

a)(x)ﬁé [ﬁ [L(x) + a)(x)ﬁ )DT],; (u”)|p(x)_1” a.e.in Q,
uniformly with respect to n. by (45), and (46), we deduce

a'(x, T ("), DT, (w))  a(x, TX, (u), DTX, (1))
bu(u )P~ - b(u)p)-1

as n tends to +oco.
From (21), we conclude

DT’,; ") - DT’,‘,, (1) = 0 weakly in P'YQ, w).
Due to (48), and (49) imply that

hmI =0.

oo O

Combining (32) with (42)—(50), we etablish 31
0

Lemma 4.3. For fixed k > 0, one has

o = a(x, TE (1), DTX (1)) a.e.in {x € Q; u(x) < m}.

weakly in IF®(Q, o'

-7 (X)) ,

9108

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)
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And
a"(x, T, (u"), DT, (u"))
by (w1
a(x, Tk, (u), DTY, (1))
b(u)P@-1
when n — +oo.

Proof. Let k > 0 be fixed, by (20) and (48), we have

n Tk n DTk n
lim fa (x, Ty ("), DT,y (u ))DT’;, (u”)dx:f—(Pk DT* (u)dx.
n—+eo ) bn(u”)l’(x)—l Qb(u)l’(x)—l

Since (43) and (5), we have for every 1

DT, (u")

DT (u) weakly in LY(Q), (52)

i a'(x, TS ("), DTS (u™))  a"(x, TX, (u"), ) .
0= lim Q[ by (un @1 T by unyp@1 ][D T, (") = ] dx
. a"(x, T¢, (u"), DTS, (u")) "
- nl—l>r-el—loa L bn(u”)l”(x)—l [DTﬁ (u ) - I][):I dx
. a"(x, Ty, ("), ) ,
~ lim fQ = [DTE ") - y]dx (53)

f( Px _a(x,T’,L(u),gb)
o \b(uyp»-1 b(uypr®-1

By Minty trick lemma, we conclude that for any
P _ alx, Ty, (u), DTy, (w)
bu)p®-1 b(u)p0-1

Since (54) and (27), we deduce (51).
To prove (52), we observe that the monotone character of a and (31) give

a"(x, T}, u"), DT}, (") _ a"(x, T, ("), DTS, (")
[ bty OT b
[DTS, (u") - DT, (u™)] - 0

) [DT,’; ") - ¢] dx.

a.e.in Q. (54)

strongly in L'(Q) as n tends to +o0. From (21), (25), (48), and (51), we conclude when n — +o0
a"(x, Ty, ("), DT}, (u")) a(x, Ty, (u), DTy, ()

k k . 1
byt Dm0 = T DT () weakly in LHQ), (55)
and
a'(x, TS, "), DTS ) . a(x, T (u), DTE () o
byt D W) = e DT () weakly in L(Q), (56)
and
a"(x, T5, (u"), DTy, (W) s a(x, T, (u), DTE () o
by DT, (u) — ) DTy, (u) weakly in L'(Q). (57)

By the convergences (55), (56), and (57), we obtain that for any k > 0
a"(x, Ty, (u"), DT}, (™) a(x, T, (u), DT}, (1)
by (um)P)-1 b(u)Pe)-1

as n tends to +o.

DT* (u") — DT (u) weakly in LY(Q),
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4.3. Step 3: End of the proof
Taking T%! (") — T, (u") as a test function in (18) gives

fo a"(x,u", Du").D (T3 (") = T, (u")) dx = L fu (T3 ") = T3, (u")) . (58)
Since supp (5 () = T5, () € [=(s + 1), =s], we obtain
f a"(x,u", Du").Du"dx (59)
{—1-s<u"<-s}
= f a"(x,u", Du")D (T3 (u") = T5, (")) dx
Q

- [ D (T ) = T ) (T
B an(x, T:n+1 (un) Ts+1 ( n))
- fg ba(T5 ()1
) f & (x, T3, ("), DTS, ()
Q by (ur)p@-1
We deduce from (20) and (52) that

D (T3 (")) b(T5Y, )y (60)

D (T5, (") by(T3 )y !

lim a"(x,u", Du").Du"dx
=400 Ji1-s<un<—s)

= fa”(x, u", Du™)D (T;:’l W) -T;, (u")) dx
o)

_j‘a(x,TfJ1 (u), DT (u))

~Ja

BT ()T

~ f a(x, T, (u), DT, ()
Q b(u)P(X)—l

= f a(x, u, Du)Dudx.
{—1-s<u<-s}

Taking the limit as s tends to +oo in (58) and using the estimates (60) and (61) show that u satisfies (3.8).
Choosing hy(v") 1 s(Tr_su) =T _,, (1)) as a test function in (18), we have

(Ts+1( ))b (Ts+l1 (u))p(x) -1

D (T}, () bu (T3 )y (61)

elsf "G ', DUDU(0") (T, o0 = Ty ()
- ngfnhz(zﬂl)(TJr 5) = T (u))dx. ©

Since supp (h;)  [-(I + 1),1 + 1], we obtain
(15 f h(@")a" (x, u", Du")D(T} _(u) = T, (1))dx =

5 [ Ty (), DTy DDAy 0) = Ty (63)
Q

In addition, using the same procedures as above, we deduce
1
lim Lim - | (o")a"(x,u", Du")D(T; _s(u) = T _,s(1))dx
[—+o0t—+00 ) a m m

= 1 f a(x, u, Du)Dudx. (64)
o {m—20<|u|<m—0o}
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Taking the limit as s tends to +o0 in (62) and using the estimates (63) and (64) show that u satisfies (3.8).
Let S be a function in W' (R) such that S has a compact support and S(m) = 0 and let ¢ €

Wé’p (')(Q, w7 0) N L (Q). Take S(u) (0" )e as a test fuction in (18), we get
f hy(@™)a" (x, ", Du™)D (S(u)@) dx + f S(u)pa" (x, u", Du")Dhy(v")dx (65)
Q Q

= f Ffu Sl (V" )pdx.
Q

Taking the limit as n tends to +oco and [ tends to +co in (65).
Limit of first term in (65)
Since supp (h;)  [-(I + 1),1 + 1], we obtain

a"(x, Tgsryja ("), DT41)/0 (W")(0")) = li(v")a" (x, u", Du") a.ein Q.
From (27), (36), (37) and (51), we get

lim lim hy(@™)a" (x, u", Du™)D (S(u)e) dx
)

[—>+con—+c0 J¢

lim | W@)a(x, TS "), DTE, (u™)D (S(u)p) dx
Q

|—=+00

= fa(x, u, Du)D (S(u)p) dx.
0

Limit of second term in (65)
As a consequence of (30), we conclude

lim lim S(u)pa" (x, u", Du")Dhy(v")dx = 0.
Q

|—+oon—+00

Limit of the Right-Hand Side of (65)
From (17) and (29)

lim lim L fuSu)hy(v")pdx = fQ fS(u)pdx.

|—+oon—+00

Then, u satisfies (16). O
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